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We continue the presentation of an alternative cosmology based on conformal gravity, following our kinematical approach to the
subject introduced in a recent paper. In line with the assumptions of our model, which proposes a closed-form expression for
the cosmic scale factor R(t), we revise the Hubble and deceleration parameters and introduce modified cosmological distances,
analyzing in particular the case of the luminosity distance. Our kinematical conformal cosmology is then able to explain the
anomalous acceleration of the Pioneer spacecraft, as due to a local region of gravitational blueshift. From the reported data of
the Pioneer anomaly, we also compute the current value of our first fundamental parameter, γ0 = 1.94× 10−28 cm−1, in line with
the original estimate by P. Mannheim of this quantity. Our second fundamental parameter, δ0 = 3.83 × 10−5, interpreted as the
current value of a cosmological time variable, is derived from a detailed fitting of type Ia supernovae “gold-silver” data, producing
Hubble plots of the same quality of those obtained by standard cosmology, but without requiring any dark matter or dark energy
contribution. If further experiments will confirm the presence of an anomalous frequency blueshift in the outer region of the solar
system, as described by our model, kinematical conformal cosmology might become a viable alternative to standard cosmological
theories.

1. Introduction

This paper is the second part of a project aimed at intro-
ducing an alternative cosmology based on conformal gravity
(CG), as originally proposed by Weyl [1–3] and recently
revisited by Mannheim and Kazanas [4–6]. In the first paper
on the subject [7] (paper I, in the following), we presented
the mathematical foundations of our new kinematical ap-
proach to conformal cosmology. This was based on a critical
reanalysis of fundamental astrophysical observations, start-
ing with the cosmological redshift, and on the fact that
modern metrology defines our common units of length and
time using nongravitational physics, that is, through emis-
sion, propagation, and absorption of electromagnetic waves
or similar phenomena.

Since the laws of electromagnetism are notoriously inva-
riant under a conformal transformation, we argued that on
a cosmological scale a conformal “stretching” of the space-
time might be present and might yield to an effective change
in wavelength or frequency of electromagnetic radiation,

equivalent to the observed cosmological redshift (or blue-
shift, if any). As the origin of this presumed conformal
stretching of the metric in the Universe can only be grav-
itational, we searched its connection with existing theories
of gravity that allow this possible conformal symmetry. Our
attention was focused on Weyl’s conformal gravity, since it
is the simplest known conformal generalization of Einstein’s
general relativity (GR). Weyl’s theory is also based on the
same principles and assumptions of GR, such as the equiv-
alence principle and other foundational concepts.

The complexity of CG, in particular its fourth-order field
equations, as opposed to Einstein’s second-order equations,
has rendered this theory quite intractable until Mannheim-
Kazanas (MK) found the first complete solutions, such
as the exterior solution for a static, spherically symmetric
source [4, 5], and they also showed that it reduces to the
classic Schwartzschild solution in the limit of no conformal
stretching. In addition, the MK solution is able to interpolate
smoothly between the classic Schwartzschild solution and
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the Robertson-Walker (RW) metric, through a series of coor-
dinate transformations based on the conformal structure of
the theory.

It was precisely this ability to transform from the con-
formal MK solution to the standard RW metric, used to
describe the cosmological expansion, which convinced us
that a universal conformal stretching might be able to mimic
the expansion of the Universe. The gravitational origin of this
conformal stretching should also lead to the change of ob-
served wavelength frequency of cosmic radiation. The prin-
ciples of general relativity, which still apply to its conformal
extension, naturally propose such a mechanism: the gravita-
tional redshift.

We have shown in our first paper how the original MK
potential can support this explanation and how the chain
of transformations, from static standard coordinates used in
the MK solution to the Robertson Walker coordinates, can
lead to a unique expression of the cosmic scale factor R.
In this way, the conformal symmetry of the universe is
“kinematically” broken, and the precise amount of stretching
at each space-time point can be determined, once certain
parameters of the original MK potential are measured.

In this second paper, we will show how we can determine
these fundamental parameters using astrophysical data, such
as the luminosities of type Ia supernovae (SNe Ia) and others.
In this way, our kinematical conformal cosmology might
become a viable alternative model for the description of
the Universe, with the advantage of avoiding most of the
controversial features of the standard model, such as dark
energy, dark matter, and inflationary phases and so forth.

In the next section, we will review our cosmological
solutions from paper I, then we will obtain expressions for
the Hubble constant and deceleration parameter and also
revise the definitions of the standard cosmological distances.
In Section 3, we will fit current astrophysical data in order
to compute our cosmological parameters and check the
consistency of our model. Finally, in Section 4, we will
explore the immediate consequences of our model, in terms
of the behavior of fundamental constants and other physical
quantities.

2. Kinematical Conformal Cosmology

2.1. Summary of Results from Paper I. In our first paper [7],
we essentially worked with two sets of space-time coordi-
nates. We started with static standard coordinates (SSC)
(r, t, θ,φ) which are used to express the MK solution for a
static, spherically symmetric source, and then we have shown
how, far away from massive sources, the MK metric can
be transformed into the RW one, by employing a new set
of space-time coordinates, denoted in bold type (r, t, θ,φ),
where the angular coordinates are not affected by the trans-
formations. The cosmic scale factor can be introduced as a
function of both time coordinates as R(t) = R(t)/

√|k|, where
k is a cosmological parameter, with dimensions of an inverse
square length, originally introduced in the MK solution and
whose value we will also determine in this work.

All the space-time coordinates can be turned into dimen-
sionless quantities (r is already dimensionless) if we use the
following definitions:

α = 2
√
|k|r,

χ =
√
|k|c(t0 − t),

ζ = c(t0 − t)
R(t0)

,

(1)

where we use a look-back time (t0 − t) or (t0 − t), since we
usually observe radiation emitted in the past at coordinates
(r, t) or (r, t), reaching us at the spatial origin and at our
current time (r = 0, t0) or (r = 0, t0).

In our first paper, we used the MK metric as a source
of a cosmological gravitational redshift, associated with a
redshift parameter z and a cosmic scale factor R, using the
SSC r coordinate. By considering null geodesics and the other
coordinate transformations detailed in [7], we were able to
write the cosmic scale factor in any of the variables described
above, obtaining the following expressions:

1 + z = R(0)
R(r)

=
[

1 + δα− 1
4

(
1− δ2)α2

]−1/2

,

1 + z = R(t0)
R(t)

= cosh χ − δ sinh χ,

1 + z = R(0)
R(r)

=
√

1 + r2 − δr,

1 + z = R(t0)
R(t)

=
[

cos
(√

1− δ2ζ
)

+
δ√

1− δ2
sin
(√

1− δ2ζ
)]−1

.

(2)

To avoid possible misunderstandings, the cosmic scale
factor R is considered a function of the time coordinate (t or
the associated t) as in standard cosmology, but it is expressed
also as a function of the radial coordinate r (or r) simply
because information from past times is brought to us by
light emitted at those radial positions. We used in paper I
a gravitational redshift mechanism, based on the static MK
potential described in terms of r, to explain the cosmological
redshift, and therefore we have “improperly” defined the
scale factor as a function of radial coordinates, as shown in
the previous equation.

The solutions in (2) were obtained for the particular case
k = k/

√|k| = −1, which was found to be the only one
associated with a possible redshift of gravitational origin (the
other two cases k = 0, +1 did not allow for the observed
redshift). The detailed analysis of these solutions can be
found again in our paper I. Here, we recall that the solutions
in (2) are expressed in terms of another cosmological param-
eter δ defined as

δ ≡ γ

2
√|k| . (3)
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The additional quantity γ was also introduced in the original
MK solution, and the main objective of this paper is to
determine the values of these three cosmological parameters
(δ, γ, and k) linked together by the previous equation.

Mannheim was able to fit galactic rotation curves without
the need of dark matter and to estimate the current value of
γ as γMannheim = 3.06 × 10−30 cm−1 [8]. In our first paper
we argued that the current value of γ is probably close to
Mannheim’s estimate but needs to be computed from more
“local” observations. In addition, k should have a negative
value (since k = k/

√|k| = −1) while δ is necessarily limited
by −1 < δ < +1, so that its current value is probably small
and positive (see again paper I for details).

Another hypothesis, introduced in our first paper, is to
assume that δ (as well as γ and k) are probably time-varying
quantities, over cosmological ages. In fact, we have proposed
that the dimensionless parameter δ might constitute an
effective cosmological time, varying from −1 to +1, so that
(2) represents the evolution of the Universe as seen at our
“current time” δ = δ(t0). The most general description
is obtained by letting δ vary in the allowed interval, in all
the preceding formulas. If this interpretation is correct, it is
possible to write the scale factor directly as a function of the
variable δ and of its current value δ(t0) as follows:

1 + z = R[δ(t0)]
R(δ)

=
√

1− δ2(t0)
1− δ2

, (4)

a simple “semicircular” evolution illustrated in Figure 2 of
paper I. The complete connections between all these vari-
ables are also discussed in details and summarized in Table 1
of our first paper.

However, at this point, the possible time variation of our
cosmological parameters is only a heuristic consideration
which needs further investigation. The main parts of this
paper (Sections 2 and 3) are devoted to the determination
of these parameters regardless of their possible variation
over cosmological times. Only in Section 4, we will briefly
analyze the consequences of a possible nonconstancy of the
parameters.

Therefore, the next step is to check our model against
current astrophysical data, in order to establish it as a viable
alternative to current cosmology. The cosmological parame-
ters introduced above also need to be evaluated and connect-
ed to standard cosmological quantities such as the Hubble
constant and the deceleration parameter.

2.2. The Hubble Constant and the Deceleration Parameter.
One of the goals of standard cosmology is to determine, both
theoretically and experimentally, the Hubble constant and
the deceleration parameter which are essential to describe
the evolution of the Universe. Since in our model the cosmic
scale factor R is determined explicitly by (2), it is not difficult
to obtain these important parameters.

We recall that in general the Hubble parameter is defined
as H(t) = Ṙ(t)/R(t) and the deceleration parameter as q(t) =
−R̈(t)/R(t)H2(t) = −R̈(t)R(t)/Ṙ2(t), with their current-
time values denoted by H0 and q0. Standard cosmology

measurements of the Hubble constant are usually reported
as [9]

H0 = 100h km s−1 Mpc−1 = 3.24× 10−18h s−1, (5)

where h is a number between 0.5 and 1.
Following the model discussed in paper I and briefly

reviewed above, we can write H(t) and q(t) by using our
fundamental solutions, and we can also express these quan-
tities in terms of either one of the two time coordinates t or
t, introduced previously. As already explained in Section 4.2
of [7], our preference goes to the simpler t coordinate, which
makes direct contact with our units of time, but we will also
consider the other coordinate t in the following.

We start by using the SSC time coordinate t, which
is connected to the dimensionless look-back time χ =√|k|c(t0 − t) as in (1). In paper I, we have seen in (80)–(82)
how to express the first, and second-order time derivatives of
R in terms of χ, or directly in terms of the redshift parameter
z. As a consequence, we can easily write H(t) and q(t) also as
a function of χ or z,

H(t) =
√
|k|c

(
sinh χ − δ cosh χ
cosh χ − δ sinh χ

)

= ±
√
|k|c

√
(1 + z)2 − (1− δ2)

(1 + z)
,

q(t) =
(

cosh χ − δ sinh χ

sinh χ − δ cosh χ

)2

− 2

= (1 + z)2

(1 + z)2 − (1− δ2)
− 2,

(6)

where, as in the preceding equations, we use the “current”
value δ = δ(t0) (or the value at the time the observations
were made). The current-time values of the Hubble and
deceleration parameters are obtained in the limit for χ → 0
or z → 0,

H(t0) = −γ

2
c, H(z = 0) = ±γ

2
c,

q(t0) = q(z = 0) = 1
δ2
− 2.

(7)

The signs of the quantities in (6) and (7) can be explained
with the help of the red-solid curve in Figure 5 of paper
I, which represents the ratio R(χ)/R(χ0), or equivalently
R(t)/R(t0), over different cosmological epochs. This bell-
shaped curve was plotted for a positive value δ = δ(t0) and
shows a local blueshift area in the “past” evolution of the
Universe, extending back to a time trs, followed by a redshift
region which extends indefinitely to past times and which
should represent the observed cosmological redshift from
past cosmological epochs.

While we will explain the local blueshift region later in
this paper (in Section 3.1), we simply remark here that this
red-solid curve in Figure 5 of paper I is symmetric around
the point of maximum. Therefore, for each value of z, that
is, for each value of R(χ)/R(χ0), we have two corresponding
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values of the Hubble parameter (except at the maximum, for
zmin =

√
1− δ2−1, where H = 0), and the two related points

on the curve, at the same redshift level, will have equal and
opposite expansion rates. This yields the double sign in the
previous expressions for H , when given as a function of z.

This argument applies also to the z = 0 case, corre-
sponding to the current time t0 at which H(t0) = −(γ/2)c is
negative, but also referring to a time in the past (trs) at which
we start observing the cosmological redshift, with H(trs) =
+(γ/2)c, a positive quantity. This does not contradict the
current estimates of H0 as a positive quantity. They are based
on redshift observations of light coming from galaxies at
times in the past t � trs; therefore, what we call H0 in
standard cosmology should be actually indicated as H(trs) =
+(γ/2)c, again a positive quantity.

In Section 3.1, we will evaluate the current value of the
gamma parameter, by analyzing the local blueshift in the
region of our solar system, corresponding to a negative
H(t0) = −(γ/2)c. In this way, we will be able to estimate the
gamma parameter as γ(t0) ∼= 1.94 × 10−28 cm−1, and this
will allow us to evaluate also the Hubble parameter at the
beginning of the redshift region (time trs), by using the
same value of γ and the positive sign in (7), or equivalently
assuming by symmetry γ(trs) ∼= −1.94 × 10−28 cm−1 and
using H(trs) = −(γ(trs)/2)c. Numerically, we estimate

H(t0) = −γ(t0)
2

c ∼= −2.91× 10−18 s−1,

H(trs) = +
γ(t0)

2
c = −γ(trs)

2
c ∼= +2.91× 10−18 s−1,

(8)

where again the details of this analysis will be presented later
in this paper.

The connection with the standard cosmology value of
H0 in (5) is immediate; all the standard astrophysical obser-
vations which led to the existing estimates of H0 were done
by observing celestial objects in the redshift region, therefore
for t � trs or r � rrs, where rrs is the distance at which we
start observing the cosmological redshift. Therefore,

H0 = H(trs) = +
γ(t0)

2
c ∼= +2.91× 10−18 s−1

= 100hrs km s−1 Mpc−1,

hrs
∼= 0.897,

(9)

in line with the current estimates of H0 [9]. Our value,
hrs

∼= 0.897, is the direct estimate of the h parameter
based on the Pioneer anomaly data (see Section 3.1) and is
close to recent determinations by the Wilkinson Microwave
Anisotropy Probe (WMAP) [10] hWMAP

∼= 0.73±0.03, by the
Hubble Space Telescope Key Project (HST Key Project) [11]
hHST

∼= 0.72± 0.08, and others [12].
The deceleration parameter at current time t0 or at time

trs (in both cases z = 0) is given by (7) as a function of the
dimensionless δ, which cannot be estimated from the Pio-
neer data. We cannot use results for q or similar acceleration
parameters coming from standard cosmology, such as those
obtained from type Ia supernovae analysis, as they are based
on totally different assumptions. We will have to analyze

and reinterpret the concepts of standard candle, luminosity
distance, and so forth, before we can estimate δ(t0) and
therefore q(t0). This will be done in the following sections.

Before we proceed in this direction, we also study the
expressions for the Hubble and deceleration parameters
which can be obtained by using other variables. For ex-
ample, we can recalculate our expressions using the RW
time variable t, that is, define the Hubble parameter as
H(t) = Ṙ(t)/R(t) and the deceleration parameter, q(t) =
−R̈(t)/R(t)H2(t) = −R̈(t)R(t)/Ṙ2(t), where the boldface
symbols denote quantities related to the RW metric, as
discussed in the previous section and in paper I. It is straight-
forward to obtain expressions similar to those in (6),

H(t) = − c
√

1− δ2

R(t0)

×
⎡

⎣
δ cos

(√
1− δ2ζ

)
−√1− δ2 sin

(√
1− δ2ζ

)

√
1− δ2 cos

(√
1− δ2ζ

)
+ δ sin

(√
1− δ2ζ

)

⎤

⎦

= ± c

R(t0)

√
(1 + z)2 − (1− δ2),

q(t) =
⎡

⎣

√
1− δ2 cos

(√
1− δ2ζ

)
+ δ sin

(√
1− δ2ζ

)

δ cos
(√

1− δ2ζ
)
−√1− δ2 sin

(√
1− δ2ζ

)

⎤

⎦

2

=
(
1− δ2

)

(1 + z)2 − (1− δ2)
,

(10)

where again δ = δ(t0). We use here the dimensionless var-
iable ζ = c(t0 − t)/R(t0), or we express the Hubble and
deceleration parameters directly in terms of z.

The current-time values of these two parameters are
obtained in the limit for ζ → 0 or z → 0, respectively,

H(t0) = − c

R(t0)
δ, H(z = 0) = ± c

R(t0)
δ,

q(t0) = q(z = 0) = 1
δ2
− 1,

(11)

with the same interpretation which was given for (7). These
expressions for the Hubble and deceleration parameters in
the two temporal variables are obviously connected. It fol-
lows from the definitions that H(t) = H(t)(dt/dt) and q(t) =
q(t) − (d2t/dt2)/H(t)(dt/dt)2, with the derivatives between
time variables given by

dt

dt
=
√

1− δ2
√|k|R(t0)

× 1
[√

1− δ2 cos
(√

1− δ2ζ
)

+ δ sin
(√

1− δ2ζ
)]

= (1 + z)
√|k|R(t0)

,
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d2t

dt2
= c

(
1− δ2

)

√|k|R2(t0)

×
[
δ cos

(√
1− δ2ζ

)
−√1− δ2 sin

(√
1− δ2ζ

)]

[√
1− δ2 cos

(√
1− δ2ζ

)
+ δ sin

(√
1− δ2ζ

)]2

= ∓ c(1 + z)
√|k|R2(t0)

√
(1 + z)2 − (1− δ2),

(12)

so that the connecting formulas can be easily derived.
Similarly, we could also write Hubble and deceleration

parameters in terms of space variables r, α, or r, since we
have in (2) the cosmic scale factor R expressed in all these
variables, but these expressions would not be very useful
because the experimental values of H0 and q0 are usually
referred only to the temporal variables. We will return in
Section 3.1 on the connection with experimental observa-
tions.

Finally, from (4), it is possible to introduce H and q
directly as a function of our cosmological time δ,

H(δ) = 1
R(δ)

dR

dδ
= − δ

1− δ2
,

q(δ) = −
(
d2R/dδ2

)
R(δ)

(dR/dδ)2 = 1
δ2

,

(13)

and the expressions in (6) and (10) will reduce to those in
(13), using the transformations outlined in Table 1 of paper
I.

2.3. Luminosity Distance and Other Cosmological Distances.
Before we make contact with experimental data, especially
with standard candle measurements, we need to review the
definitions of the cosmological distances, following the
new principles of our kinematical conformal cosmology as
outlined above and in paper I.

Several distances are usually introduced in standard cos-
mology and used in conjunction with astronomical observa-
tions in order to establish the “cosmological distance ladder,”
that is, the different steps employed to measure astronomical
distances and the size of the Universe (for an extensive in-
troduction to the subject, see [13, 14]). This process started
historically at the time of Greek astronomy with the deter-
mination of the size and radius of our planet and with the
first approximate measurements of the astronomical unit and
other distances within the solar system.

These estimates, based mainly on parallax methods,
were later refined by modern astronomers and extended to
parallax measurements of nearby stars. These geometrical
methods led to the introduction of distances such as the
parallax distance dP , whose definition is not affected by our
alternative approach to cosmology. As defined in Weinberg’s
books [15, 16],

dP ≡ b

θ
= R(t0)

r√
1− kr2

= R(t0)
r√

1 + r2
, (14)

where b is the impact parameter of light reaching the
observer from a (parallax) distance dP with parallax angle θ,
and we have used our preferred value k = −1 in the right-
hand side of the last equation (see [9, 14, 15] or [16], for full
details on all these distances).

Two more fundamental distances are usually introduced
in cosmology, the comoving distance dC (sometimes also
called coordinate or effective distance) and the proper dis-
tance dprop:

dC ≡ R(t0)r,

dprop ≡ R(t)
∫ r

0

dr′√
1− kr′2

= R(t)χ

= R(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arcsin r; k = +1

r; k = 0

arcsinh r; k = −1,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(15)

where dC usually refers to the current-time expansion factor
R(t0), while dprop can refer to any cosmological time t being
considered. These definitions are also unchanged in our
cosmology and can be rewritten in terms of other variables
using the transformations in paper I.

Continuing our brief summary of the cosmological dis-
tance ladder, modern parallax techniques can determine star
distances up to about 100 parsec (1 pc = 3.086 × 1018 cm),
and these distance estimates are usually combined with the
measured apparent star luminosities, to obtain their corre-
sponding absolute luminosities. For this purpose, the inverse
square law is typically assumed, introducing the luminosity
distance dL and connecting it to the apparent (l) and absolute
bolometric luminosity (L) of a light source as follows:

l = L

4πd2
L

,

dL ≡
√

L

4πl
= R2(t0)

R(t)
r = (1 + z)R(t0)r.

(16)

This definition follows from the consideration that “In a
Euclidean space the apparent luminosity of a source at rest
at distance d would be L/4πd2, . . .” (see again Weinberg [15,
Section 14.4]). In the second line of the previous equation,
the factor R(t0)/R(t) = (1 + z) appears due to the standard
redshift interpretation, namely, that photons of energy hν are
redshifted to energy hν R(t)/R(t0) and that the time interval
of photon emission δt is also changed to δt R(t0)/R(t).
The total power emitted (energy per unit time) is therefore
redshifted by a combined factor R2(t)/R2(t0) = (1 + z)−2

which will enter the denominator of the square root of (16),
thus resulting in the final (1 + z) factor in the equation (see
[15] for full details). In other words, the standard redshift
effect is assumed to alter the apparent luminosity of a stand-
ard candle placed far away, so that the (1 + z) factor corrects
for this effect, while the absolute luminosity L of our candle
is considered fixed and constant. We will need to change this
view in our alternative interpretation.

Before we consider our revised luminosity distance, we
recall that astronomical luminosity measurements are usu-
ally expressed in terms of magnitudes (m) using Pogson’s
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law, m1 −m2 = −2.5 log10(l1/l2), for any two apparent lumi-
nosities. Traditionally, the absolute bolometric luminosity L
of a standard candle is defined as the apparent bolometric
luminosity of the same object placed at a reference distance
of 10 pc, so that the distance modulus μ (difference between
the apparent and absolute bolometric magnitudes) will result
as follows:

μ ≡ m−M = 5 log10

(
dL
pc

)

− 5 = 5 log10

(
dL

Mpc

)

+ 25.

(17)

In standard cosmology, the luminosity distance on the
right-hand side of the last equation is then expressed as a
function of z and other cosmological parameters, such as the
density parameters ΩM and ΩΛ, that is, dL = dL(z;ΩM ,ΩΛ).
The comparison with experimental observations is usually
carried out by fitting the luminosity distance expression to
the measured distance moduli (μ) for several astrophysical
light sources, which can be considered standard candles,
that is, assumed having constant intrinsic luminosity. This
method has proven to be particularly reliable when applied
to type Ia supernovae and will be analyzed in detail in the
following sections.

However, our view of the luminosity distance is different
from the one outlined above. First of all, the cosmological
redshift is related to the intrinsic stretching of the space-time
fabric at cosmological distances and over cosmological times.
This is realized through the gravitational redshift mechanism
described in (2) and not anymore through a Doppler-
like shift in photons energy or change in their emission
frequency. In this view, the correcting factor (1 + z) inserted
in (16) and described above is no longer necessary; the
photons are emitted at the source with the precise frequency,
energy, and rate of emission measured by the Earth’s observer
(although these differ from the same quantities measured by
an observer near the source).

Therefore, we correct the standard definition of the
luminosity distance in (16) by removing the (1 + z) factor

dL ≡
√

Lz
4πl

= R(t0)r

= R(t0)
δ(1 + z) +

√
(1 + z)2 − (1− δ2)

(1− δ2)
,

(18)

where we have inserted, on the right-hand side of the
equation, our expression for the coordinate r, introduced
in (76) of our paper I, as a function of our current value
δ = δ(t0). We also choose the positive sign in front of
the square root to select the solution corresponding to past
redshift, z > 0 for r > rrs = 2δ/(1 − δ2), which is the correct
choice for the subsequent analysis (see [7] for details).

In the previous equation, we have also indicated a
dependence on z of the absolute luminosity Lz of the
standard candle being considered (indicated by the subscript
z). This is the second fundamental difference in our analysis
of the luminosity distance. We have based our discussion
in paper I on the hypothesis that the fundamental units of

measure, such as the meter, the second, or others, depend
on the space-time position in the Universe and differ from
the same units of measure at another space-time location.
Consequently, we have to assume that the same hypothesis
applies to the luminosity of a “standard candle,” that is, we
cannot assume anymore that L is an invariant quantity, when
observing these candles placed at cosmological distances.

In our first paper, we also postulated that space or time
intervals are “dilated” by the (1 + z) factor, when referring
to a cosmological location characterized by redshift z, but
we did not introduce any similar dependence for the third
fundamental mechanical quantity, that is, mass. In fact, we
have no a priori indication of how masses should scale due
to our space-time stretching; therefore, we summarize the
scaling properties of the three fundamental quantities as
follows:

δlz = (1 + z)δl0,

δtz = (1 + z)δt0,

δmz = f (1 + z)δm0.

(19)

The first two lines in this equation simply rewrite (37)
of our first paper in a simplified notation. Quantities with
the zero subscript represent units or intervals (of space, time,
or mass) as measured by an observer at his/her location
and time (typically at the origin of space and at time t0
as usual). Quantities with the z subscript represent the
same units or intervals as “seen” by the observer located
at the origin, but when these “objects” are placed at a
cosmological location characterized by redshift z. (We have
avoided so far this subscript notation (also carefully avoided
in paper I) because it is easily confused with the standard
cosmology notation, where the zero subscript normally
indicates the observed (redshifted) quantity, as opposed to
the nonredshifted quantity (usually with no subscript). On
the contrary, in our new notation, the “redshifted” quantity
q acquires a z subscript (qz ≡ q(t), observed at the origin,
but with information coming from past time t), while the
“nonredshifted” quantity acquires the zero subscript (q0 ≡
q(t0), observed at the origin, at current time t0). Since this
subscript notation is much more compact than our previous
one, we will adopt it for the rest of this paper. For instance, we
will write the current values of our cosmological parameters
as δ0 ≡ δ(t0), γ0 ≡ γ(t0), etc.) Space-time intervals are
dilated by the (1 + z) factor, simply due to our new inter-
pretation of the cosmological redshift.

In the equation for mass (third line of (19)), we have
left the dependence on z totally undetermined, assuming that
some function f (1+z) will connect units of mass at different
locations in the Universe. We only suppose that f will be a
function of the redshift factor (1 + z), such that for z = 0, it
reduces to unity, that is, f (1) = 1, leaving masses unchanged
at locations where z = 0. We will determine this function f
in the following.

The scaling of the fundamental mechanical quantities
in (19) will be reflected in similar properties of any other
mechanical quantity or unit. We consider, for example, the
case of energy, as the luminosity discussed above is just
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energy emitted per unit time. Since 1 erg = 1 g cm2 s−2, an
amount of energy can be written as δE ∼ δm δl2 δt−2, and
it is immediate to check that energies will scale like masses,
following the last equation. We can therefore write

δEz = f (1 + z)δE0, (20)

which implies that the total energy emitted by a standard
candle placed at redshift z would be measured by the ob-
server at the origin to be different from the total energy
emitted by the same candle when placed at the origin. Since
these energies are emitted during some (finite) intervals of
time, we can write δEz =

∫
Lz(tz)dtz = f (1 + z) δE0 =

f (1 + z)
∫
L0(t0)dt0, where the luminosities are also labeled

like all the other quantities and refer to times connected by
the same dilation factor tz = t0(1 + z). (In the standard
interpretation, t0 would be considered as the time trest in
the candle’s restframe of reference and tz as the time tobs

measured by the observer who sees the candle “moving” due
to the expansion of the Universe. Standard relativistic time
dilation would yield tobs = trest(1 + z). This time dilation
effect, which has been observed in the evolution of type
Ia SNe [17–20], is also present in our theory although its
interpretation is the one given by our fundamental (19).)
Since the infinitesimal time intervals are similarly related,
dtz = dt0(1 + z), the two luminosities are connected in the
following way:

Lz(tz) = f (1 + z)
(1 + z)

L0(t0). (21)

Our new definition of luminosity distance will therefore
generalize the original definition in (16), by using the actual
luminosity Lz, instead of L0, to correct for the intrinsic chan-
ges in the candle’s energy output. To obtain the full expres-
sion of this distance, we use (18) and (21) together

dL =
√

Lz
4πl

=
√

f (1 + z)
(1 + z)

L0

4πl
= R0r

= R0
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)

(
1− δ2

0

) ,

(22)

where we also used our simplified notation for the parame-
ters δ0 ≡ δ(t0), R0 ≡ R(t0), as previously discussed.

Comparing our new expression with the original one in
(16), we note that basically we replaced the (1 + z) factor

with a more complex factor
√

(1 + z)/ f (1 + z), where again
the function f (1 + z) is still undetermined at this point. This
is because the standard definition would use the “constant”
luminosity L0, as dL = √

L0/4πl =
√

(1 + z)/ f (1 + z)R0r,
instead of the “variable” Lz. One could argue that if the
f function was to be equal to (1 + z)−1, that is, if masses
were to scale like (1 + z)−1, we would recover the original
definition, but this is not exactly the case. Again, the original
definition (16) assumes an invariant value L = L0 of the
standard candle’s luminosity at all cosmological locations,
while our new definition (22) is based on the choice of Lz as
the standard candle’s luminosity, and in general this quantity
is not invariant anymore but changes according to (21).

In other words, we could have defined instead

dL =
√

L0

4πl
=
√

(1 + z)
f (1 + z)

R0r

=
√

(1 + z)
f (1 + z)

R0
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)

(
1− δ2

0

) ,

(23)

using L0 instead of Lz, and then supplementing this defini-
tion with the information of (21). We will see that this will
not affect the subsequent discussion on type Ia supernovae.
In any case, we prefer our definition in (22) as it corrects
the distance estimates, due to the variability of the candle’s
luminosity. For example, if a candle is intrinsically dimmed
when placed far away, its distance should be smaller than
the one estimated with the original definition, given the
same value l for the observed apparent luminosity. Our new
definition (22) precisely incorporates such corrections and
will imply a revision of the current distance estimates based
on luminosity measurements.

It will be useful in the following to consider also the spec-
tral energy distribution, F(λ) ≡ dL/dλ. Following (21), we
can write

∫
Fz(λz, tz)dλz = ( f (1 + z)/(1 + z))

∫
F0(λ0, t0)dλ0,

where the meaning of the subscripts is the same as in the
preceding equations. The wavelength variables and related
differentials are connected as usual, λz = λ0(1 + z) and
dλz = dλ0(1 + z), so that the direct relation between Fz and
F0 is

Fz(λz, tz) = f (1 + z)

(1 + z)2 F0(λ0, t0). (24)

After discussing at length the modifications to the
luminosity distance, we return for completeness to the other
definitions of cosmological distances. Two other distances are
usually introduced, the angular diameter distance dA, when
an extended light source of true proper diameter D is placed
at a (angular) distance dA and observed having an angular
diameter ϑ, and the proper-motion distance dM , when proper
motions in the direction transverse to the line of sight are
considered. Their standard definitions are [15]

dA ≡ D

ϑ
= R(t)r = R0r

(1 + z)
,

dM ≡ V⊥
Δϑ/Δtobs

= R0r,

(25)

where, in the second definition, V⊥ is the true velocity of
the source in the direction perpendicular to the line of sight,
and Δϑ is the change in the (angular) position of the object
during the time interval of observation Δtobs.

Both definitions need to be reconsidered in our new
interpretation. In the first definition, the “true” diameter
of the light source will depend on z as for all the other
lengths, Dz = (1 + z)D0, but using the RW metric, the proper
distance across the source is Dz = R(t)r ϑ for small angular
diameters ϑ	 1, which leads essentially to the same expres-
sion as in the standard treatment, just with D replaced by Dz.
Therefore, our definition of dA is similar to the standard one,
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but needs to be supplemented by the scaling equation of the
source diameter

dA ≡ Dz

ϑ
= R(t)r = R0r

(1 + z)
,

Dz = (1 + z)D0.

(26)

In this way, the right-hand side of the equation connecting
dA to the cosmological quantities is unaffected, but when we
make contact with observations, that is, we use the left-hand
side of the equation, the change of the true diameter with z
must be included. Since Dz increases with (positive) z, using
the old definition, which assumes a fixed D = D0, would
result in underestimating the diameter distances by a factor
(1 + z).

Similar care has to be taken in revising the proper motion
distance dM . A moving source will have a transverse velocity
V⊥ which is unaffected by our (19), since it is a ratio between
quantities which scale in the same way. In the standard
theory, the time interval of observation Δtobs is thought to
be different from the time interval of motion Δtmot due to
the usual redshift factor, Δtmot = Δtobs/(1 + z). However,
in our view, the observed time Δtobs is precisely the true
time interval during which the object moved at a redshift z:
Δtobs = Δtz. The proper distance travelled is ΔDz = V⊥Δtz =
V⊥Δtobs = R(t)r Δϑ, using the RW metric as in the treatment
of the angular distance above, and our revised expression of
the proper motion distance is

dM ≡ V⊥
Δϑ/Δtobs

= R(t)r = R0r
(1 + z)

. (27)

In this case, we had to modify the right-hand side of the
equation (compared to the standard definition), but the left-
hand side is unaffected (in particular, Δtobs = Δtz is still
simply the observation time interval). Finally, we note that
our corrected expressions for dA and dM are essentially the
same (both lead to the expression R(t)r) since the geometry
is completely equivalent (Dz is equivalent to V⊥Δtobs, ϑ to
Δϑ).

Equations (14), (15), (22), (26), and (27) are our revised
expressions for the classic distances used in cosmology.
As in the case of their standard counterparts, they are all
approximately equal to each other for z	 1 and r 	 1, that
is, dC 
 dprop(t0) 
 dP 
 dL 
 dA 
 dM 
 R0r. We also note
that three of the six definitions of distance were modified by
our new kinematical conformal cosmology, thus potentially
affecting current astronomical distance estimates.

One final consideration is needed regarding the SSC
space coordinate r. This dimensionful coordinate can be
used to measure distances in the static standard coordinates,
which are in general different from the cosmological dis-
tances described above. However, for small distances, or for
z 	 1, this coordinate r should also reduce to R0r as for
all the other distances. We recall from paper I that the coor-
dinate transformation between r and r is

r = 1
√|k|

r√
1 + r2 − δ0r

−→ r
√|k| 
 R(t0)r, (28)

where the limit in the last expression is for r 	 0 and δ0 
 0.
The previous equation implies that the current value of the
scale factor is simply related to the parameter k (if the current
value of δ0 is close to zero),

R0 = R(t0) 
 1
√|k0|

, (29)

where, from now on, we will also denote with a zero subscript
(k0) the current value of the k parameter. Equation (27) is
particularly important to simplify the connection between
the Hubble constants H and H , in view of (6)–(12). It is
easy to check that, using the previous equation, the general
connection simplifies to

H(t) 
 H(t)(1 + z), (30)

so that for z = 0 the two Hubble constants basically coincide,
that is, H0 
 H0. Again, these results are valid only for δ0 
 0,
but we will show in the next section that this is actually the
case of interest.

It is beyond the scope of this paper to attempt a full
revision of the “cosmological distance ladder,” in view of our
changes in the distance definitions. While we leave this anal-
ysis to future work on the subject, we will concentrate our
efforts in the next section on applying our revised definition
of the luminosity distance to type Ia supernovae.

3. Cosmological Parameters

The central part of our analysis will deal with the evaluation
of the cosmological parameters in our model: the dimen-
sionless δ parameter, the γ and k parameters (or the original
κ quantity, see paper I [7]) all measured with reference to
the current time t0 if these quantities are considered time-
varying parameters. (We have already remarked in Section
2.1 that the determination of these parameters is indepen-
dent of their possible time variation, that is, the results in the
following subsections (Sections 3.1, 3.2, and 3.3) are valid
also in the case of no time variation of the parameters. In this
case, δ, γ, and k should be considered simply as universal
constants.)

We have already introduced γ0 = γ(t0) ∼= 1.94 ×
10−28 cm−1 in Section 2.2, but we still have to show how this
value was obtained and compare it to the original evaluation
of γ done by Mannheim. We will proceed first to estimate γ0

in the next subsection, later we will obtain δ0 = δ(t0) from
supernovae data, and finally, all the other parameters will be
derived from these two quantities.

3.1. Cosmological Blueshift and the Pioneer Anomaly. In
Section 2, we have summarized all the fundamental expres-
sions of our cosmology and outlined the reasons why we
consider the k = −1 solution as a possible description of the
evolution of the Universe. Although this solution can explain
the observed cosmological redshift, it has an additional new
feature. It requires the existence of a blueshift region in the
immediate vicinity of our current space-time position in the
Universe.
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This could be a serious setback for our model, since we
normally do not observe blueshift of nearby astrophysical
objects except for the one caused by the peculiar velocities
of nearby galaxies, which is presumably due to standard
Doppler shift. However, experimental evidence has recently
accumulated regarding a possible local region of blueshift,
related to the so-called Pioneer anomaly [21–31].

This is a small anomalous frequency drift, actually a
blueshift, which was observed analyzing the navigational data
from the Pioneer 10/11 spacecraft, received from distances
between 20 and 70 astronomical units from the sun, while
exploring the outer solar system. This “blueshifted” fre-

quency is uniformly changing at a rate of
·
νP ∼= 6× 10−9 Hz/s

and can be interpreted as a constant sunward acceleration,
reported as aP = −(8.74± 1.33)× 10−8 cm/s2 (radial inward
acceleration) or as a “clock acceleration” at ≡ aP/c =
−(2.92 ± 0.44) × 10−18 s/s2, resulting in a frequency drift of
about 1.5 Hz every 8 years [22].

Preliminary findings indicate the possibility of detecting
such anomaly also in the radiometric data from other space-
craft traveling at the outskirts of the solar system, such as
the Galileo and Ulysses missions [22]. These discoveries have
prompted an extended reanalysis of all the historical navi-
gational data from these space missions, which is currently
underway [25–28, 32], in order to determine additional
characteristics of the anomaly, such as its precise direction,
the possible temporal evolution, and its dependence on he-
liocentric distance. Future-dedicated missions are also being
planned [33–35] to test directly this puzzling phenomenon.

Meanwhile, the origin and nature of this anomaly re-
mains unexplained; all possible sources of systematic errors
have been considered [22–24, 27, 28, 36], but they cannot
account for the observed effect. Possible physical origins
of the signal were studied, including dark matter, modified
gravity, or other nonconventional theories, but no satis-
factory explanation has been found so far (see details in
[22, 29, 30, 32]). On the contrary, we can analyze the Pioneer
anomaly with the model outlined in the previous sections
and use the data reported above to estimate the local values
of our cosmological parameters.

The phenomenology of the Pioneer anomaly is related
to the exchange of radiometric data between the tracking
station on Earth (Deep Space Network—DSN) and the
spacecraft, using S-band Doppler frequencies (in the range
1.55–5.20 GHz). More precisely, an uplink signal is sent from
the DSN to the spacecraft at 2.11 GHz, based on a very
stable hydrogen maser system, the Pioneer then returns a
downlink signal at a slightly different frequency of about
2.29 GHz, to avoid interference with the uplink signal. This
is accomplished by an S-band transponder which applies an
exact and fixed turn-around ratio of 240/221 to the uplink
signal.

This procedure, known as a two-way Doppler coherent
signal, allows for very precise tracking of the spacecraft since
the returning signal is compared to the original one, as
opposed to a one-way Doppler signal (fixed signal source
on spacecraft, whose frequency cannot be directly moni-
tored for accuracy). This type of tracking system and the

navigational capabilities of the Pioneer spaceship (spin-
stabilized spacecraft and power source of special design)
allowed for a great acceleration sensitivity of about
10−8 cm/s2, once the influence of solar-radiation-pressure
acceleration decreased below comparable levels (for distances
beyond about 20 AU from the Sun).

After a time delay of a few minutes or hours, depending
on the distance involved, the DSN station acquires the down-
link signal, and any difference from its expected frequency is
interpreted as a Doppler shift due to the actual motion of
the spacecraft. Modern-day deep space navigational software
can also predict with exceptional precision the expected fre-
quency of the signal returned from the Pioneer, which should
coincide with the one observed on Earth. On the contrary,
a discrepancy was found, corresponding to the values indi-
cated above, whose origin cannot be traced to any systematic
effect due to either the performance of the spacecraft or the
theoretical modeling of its navigation.

Moreover, the signal analysis performed so far [23, 26]
indicates an almost constant value of the anomalous acceler-
ation or frequency shift reported above (temporal and space
variation of aP within 10%), over a range of heliocentric
distances ∼20–70 AU, and possibly at even closer distances
�10 AU.

The Pioneer phenomenology corresponds exactly to the
simplest experiment we might conceive to check the validity
of our model. In principle, it would be sufficient to set
up a lab experiment in which we emit some radiation of
known wavelength λ(t0) at time t0, keep this radiation from
being absorbed for a long enough time, and then compare
its wavelength λ(t0) with the radiation emitted by the same
source at a later time λ(t1), with t1 > t0. In our model, we
would expect the two wavelengths to be different and, if we
are already in a phase of universal contraction as illustrated
by the red-solid curve of Figure 5 in our paper I [7], we
would have λ(t0) < λ(t1). In terms of frequencies, ν(t0) >
ν(t1), that is, the radiation from time t0 would appear to
be blueshifted, compared to the same radiation emitted by
the same source at a later time t1. We will now proceed to
interpret the Pioneer anomaly in a similar way, but we will
return in Section 4 on the feasibility of detecting wavelength
variation in lab experiments.

It is useful to introduce a new time coordinate t: let t = 0
be the time at which the radiometric signal is sent from
Earth to the spacecraft, which is then received at time t and
immediately retransmitted down to the DSN, arriving back
on Earth at time 2t. In the standard analysis, the model for
the signal coming back to Earth is based on the relativistic
Doppler effect. We will denote as ν mod the frequency of
the expected signal following this model. Its ratio with the
reference frequency νref of the signal (the uplink frequency
of about 2.11 GHz, since we consider the two-way system) is
therefore given by the standard relativistic Doppler formula
(see (2.2.2) in [15])

ν mod

νref
=
√

1− v2/c2

1 + vr/c

 1− vr

c
, (31)

where vr is the source radial velocity, and the approximation
on the right-hand side holds to first order in vr/c.
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For the case of the Pioneer spacecraft, we use vr =
2vmod (t), where vmod (t) is the expected velocity of the space-
craft, according to the theoretical navigation model, at time t,
when the spaceship receives and immediately retransmits the
signal. The factor of two arises from the double Doppler shift
involved (two-way system). With this radial velocity, (31) to
first order in vr/c becomes

ν mod
(
t
) 
 νref

[

1− 2v mod
(
t
)

c

]

, (32)

and this frequency should be observed with high precision,
due to the reported excellent navigational control of the
spacecraft.

The anomaly comes from observing a different frequency
νobs(t) > νmod (t), involving an additional unexplained blue-
shift. Over the range of the observed anomaly, the frequency
difference is reported as

Δν = νobs
(
t
)− ν mod

(
t
) 
 ν̇P2t,

ν̇P ∼= 6× 10−9 Hz/s.
(33)

We point out here that the cited references adopt a rather
confusing “DSN sign convention” for the frequency differ-
ence in (33) (see [23, 26] and reference [36] of [21]), result-
ing in a sign change in most of their equations. We prefer
to use here our definition of Δν as given in the previous
equation.

An alternative way of reporting the anomaly is the fol-
lowing. As in (32), we can also write the observed frequency
to first order in vr/c as

νobs
(
t
) 
 νref

[

1− 2vobs
(
t
)

c

]

, (34)

where the “observed” velocity of the spacecraft always refers
to the time of interest t. Combining together these last three
equations, we write the frequency difference as

Δν = −2
νref

c

[
vobs

(
t
)− v mod

(
t
)]
. (35)

We then multiply and divide the last equation by t, so that we
can introduce aP = [vobs(t)−v mod (t)]/t, the residual Pioneer
acceleration of unknown origin. This is the change of velocity
over time t and not over the double time 2t as in (33). With
this residual acceleration, the Pioneer anomaly is usually
reported as

Δν = −2
νref

c
aPt,

aP = −(8.74± 1.33)× 10−8 cm
s2

,
(36)

where the negative sign of the residual acceleration indicates
its sunward direction; therefore, we have a positive frequency
shift corresponding to a local unexplained blueshift of radia-
tion emitted by the spacecraft.

Given our discussion in the preceding sections, we can
now explain (36) or (33) with our new interpretation. The
Pioneer data represent the equivalent of a local measurement
of the current blueshift predicted in Section 2.1; therefore,
they can be used to find the value of the parameter γ at the
time when the Pioneer radiation was emitted (a few years
ago), but this can be considered to be the current value, due
to the slow variation of the cosmological parameters.

Let us consider the current time t0 as the time of arrival
of the Pioneer radiation on Earth. The uplink signal was
therefore sent at t = t0 − 2t and retransmitted by the space-
craft, as a downlink signal, at t = t0 − t. We need to re-
interpret (32) and (34) as, in our view, the anomaly is not
due to a change in velocity of the spacecraft (we assume
v mod (t) = vobs(t) = v(t)), but just related to a shift of the
reference frequency. The reference frequency in (34) is the
one emitted in the past νref = ν(t = t0 − 2t), while the
reference frequency in (32) is the one at current time νref =
ν(t = t0), so these two equations are modified, respectively,
as follows

νobs
(
t
) 
 ν

(
t = t0 − 2t

)
[

1− 2v
(
t
)

c

]

,

ν mod
(
t
) 
 ν(t0)

[

1− 2v
(
t
)

c

]

.

(37)

Following (33), the frequency difference, to first order in
v/c, is now

Δν = [ν(t)− ν(t0)]

[

1− 2v
(
t
)

c

]

= ν(t)
[

1− R(t0)
R(t)

] [

1− 2v
(
t
)

c

]


 ν̇P(t0 − t),

(38)

having used our fundamental (37) from paper I [7] and also
(t0 − t) = 2t. We can simplify the above equation by intro-
ducing additional approximations. From the second line of
(2), we have 1 − R(t0)/R(t) = 1 − {cosh[

√|k|c(t0 − t)] −
(γ/2

√|k|) sinh[
√|k|c(t0 − t)]} ∼= (γ/2)c(t0 − t), since we can

assume
√|k|c(t0 − t) 	 1 (The time delay for a two-way

Pioneer signal at the maximum distance of 70 AU is about
20 hours; we can assume

√|k| ∼ γ ∼ 10−28 − 10−30 cm−1,
therefore

√|k|c(t0 − t) ∼ 10−13 − 10−15 	 1.). The reference
frequency is νref = ν(t) ∼= ν(t0) = 2.11 GHz, corresponding
to the original uplink frequency (In some of the references
cited, the reference frequency νref is taken as the downlink
frequency of 2.29 GHz, since the downlink signal is com-
pared directly with this value. We prefer to use the uplink
value, since this is the frequency used at the original time
t = t0 − 2t.), and we can also neglect the ratio 2v(t)/c 	 1,
since the typical Pioneer speed in the outer solar system
was v ≈ 12 km/s [23]. With these approximations, the last
equation becomes

Δν ∼= νref

[
γ

2
c(t0 − t)

]
∼= ν̇P(t0 − t). (39)
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The clock acceleration at , the Pioneer acceleration aP , the
frequency shift ν̇P , and the reference frequency νref are all
related together by

at = aP
c
= − ν̇P

νref
, (40)

which follows from (33) and (36). Combining these last two
equations and using the reported values of the Pioneer
anomaly, we can finally obtain our estimate of the current
local value of the cosmological parameter γ,

γ0 = γ(t0) ∼= 2
c

ν̇P
νref

= − 2
c2
aP = −2

c
at = 1.94× 10−28 cm−1,

(41)

which represents the best estimate of γ at our current time
(although the Pioneer data are a few years old). (A more
complete discussion of the derivation of our cosmological
parameters, based only on the Pioneer anomaly, can be found
in our latest work [37].) This is the value which was quoted
in Section 2.2 and led to our evaluation of the Hubble
constant. (Since the discovery of the Pioneer anomaly, many
researchers have noticed the numerical “coincidence” be-
tween the Hubble constant and the value of the Pioneer
acceleration aP divided by c and proposed many different
explanations for this. This coincidence is even more striking
if one uses the value cited in [23] as the experimental value
for Pioneer 10 data before systematics, aP = −7.84 ×
10−8 cm s−2, thus obtaining H0 = 80.7 km s−1 Mpc−1 and
γ0 = 1.74× 10−28 cm−1. Although this choice would result in
a value of the Hubble constant closer to standard cosmology
evaluations, we prefer to base all our analysis on the usually
quoted value of aP as in (36).)

In the previous equation, we connected γ to the measured
Pioneer acceleration aP (or the clock acceleration at) simply
because such was the way these data were reported in
the literature cited. However, it should be clear from the
discussion above that we explain the Pioneer anomaly in
terms of our cosmological-gravitational blueshift (equivalent
in a way to the clock acceleration mentioned above). In this
view, there is no real dynamic acceleration of the Pioneer
spacecraft (or of any other object in the solar system)
oriented toward the sun, due to some new gravitational
force or modification of existing gravity. In fact, aP =
[vobs(t) − v mod (t)]/t = 0 in our analysis, since we assume
there is no difference between the two velocities vobs(t) and
v mod (t).

In this way, we overcome the objection, reported, for
example, in [23], that “the anomalous acceleration is too
large to have gone undetected in planetary orbits, partic-
ularly for Earth and Mars,” since “NASA’s Viking mission
provided radio-ranging measurements [38] to an accuracy
of about 12 m,” which should have shown the effect of
the anomalous acceleration on the orbits of these two
planets.

In fact, there cannot be any anomalous acceleration for
the Earth or Mars if we measure distances with round-trip
time of flight of radio signals transmitted from Earth to the
Viking spacecraft on the Mars surface [39]. On the contrary,

we would observe a similar effect for Earth, Mars, or any
other object in the solar system, if we were to study its motion
through Doppler frequency ranging, because of the intrinsic
differences in frequency or wavelength for light emitted at
different space-time positions, due to our new cosmological
effects.

We will return on this difference between experimental
techniques for estimating distances in a later section. We
conclude this section by noting that if the Pioneer anomaly
is indeed caused by our new cosmological effects and not
by modification of the gravity from the sun, the “direction”
of the anomalous “acceleration” should be pointing towards
the terrestrial observer and not towards the sun. (Since our
cosmology is based on (2), which was derived in paper I
for regions in space far away from mass sources, i.e., inde-
pendent of the location and size of massive objects in the
Universe, the anomalous acceleration does not need to point
in the direction of a massive source, such as the Sun, the
center of our galaxy, or others. The effect should be seen
in the same way from every point of observation in the
Universe, and the observed anomalous acceleration would
seem to be pointing simply towards the point of observation
(Earth, in this case).) This is currently being studied (see [26]
for details) by using data from a period of time when the
spacecraft was much closer to the Earth and the sun, so that
a clear direction of the anomaly can be determined, but no
results from this new analysis are available yet.

3.2. Kinematical Conformal Cosmology and Type Ia Super-
novae. The determination of δ0 can be done with the pow-
erful astrophysical tool represented by type Ia supernovae
(SNe Ia) used as standard candles (see “The High-Z SN
Search” website [40], or the “High Redshift Supernova
Search Supernova Cosmology Project” web page [41] for an
introduction to the topic, see also [42–44] for reviews on
the subject). Since the original discoveries made by these
two leading groups [45, 46], the observational data were re-
cently expanded to the so-called “gold” and “silver” sets ([47,
48] and references therein) including the highest redshift
supernovae known, at z � 1.25. From these data, we will
determine the value of δ0 and then obtain all the other
parameters.

The use of type Ia SNe as standard candles involves the
revision of the concept of luminosity distance and related
quantities, in view of our alternative cosmology. The obser-
vational techniques must also be carefully considered, since
they are based on the current standard cosmology. We
have seen in the preceding section how to generalize the
luminosity distance in line with our new interpretation; we
will now apply those concepts to the case of type Ia SNe.

Equations (19)–(24) have shown that quantities such
as the absolute luminosity of standard candles and others
depend on their cosmological location, simply described by
the redshift parameter z. We want to stress once more that
in our new interpretation all the characteristic quantities of
emission and absorption of radiation, such as frequencies,
wavelengths, time intervals between radiative events, and
energies, are intrinsically dependent on the space-time lo-
cation of the events being observed. No receding motion
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is needed, and no cosmological Doppler shift is inducing
redshifts in the observed spectra, but care is to be used to
evaluate the different quantities at the space-time location of
interest, and the proper corrections will enter the formulas
only when we compare the same quantity at different cos-
mological locations.

For example, in our view, the “absolute” luminosity of a
standard candle at position r emitting light at a past time t
would be measured differently by two observers, one placed
at the origin r = 0 observing the radiation at current time
t0 and the other at the source r observing the radiation at
time t. (The absolute luminosity is the total power emitted
by the source. Obviously only apparent luminosities, i.e.,
power per unit area, can be measured by observers far
away from the source. The absolute luminosity Lz therefore
refers to an ideal measurement, as if we could measure all
the energy flowing through a spherical surface of radius
r, centered around the source.) Following our notation
mentioned above, the former observer would measure the
luminosity Lz, which was used in the previously mentioned
equations to derive the luminosity distance. The latter,
observing the radiation at the source, would measure what
we denote by L0, that is, the equivalent of placing the
standard candle near the origin and observing it at our
current time. The two luminosities Lz and L0 are then related
by (21).

To further clarify this issue with an example, a standard
candle of “intrinsic” total luminosity L0 = 1 erg/s and “in-
trinsic” spectral color, for example, a “blue” candle, will
always have the same luminosity and always show its
blue color when seen by an observer placed near the
candle, employing the appropriate local units of space, time,
energy, and so forth. On the contrary, when placed at some
cosmological distance corresponding to some definite z value
(say z = 1, e.g.), it would be observed as a “red” candle
and having a different luminosity Lz = f (1 + z)L0/(1 + z)
following (21), using units proper to the observer at position
r = 0 and time t0. All these effects are just due to the
different intrinsic units used by the two observers, as related
to (19), and are not in any way connected to relativistic
Doppler shifts, which might be only additional corrections
due to the peculiar motion of the source relative to
the observer.

The only missing piece in our luminosity definition is
the explicit expression of the function f (1 + z). We might
expect this function to be related to the usual (1 + z) factor as
discussed before, but we have no reason to assume a simple
dependence such as the one followed by space-time intervals
in (19). In choosing the form for the function f (1+z), we are
guided by the following considerations. The current theory
of standard candles, as already remarked before, considers
a reference distance dref = 10 pc, at which the apparent lu-
minosity of the candle is taken as the absolute luminosity.
This leads to the standard expression of the luminosity
distance as in (17). Since our luminosity Lz depends on
(1 + z), it seems more correct to place the candle at a
position where z = 0, in order to estimate its “absolute”
luminosity. Instead of having the candle at the origin of the
space coordinates (a rather impracticable choice if the candle

is a supernova), we can place it at a distance drs = R0rrs =
R0(2δ0/(1 − δ2

0 )), at the beginning of the “redshift region,”
where it is also z = 0, as discussed at length in our first
paper. In other words, there are only two positions where
a standard candle’s luminosity is unaffected by the universal
conformal stretching: one is at the origin and the other,
more conveniently used as a reference distance, is this special
distance drs, which also depends on the current value δ0 of
our fundamental parameter.

The second hypothesis that will be made is on the form
of the function f (1 + z). In this, we are guided again by the
classic definition of the luminosity distance, based on the
inverse square law. In fact, we propose a generalization of the
original inverse square law l = L/4πd2 which assumed L to be
invariant, to a generalized form l = L0/4πda where now L0 is
measured near the source, therefore constant by definition,
but we generalize the power dependence on the distance to
account for the luminosity variations with z. Since this form
of the revised inverse-square law would be dimensionally
incorrect for a /= 2, we further refine it by including the
reference distance dref = drs as follows:

l = Lz(tz)
4πd2

L

= L0(t0)
4πd2

L(dL/dref)
a ,

Lz(tz) = L0(t0)
(dL/dref)

a ,

f (1 + z) = (1 + z)
Lz(tz)
L0(t0)

= (1 + z)
(dL/dref)

a

= (1 + z)

⎡

⎣ 2δ0

δ0(1 + z) +
√

(1 + z)2 − (1− δ2
0

)

⎤

⎦

a

.

(42)

In the equation above, we show in the first line our
“inverse-power law” generalization of the apparent luminos-
ity-distance relationship, with an exponent a to be deter-
mined by fitting the type Ia SNe data. This generalization
implies the dependence on z of the absolute luminosity L,
as given in the second line, and by comparison with the (21),
it determines the form of the unknown function f (1 + z), as
given in the last line of (42).

We want to emphasize here that our choice of the
function f (1+z) or of the generalized “inverse-power law” is
just an educated guess, which will lead to a good fit of the
SNe data in the following. At this stage, we cannot justify
it on the basis of our kinematical conformal cosmology.
Therefore, going back to our (19) which details the scaling
properties of units of length, time, and mass, while the first
two lines are fundamentally based on our new interpretation,
the last expression with the function f (1 + z) of (42) is
currently our best hypothesis but might need to be revised in
the future.

In any case, assuming our current hypothesis to be a
reasonable one, we can finally obtain the equivalent of (17),
which will express the distance modulus μ(z) directly as
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a function of the redshift parameter. Combining together
(18), (22), and (42), we obtain

μbol(z; a, δ0) = mbol(z, tz)−Mbol(z = 0, t0)

= −2.5 log10[lbol(z, tz)/lbol(z = 0, t0)]

= 2.5(2 + a)log10(dL/dref)

= 2.5(2 + a)log10

×
⎡

⎣
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)

2δ0

⎤

⎦.

(43)

In this equation, we have indicated that all magnitudes,
luminosities, and so forth, refer to bolometric quantities, that
is, are measured over all wavelengths of emitted radiation. We
will consider later the effect of observing this radiation with
particular filters. We have also indicated the time dependence
of the observed quantities, where as mentioned before tz =
t0(1+z). This is due to the fact that type Ia SNe has a temporal
evolution [17–20] and the luminosities are usually referred
to the peak values. The time at which a Supernova reaches

its peak luminosity differs if observed near the source (t
peak
0 )

or if it is seen from a cosmological distance, in which case

t
peak
z = t

peak
0 (1 + z).

In (43), the (bolometric) distance modulus μbol(z; a, δ0)
is an explicit function of the redshift variable z and of the
two parameters a and δ0, whose values will be determined
by fitting this formula to the experimental data of type
Ia SNe. Our treatment therefore parallels the standard
cosmology model where usually μbol(z;ΩM ,ΩΛ) is a function
of the density parameters ΩM , ΩΛ. The comparison with
experimental observations is usually carried out by fitting
these expressions to the measured distance moduli μbol, for
several types of Ia SNe as observed by the most recent surveys
[47, 48].

The determination of the bolometric magnitudes from
the astrophysical measurements is quite complex, involving
conversions from observations performed in precise wave-
length bands (U , B,V ,R, I filters, for ultraviolet, blue, visible,
red, and infrared bands resp.) to the total (bolometric)
luminosities and corresponding magnitudes. This involves
precise “K-corrections” to transform the observations in
the different bands to the bolometric quantities, plus other
corrections involving the extinction of the SNa light in the
host galaxy as well as in our own galaxy, resulting in a com-
plex procedure which is also able to discriminate the overall
“quality” of the candidate Supernova. A more detailed analy-
sis of some of these procedures will be given in the appendix,
in order to ascertain that they are consistent with our new
cosmological interpretation and with (43).

We have considered the best current compilation of ex-
isting data, given by the 292 SNe of the “gold-silver set”
taken from [48, Table 4] and also available in a machine-
readable form in [49]. In this table, as well as in similar data
compilations, the normalization of the distance moduli is
usually arbitrary, since only the relative distances are needed
to obtain the dynamical cosmological parameters, such as
ΩM , ΩΛ. The overall normalization of the data is linked to

the value of the Hubble constant, but this is usually treated
as a nuisance parameter in the fitting procedure, therefore
not explicitly determined.

This approach follows from the standard cosmology
definition of the luminosity distance [50] as a function of
z, of the density parameters ΩM , ΩΛ, and of the Hubble
constant H0,

dL(z;ΩM ,ΩΛ,H0)

= c(1 + z)

H0
√|κ| S

×
{√
|κ|

∫ z

0

[
(1 + z′)2(1 + ΩMz

′)

−z′(2 + z′)ΩΛ

]−1/2
dz′

}
,

(44)

where for ΩM +ΩΛ > 1, S(x) ≡ sin(x) and κ = 1−ΩM −ΩΛ;
for ΩM + ΩΛ < 1, S(x) ≡ sinh(x) and κ as above; for ΩM +
ΩΛ = 1, S(x) ≡ x and κ = 1.

Since dL is inversely proportional to H0, following (17),
the standard expression of the distance modulus becomes:

μ(z) = m(z)−M = 5 log10dL(z;ΩM ,ΩΛ,H0) + 25

= 5 log10DL(z;ΩM ,ΩΛ)− 5 log10(H0) + 25,
(45)

introducing the so-called “Hubble constant-free” luminosity
distance DL(z;ΩM ,ΩΛ) ≡ H0dL. The term containing the
Hubble constant is then usually summed together with M
and the other constants in the previous equation and then
integrated upon in the standard fitting procedure.

However, as noted in [49], the data of the latest “gold-
silver” sets can be reconciled with the latest Cepheid-
SNe-based Hubble constant value [12] (H0 = (73 ± 6.4)
km s−1 Mpc−1) by subtracting 0.32 mag from all distance
moduli in [49, Table 4]. By performing this adjustment,
the distance moduli μ become consistent with H0

∼=
73 km s−1 Mpc−1, which is however different from our value
in (9), H0

∼= 89.7 km s−1 Mpc−1.
Since standard cosmology assumes that the luminosity

distance dL is inversely proportional to H0 as noted above,
it is easy to check that subtracting from all data another
common value equal to 5 log10(89.7/73) ∼= 0.45, related to
the ratio of the Hubble constants reported above, will bring
all the distance moduli in line with our preferred value of the
Hubble constant.

Therefore, we have performed this “double correction,”
subtracting the factor 0.32+0.45 = 0.77 from all the distance
moduli of the “gold-silver” sets, to bring them in line with
our assumptions. This is the best option we have to fix the
normalization of the existing data in the literature, since we
do not have access to the normalization algorithm used by
the SNe groups (see also the discussion in the appendix).

We have plotted these “double-corrected” distance mod-
uli μ as a function of the observed redshift z in Figure 1
(yellow circular points for “gold” data, grey triangular points
for “silver” SNe). In the same figure, we fit the expression in
(43) to the experimental data, choosing the “gold set” only
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Figure 1: Data from type Ia SNe “gold-silver sets” [48] are fitted
with (43). Our fits show a remarkably good quality (χ2 = 0.053;
R2 = 0.996) for both a variable a (black-dotted curve) and for a
fixed a = 2 (solid red curve). In this latter case, the best fit parameter
for delta is δ0 = 3.827 × 10−5. Also shown (dashed green curves) is
the range of our fitting curves for a = 1.9–2.1 and the Standard
Cosmology curve (in orange, short dashed).

for our fit, due to the greater reliability of these data over
the “silver set.” (We have performed similar fits including
both “gold” and “silver” data for completeness. We obtained
basically the same results as in the case of “gold” only, with
a slightly worse statistical quality of the fit.) Our fit for the
“gold” SNe has a good statistical quality (χ2 = 0.0534; R2 =
0.996), and we obtain the best fit parameters as follows:

a = 2.014± 0.018,

δ0 = (3.951± 0.167)× 10−5.
(46)

The resulting fit is shown as a black-dotted curve in the
figure. Given our hypothesis of an “inverse power law,” our fit
seems to suggest an integer value a = 2 for the exponent of
the factor (dL/dref) in (42). If we perform a new fit of the same
data, keeping a = 2 fixed, we obtain the continuous red curve
in Figure 1 (virtually equivalent to the black-dashed one) and
a slightly different value for δ0,

a = 2,

δ0 = (3.827± 0.014)× 10−5.
(47)

Since this is also a good-quality fit of the data (χ2 =
0.0533; R2 = 0.996), we are inclined to consider the values
given in (47) as our best estimates of these parameters. In
particular, we will use in the following our inverse power law
with an integer exponent a = 2. In Figure 1, we also plot the
curves (green dashed) for a = 1.9–2.1, keeping δ0 as in (47),

to show how our fitting solution depends on the parameter
a. It can be seen also that the majority of the experimental
points lie within this range, confirming our hypothesis of
a 
 2.

We also show for comparison the standard cosmology
fitting curve (orange, short dashed), following (44)-(45), for
a flat Universe with ΩM = 0.27, ΩΛ = 0.73, and H0 =
89.7 km s−1 Mpc−1 to bring it in line with our value of the
Hubble constant. Our preferred fit (in red solid) is practically
equivalent to the standard cosmology curve, except for a
slight difference at highest redshift values, thus showing that
our model can produce Hubble plots of the same quality of
those obtained by current cosmology, but without requiring
any dark matter or dark energy contribution.

Our analysis of type Ia SNe therefore confirms the appli-
cability of the kinematical conformal cosmology to standard
candle luminosity measurements and proposes a small posi-
tive value δ0 
 3.83×10−5 for our fundamental cosmological
parameter, as noted previously in this work and also in
paper I.

We have to mention again that the set of “gold-silver” SNe
data and particularly the distance moduli μ(z) from [48] that
we used in our analysis were originally obtained through a
rather complex calibration algorithm (called MLCS2k2, see
[47, 48] for complete details) which takes into consideration
the wavelength bands being used (U ,B,V ,R, I , etc.) and
related K-corrections, the current value of the Hubble
constant, the extinction and reddening effects, the zero point
luminosity calibration, and absolute magnitude of type Ia
SNe.

This calibration method originated in the early papers of
the two leading groups, as the “multicolor light-curve shape”
(MLCS—[51, 52]) then was revised into the latest MLCS2k2,
and the template fitting method-Δm15 [53]. In these early
works, it was still possible to find a step-by-step description
of the methods being used and the values of almost all the
corrections employed, in order to check our normalization
procedure.

On the contrary, in the latest papers based on the
MLCS2k2 method [12, 47, 48], which produced the “gold-
silver set” of distance moduli that we used in Figure 1, the
complexity of the parametrization and fitting procedure
makes the comparison with our luminosity normalization
procedure very difficult. While we will analyze the K-
corrections in the appendix, we make no attempt to revise
the other corrections and normalization procedures for the
distance moduli (except for the “double correction” we used
above to bring the data in line with our preferred value of the
Hubble constant).

In Figure 2, we present the same data and similar fitting
curves as in Figure 1, but in the form of residual values Δμ,
where the baseline is represented by our fit (in solid red) with
the values of (47). It can be seen again how most of the SNe
data fall within the a = 1.9–2.1 band.

Before proceeding to study the other cosmological
parameters, we want to analyze briefly the low-z case and
the related fit to supernova data, to confirm the feasibility
of our approach also at low redshift. In standard cosmology,
the expression of the luminosity distance as a function of z,
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Figure 2: Data from type Ia SNe “gold-silver sets” [48] are fitted
with (43) and shown as residuals Δμ. The baseline is represented by
our fit for fixed a = 2 (solid red curve). The meaning of the other
curves and parameters is the same as in Figure 1.

such as the one described in (44), is not easily integrated, so
that the low-z behavior is usually studied by expanding it in
Taylor series around z = 0. This procedure yields the well-
known low-z expansion [15]

dL = c

H0

[
z +

1
2

(
1− q0

)
z2 + O

(
z3)

]
. (48)

The first-order term corresponds to the original Hubble’s
law, vr 
 cz 
 H0dL, where vr is the recessional velocity
of the galaxy, following Hubble’s original explanation based
on a pure Doppler effect. The equivalent expansion for the
distance modulus is

μ(z) = 25− 5 log10H0 + 5 log10(cz)

+ 1.086
(
1− q0

)
z + O

(
z2),

(49)

where H0 is measured as usual in km s−1 Mpc−1 while c =
299792.458 km s−1. These expressions need to be corrected,
due to our new luminosity distance dL = R0r from (22),
as opposed to the standard cosmology expression dL =
(1 + z)R0r. We also need to include the reference distance
drs = R0rrs = R0(2δ0/(1 − δ2

0 )) at which we start observing
the redshift.

Since our expression for dL in (22) is an explicit function
of z, we can directly expand this function and obtain the
following result (We note that if we were to correct the
standard expansion formula, as given in [15] or [16], we
would obtain dL = (c/Hrs)[z − (1/2)(1 + qrs)z2 + O(z3)] =
R0[(1/|δ0|)z − (1/2|δ0|3)z2 + O(z3)]. This is the same result
we would get by expanding our luminosity distance for a
negative value δ0 < 0. This is because standard cosmology

does not include the distance drs in the derivation, and this
assumption is equivalent to considering the current value of
δ as negative.):

dL = R0

[
2δ0

1− δ2
0

+
1 + δ2

0

δ0
(
1− δ2

0

)z − 1
2δ3

0
z2 + O

(
z3)

]

,

(50)

from which we could derive an expansion for the distance
modulus μ(z). The problem with this type of expression is
that it has a very limited range of validity in our revised
cosmology, due to the small value of δ0 
 3.83 × 10−5 (or
due to the large value of q0 = 1/δ2

0 − 1 
 6.82 × 108). It
is easy to check that, in our new expression for dL in the
last equation, we could neglect the z2 and higher-order terms
only for z � 10−9, which is a range of no practical interest.
Therefore, a low-z analysis similar to the one of standard
cosmology is actually not feasible in our new approach.

However, due to the low value of δ0 
 3.83×10−5, we can
expand (22) in powers of δ0 around δ0 = 0 (or just consider
(22) for δ0 → 0). With a Taylor expansion, we obtain

dL = R0

[√
z2 + 2z + (1 + z)δ0 + O

(
δ2

0

)]
,

μ(z) = 2.5(2 + a)log10

×
{

1− δ2
0

2δ0

[√
z2 + 2z + (1 + z)δ0 + O

(
δ2

0

)]
}

.

(51)

The leading terms at low redshift of the expressions in the
previous equation are the following (neglecting the 1 − δ2

0

factor in the second line, due to the small value of δ0):

dL 
 R0
√

2z,

μ(z) 
 2.5(2 + a)log10

(√
2z

2δ0

)

.
(52)

This equation can be considered our “low-z” expression,
and we can check its validity by using the second line to fit
the “gold” SNe data of [48] in the low-z regime. For this
purpose, we selected the “gold” data with z � 0.1, with the
same “double-correction procedure” mentioned above, and
we used the last equation as a fitting formula. The results
obtained are the following:

a = 2.041± 0.084,

δ0 = (4.159± 0.693)× 10−5,
(53)

(χ2 = 0.0430; R2 = 0.975) leaving a variable. If we constrain
a to our preferred value, we obtain instead

a = 2,

δ0 = (3.836± 0.023)× 10−5,
(54)

which is also a good-quality fit of the data (χ2 = 0.0425; R2 =
0.975). These results are shown in Figure 3, where the fit with
the parameters of (54) is shown as a blue continuous curve,
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Figure 3: Data from type Ia SNe “gold set” [48] are fitted with (52),
our low-z approximation. Our fits show a remarkably good quality
(χ2 = 0.043; R2 = 0.975) for both a variable a (black dotted curve)
and for fixed a = 2 (solid blue curve). In this last case the best fit
parameter for delta is δ0 = 3.836 × 10−5. We also show (dashed
green curves) the range of our fitting expressions for δ0 = 3.5 −
4.5× 10−5.

while the black-dotted line illustrates the fit with variable
a. As in the previous figures, these two curves are virtually
equivalent, confirming our hypothesis of an integer value for
a.

In this figure, we also show (dashed green curves) our
low-z fitting curve of (52) for a = 2 and for the range
δ0 = 3.5− 4.5× 10−5, just to illustrate how sensitive our fit-
ting formula is to the value of δ0. Considering also the
previous figures, we can see that the value of the parameter
a determines the slope (or the shape of the curves in a
logarithmic plot), while the value of δ0 basically determines
the normalization of the curves, as it will also be shown in
the following paragraphs.

Comparing these expressions with the standard cosmol-
ogy ones in (48)-(49), it seems at first that our results do
not yield the standard Hubble’s law, vr 
 cz 
 H0dL,
but as already remarked before, this law was introduced by
Hubble following the original interpretation of the redshift
as a pure (relativistic) Doppler shift. This interpretation
was later generalized into the cosmological expansion, but
this view is not shared by our model, and therefore we
do not need to recover the original Hubble’s law in our
approach.

On the contrary, we can rewrite our “low-z” expression
for the distance moduli in (52), with a = 2, as

μ(z) 
 10 log10

(√
2z

2δ0

)

= 5 log10

(
z

2δ2
0

)

, (55)

so that we have a perfect correspondence between our expres-
sion for μ(z) in the last equation and the classical one from
(49), which can also be rewritten as

μ(z) 
 25 + 5 log10

[
cz

H0

]
= 5 log10

[
105 cz

H0

]
, (56)

neglecting higher-order terms in z. Since both expressions
(55) and (56) fit the experimental data and the standard
expression can be used to measure the Hubble constant H0

(with H0 
 H0, see the discussion related to (30)) comparing
them together and using the value of δ0 from (54), we obtain

H0 
 H0 
 2× 105cδ2
0 = 88.2 km s−1 Mpc−1. (57)

This value is very close to the Hubble constant we
obtained in Section 2.2 (see (9)) and that we used for our
calibration of the “gold-silver” data. This result shows that
our calibration procedure of the SNe data was essentially
correct and links directly the Hubble constant to the
fundamental parameter δ0, as shown in the last equation.
(We also tried fitting the original low-z “gold” data, based
on the standard value of H0 = 73 km s−1 Mpc−1, proposed by
Riess et al. in [12]. This resulted in a slightly different value
of δ0 
 3.461 × 10−5, which is consistent with the Hubble
constant used, in view of (57).)

In addition, (57) can be combined with (9) to give a
direct relation between δ0 and γ0,

γ0 
 1.296× 10−19 δ2
0 cm−1, (58)

where the numerical factor in the previous equation is a
consequence of the different units used to measure the
Hubble constant. Using the value of δ0 from (54) or (47)
into the last equation, we obtain γ0 
 1.9 × 10−28 cm−1, as
introduced in (41) and based on the discussion of the Pioneer
anomaly. (We also performed a fit of the gold supernova data
using (51), the “low-δ” expansion formula. Setting a = 2, we
obtained in this case δ0 = 3.868× 10−5, which placed in (57)
and (58) yields, respectively, H0 = 89.7 km s−1 Mpc−1 and
γ0 = 1.94 × 10−28 cm−1, the exact values on which we base
our calibration of supernova data. In this sense, our “low-
δ” expansion formula (51) should probably take the place of
the “low-z” expression (52) as being more relevant to our
analysis.)

Finally, in Figure 4, we reproduce the same data and
fitting curves as in the previous figures, but in the form of
a standard linear Hubble plot, to show that our approach can
yield also these type of graphs, with the same quality of those
of standard cosmology.

In particular, we see in this figure that our normal fit
(in red, upper-solid curve) following (43) and the “low-z” fit
(in blue, lower-solid curve) following (52) for a fixed a = 2
are almost equivalent at low redshift as expected, but they
become consistently different for z � 0.1. Since our normal
fit, based on δ0 = 3.827 × 10−5, can describe in a better way
all the supernova data in our gold set, we will prefer this
value over the low-z evaluation of (54). We will therefore
use δ0 
 3.83 × 10−5 in the summary of the fundamental
parameters presented in the following section.
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Figure 4: Data from type Ia SNe “gold-silver sets” [48] are fitted
with (43)—normal fit (red, upper-solid curve for fixed a = 2; black
dotted for variable a) and (52)—low-z fit (blue, lower-solid curve).
Also shown by the green-dashed curves is the range a = 1.9–2.1
(normal fit).

3.3. The Other Cosmological Parameters. Using the results
from the previous sections we are finally able to report
our best estimates of the parameters which enter our
kinematical conformal cosmology. These parameters are
shown in Table 1, where all the quantities either refer to their
current value (subscript zero) or to the values at the location
where the redshift starts being observed (subscript rs). We
used for all these estimates the value of δ0 from (47).

As it was previously mentioned, it is beyond the scope
of this paper to perform a full revision of the “cosmological
distance ladder,” in view of the changes proposed by our
new approach. However, we want to show here the difference
between our luminosity distance estimates and the standard
results, for different redshift values. Table 2 illustrates the
results of this computation for different values of the redshift
parameter: in the second column, we use our new definition
of luminosity distance following (18), while in the third
column, we employ the standard cosmology formula in (44)
with ΩM = 0.27, ΩΛ = 0.73, H0 = 89.7 km s−1 Mpc−1, to
bring it in line with our preferred value of the Hubble con-
stant.

As we can see from the table, there is a quite large
difference between the estimates in these two columns, a
difference of about three orders of magnitude just at low
redshift, for z ∼ 0.01–0.1. This is mainly due to our hypoth-
esis of a change in the “absolute” luminosity of standard
candles in (21), resulting in dramatically smaller revised
distances.

However, if we were to redefine our new luminosity dis-
tance as in (23), that is, considering as in standard cosmology
an invariable absolute luminosity L0 of the source and using

corrections due to an expansion of the Universe similar to
standard cosmology, we would obtain

dL =
√

L0

4πl
=
√

(1 + z)/ f (1 + z)R0r

= R0

[
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)]2

2δ0
(
1− δ2

0

) ,

(59)

where we used our explicit form of the function f (1 + z) in
(42) with a = 2.

In the fourth column of Table 2, we used the previous
equation to compute the distances, and we notice that these
values are close to those of the standard cosmology for both
H0 = 89.7 km s−1 Mpc−1 (third column) or for the more
standard value H0 = 73 km s−1 Mpc−1 (values in the last
column of the table). This is of course expected, since the
distance in (59) would also fit the supernova data, if we
were to assume an expansion equivalent to that of standard
cosmology. In other words, (59) is our equivalent of the
“standard” luminosity distance and yields to virtually the
same distance estimates as in standard cosmology. However,
in our interpretation, (18) is to be considered the correct dis-
tance, since it includes the intrinsic dimming of the source.

We wanted to introduce also this “standard-equivalent”
luminosity distance in (59), in order to make a comment
on the so-called “Tolman surface brightness test,” which
is usually employed in cosmology to distinguish between
standard expansion theories and alternative models of
redshift, such as the “tired light” explanation (see discussion
in Section 1.7 of [16] and recent experimental results in
[54]). This test is based on the ratio between the angular
diameter distance dA and the luminosity distance dL. Using
standard cosmology distances from (16) and (25), this ratio
is simply dA/dL = (1 + z)−2, so that the surface brightness B
of a luminous object (defined as the apparent luminosity per
solid angle—l/Ω) will result in B ≡ l/Ω = (L/4π)(dA/dL)2 =
(L/4π)(1/(1 + z)4), where L is the intrinsic absolute lu-
minosity per unit of proper area of the source (see [16]
for details). As shown in the above equation, this quantity
should scale like (1 + z)−4, and this prediction is recovered
(within certain limits, due to the evolution of the galactic
light sources) in experimental studies [54]. Tired light the-
ories would require B to scale as (1 + z)−1 and are essentially
ruled out by these experimental evidences.

In our model, the ratio dA/dL, constructed using (18)
and (26), does not seem to scale as required by the Tolman
brightness test, that is, dA/dL = (1 + z)−2, but rather as
(1 + z)−1, yielding a surface brightness scaling as (1 + z)−2.
However, experimental tests of this effect, such as the
one reported in [54], are based on a standard approach
using invariable luminosities and invariable diameters of the
light sources being studied. Following the discussion in the
previous paragraphs, this amounts to using our “standard-
equivalent” luminosity distance in (59), instead of the one
in (18). We can see from the fourth column in our Table 2
that distances computed with this “standard-equivalent”
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Table 1: The fundamental parameters of our kinematical conformal cosmology are shown here, as derived from the astrophysical data
analyzed in the current section.

Kinematical conformal cosmology parameters

δ0 = 3.83× 10−5

γ0 = 1.94× 10−28 cm−1

k0 = − γ2
0

4δ2
0
= −6.42× 10−48 cm−2

κ0 = −γ2
0

4
− k0 = 6.42× 10−48 cm−2

H0
∼= H0 = −γ0

2
c = −100 h0

km
s Mpc

= −3.24× 10−18 h0 s−1 = −2.91× 10−18 s−1

h0 = 0.897

Hrs
∼= Hrs = +

γ0

2
c = 100 h0

km
s Mpc

= 3.24× 10−18 h0 s−1 = 2.91× 10−18 s−1

q0 = qrs = 1
δ2

0
− 2 = 6.83× 108

q0 = qrs = 1
δ2

0
− 1 = 6.83× 108

R0 = R(t0) 
 1
√|k0|

= 3.95× 1023 cm = 0.128 Mpc

R0 = R(t0) 
 R(t0)
√|k0| 
 1

Table 2: Comparison between luminosity distances in our model and in standard cosmology, for different values of the redshift parameter.

z
dL(Mpc) (18) dL(Mpc) (44) dL(Mpc) (59) dL(Mpc) (44)

H0 = 89.7 (km/s Mpc) H0 = 89.7 (km/s Mpc) H0 = 89.7 (km/s Mpc) H0 = 73 (km/s Mpc)

0.001 5. 73× 10−3 3.35 3.35 4.11

0.01 1.81× 10−2 33.7 33.6 41.4

0.1 5.86× 10−2 360 351 442

1 0.221 5.25× 103 5.02× 103 6.45× 103

10 1.40 8.41× 104 2.01× 105 1.03× 105

100 12.9 1.04× 106 1.71× 107 1.27× 106

1000 128 1.11× 107 1.68× 109 1.37× 107

expression are similar to those calculated by standard cos-
mology. Therefore, we infer that current tests of the Tolman
effect would not be in disagreement with our model. We
will leave to future work a more detailed analysis of this
effect.

In any case, if our approach is correct and we use our
new luminosity distance in (18), other distance estimates
in the cosmological ladder might also need to be revised.
We mentioned in Section 2.3 that several other distances
need to be changed and that, for example, our new angular
diameter distance would imply larger distances than previ-
ously thought; therefore, the overall reduction in distance
estimates might be less dramatic than the one illustrated in
Table 2, comparing just the second and third columns.

This is related to the final point we want to address
in this section, that is, the apparent discrepancy between
our estimate of the parameter γ0 = 1.94 × 10−28 cm−1

and the value proposed by Mannheim, γMannheim = 3.06 ×
10−30 cm−1 [8]. We recall that this value was obtained by
Mannheim using a sample of eleven galaxies, where the
rotational motion data were fitted by the conformal gravity
theory over a range of radial distances of a few kiloparsec,
from the center of each galaxy. The non-Keplerian effects are
manifest beyond the peak value at rpeak = 2.2 r0, with r0

ranging from 0.48 kpc to 4.48 kpc, for the sample of eleven
galaxies. The average rpeak is about 4.27 kpc; therefore, the
measured γ0 was obtained by fitting the original Mannheim-
Kazanas potential over radial distances r � rpeak-ave =
4.27 kpc from the reference point of observation (the center
of each galaxy). The global redshift of each galaxy was already
subtracted from the rotational data; therefore, the measured
γ0 refers to the intrinsic scale of the galaxies being considered
(kiloparsec scale) and should be in line with the value
we propose.

However, Mannheim’s analysis was based on standard
cosmology estimates of the distances to all these galaxies.
We have seen above that our new interpretation of the lumi-
nosity distance implies rather smaller distances than those
previously estimated. The ratio between the two estimates of
the gamma parameter

γ0/γMannheim = 63.4 (60)

could be explained in terms of a similar ratio between
distance estimates in the standard theory versus our new
approach. This is due to the fact that, as mentioned in our
paper I, galactic rotational curve was fitted by Mannheim
using a potential proportional to the quantity γr, so that
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the overestimation of the distances r would result in an
underestimation of the γ parameter. We will also leave to
future work a more detailed analysis of this issue.

4. Consequences of the Model

To conclude the analysis of our kinematical conformal
cosmology, we want to summarize in this section the scaling
properties of all the dimensionful quantities and link these
results to the more general problem of the time variation of
physical constants. This is followed by a similar analysis of
the dimensionless parameters and constants, which might
establish a direct connection between our parameter δ
and the fine-structure constant αem of the electromagnetic
theory.

4.1. Scaling Properties of Dimensionful Quantities. In our ap-
proach to cosmology, all physical quantities with dimensions
(of length, time, mass, etc.) are affected by the general
“scaling” properties detailed by (19), with the function f (1 +
z) defined as in (42), where we use a = 2 as our preferred
value for the inverse-power law generalization. In particular,
using the relations in Table I of our first paper [7], we can
express all these scaling factors as a function of z and δ0, or
as a function of the “cosmological time” δ and its current
value δ0, since we have

1 + z =
√

1− δ2
0

1− δ2
,

f (1 + z) = 4δ2
0 (1 + z)

[
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)]2

= 4δ2
0

[δ0 + |δ|]2

√
√
√1− δ2

1− δ2
0
.

(61)

These equations imply that when we observe the Universe
at a certain fixed value of the cosmological time (e.g., the
current value δ0) all dimensionful quantities and constants
appear to scale with the redshift parameter z (or with δ
varying from−1 to +1). This will also affect the fundamental
constants of physics (with the exception of the speed of light,
as already discussed in our paper I).

For example, Planck’s constant, whose current value is
h0 = 6.626 × 10−27 erg s, would be perceived as scaling
like the product of a mass and a length, resulting in the
following:

h = h0(1 + z) f (1 + z)

= h0
4δ2

0 (1 + z)2

[
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)
]2 = h0

4δ2
0

[δ0 + |δ|]2 .

(62)

This equation implies that if we could observe an experiment
designed to measure h and performed at a location charac-
terized by redshift z, the outcome of this experiment would

be Planck’s constant as given by (62) and not our current
standard value h0.

Another example of these scaling properties is related
to the elementary charge e0 = 4.803 × 10−10 statC (current
value in cgs units). Whenever we observe the Universe at
a fixed cosmological time, it is natural to assume that all
dimensionless quantities should also be considered fixed at
the particular values they have at that cosmological time. In
particular, the fine-structure constant of electromagnetism is
defined as the (dimensionless) quantity αem = e2/�c (with
� = h/2π) and has a current value of αem0 = 7.297 ×
10−3. This definition of αem implies that the square of the
elementary charge, e2, should scale as Planck’s constant
(since c does not scale and αem is assumed to be a fixed
dimensionless quantity). Therefore, the elementary charge e
should scale as

e = e0

√
(1 + z) f (1 + z)

= e0
2δ0(1 + z)

[
δ0(1 + z) +

√
(1 + z)2 − (1− δ2

0

)] = e0
2δ0

[δ0 + |δ|] ,

(63)

and similar scaling properties can be obtained for other
physical constants of interest.

4.2. Dimensionless versus Dimensionful Quantities. Using the
equations outlined in the previous sections we can compute
the scaling properties of all quantities with physical dimen-
sions, as seen from an observer at the current cosmological
time δ0. However, we argue that the origin of the variability
of all these quantities should be found in the values of
dimensionless parameters and constants. In fact, we have
shown above how the scaling properties can be described in
terms of a variable dimensionless δ parameter.

An alternative but equivalent way of describing these
effects is to connect them to a variable fine-structure constant
αem, that is, to assume that a dimensionless quantity such as
αem will vary over cosmological times, following changes of
the δ parameter. We recall that the wavelength of emitted
radiation, in a first-order approximation, can be related to
αem as follows:

λ ∼ h

mcα2
em

, (64)

since the Rydberg constant for infinite nuclear mass is
R∞ = mecα2

em/2h, and the wavelength of emitted radiation is
inversely proportional to R∞, as stated by the simple Balmer’s
formula. In (64), m can be considered to be the electron mass
me, or the reduced mass of the atomic system emitting the
radiation.

If we assume that the cosmological redshift or blueshift
is due to the intrinsic changes of a dimensionless quantity
such as αem, we are induced to consider the dimensionful
constants such as h and m as fixed, since their changes are
only apparent when we observe them at a fixed value of
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Figure 5: The dependence of αem on our parameter δ is shown,
given the current values of these two quantities, αem0 = 7.297×10−3

and δ0 = 3.827 × 10−5 (red solid curve). Our current “position” in
the plot is indicated by the black dot in the figure.

the dimensionless δ parameter. In this line of reasoning, we
can rewrite the first expression in (61) as

1 + z =
√

1− δ2
0

1− δ2
= λ

λ0
= α2

em0

α2
em

, (65)

having used (64) with the dimensionful quantities consid-
ered fixed.

We therefore obtain how the fine-structure constant
changes with z or δ,

αem = αem0√
1 + z

= αem0

4

√
√√1− δ2

1− δ2
0

, (66)

which is illustrated in Figure 5, where the dependence of αem

on our parameter δ is shown, given the current values of
these two quantities, αem0 = 7.297 × 10−3 and δ0 = 3.827 ×
10−5. The red continuous curve in the figure shows how the
fine-structure constant is zero for δ = −1; it is increasing

to its maximum value αmax
em = αem0

4
√

1/(1− δ2
0 ) for δ = 0

and then decreases to zero again for δ = +1. Our current
“position” in the plot is indicated by the black dot in the
figure. Given the very small value of δ0, the current value
αem0 = 7.297 × 10−3 is basically the same as the maximum,
indicating that electromagnetic interactions are currently at
their strongest level.

Therefore, if our model is correct, we can consider
dimensionless quantities such as δ and αem as the fundamen-
tal physical parameters directly connected to the evolution
of the Universe. Their values are changing with time, or
they can directly represent the cosmological time. The values
of the dimensionful constants and parameters are merely

a consequence of the current values of the dimensionless
quantities, which determine the standard units with which
all quantities with physical dimensions are measured.

Einstein was one of the first scientists to advocate for the
importance of dimensionless quantities over dimensionful
ones, as shown in a private correspondence with a former
student of his (see discussion in Chapter 3 of Barrow’s book
[55]). Einstein thought that constants with physical dimen-
sions are merely a product of the units of measure being used
and as such they do not possess a deep theoretical meaning.
On the contrary, dimensionless quantities constructed with
standard dimensionful constants (such as αem = e2/�c) are
considered by Einstein to be the only significant numbers in
physics, whose value should be possible to explain in terms
of fundamental mathematical constants such as π or e.

Our approach, described in this section, follows Ein-
stein’s consideration of dimensionless quantities as being the
most fundamental ones, but we have shown above that their
values are probably also changing with the universal time.
Therefore, there is no need to explain a particular current
value of αem or δ, but it is sufficient to describe the evolution
of these parameters.

We also remark that our analysis of the time variability
of fundamental constants is different from the standard
approach to this subject (for reviews, see [55–57]). For ex-
ample, in recent claims of a (very small) time variability of
the fine-structure constant, as seen in interstellar absorption
spectra [58], the cosmological redshift is obviously factored
out from the effect being studied, thus resulting in a very
small variation of αem over cosmological scales. On the con-
trary, in our approach, the cosmological redshift is poten-
tially explained in terms of a (large) variation of the fine-
structure constant, as seen in Figure 5, therefore resulting in
a totally different phenomenology.

It is beyond the scope of this work to extend this analysis
to all other fundamental constants in nature (dimensionless
or not). We simply point out that if our hypothesis on the
variability of physical constant is correct, this would call for
a revision of the theory of fundamental interactions, such
as quantum electrodynamics or others, in view of variable
coupling constants and interaction strengths.

4.3. Astrophysical Observations and Kinematical Conformal
Cosmology. We have seen that in our approach to cosmology
experiments and observations based on atomic properties
and electromagnetic phenomena are affected by our new in-
terpretation. These possible changes in electromagnetic
physics (and perhaps also in strong/weak interactions) over
cosmological times will affect our observations and perspec-
tive of the gravitational motion.

The description of the Universe can still be done with the
standard Newton-Einstein paradigm, assuming invariable
space-time units and measuring all quantities with these
fixed units. Such is the case when we use “ranging” tech-
niques, that is, we measure the time of flight of light signals
to determine the positions of celestial bodies.

On the contrary, other astrophysical observations (such
as those based on spectroscopy or similar) need to include
the stretching of space-time and the change of related units.
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In this case we need conformal gravity as an enhancement of
general relativity, to include this “stretching” of the units, and
our kinematical approach might help to explain the short-
comings of the standard theory.

In order to test our model, a conclusive experiment
would be an enhanced measurement of the “Pioneer anom-
aly” effect, possibly realized through a dedicated mission of
a spaceship in the outer solar system, as it has already been
proposed [33–35]. This seems to be the only practicable type
of experiment in which an electromagnetic signal of well-
known wavelength can be transmitted unperturbed over
a considerable temporal interval. In this way, it can be
compared to a similar signal produced at a later time to
check for an intrinsic wavelength shift, due to the conformal
stretching of the space-time. The direct detection of such a
wavelength/frequency shift of an electromagnetic signal with
time would be a clear signature of conformal gravity acting
according to our kinematical approach.

Further work will also need to be done in order to
check if our model is consistent with the presence of the
cosmic microwave background radiation, which is one of the
experimental cornerstones of standard cosmology, and also
improve our previous estimates of the age of the Universe
[7], and of the other cosmological parameters, in order to
validate our model.

Finally, we remark that a detailed analysis and compar-
ison between standard Λ Cold Dark Matter (ΛCDM) cos-
mology and conformal gravity models has recently appeared
[59]. In particular, Mannheim’s conformal gravity (CG) and
our kinematical conformal gravity (KCG), as described in
this paper, were used to model combined data from type Ia
Supernovae and Gamma-ray bursts, using a Bayesian analysis
of the data. The outcome of this work was that “Contrary
to the expectation, we show that the current data can be
described by CG, KCG, and ΛCDM equally well” (quoted
from [59]). This result is particularly encouraging to further
continue our studies of kinematical conformal cosmology
also in the future.

5. Conclusions

We have introduced experimental evidence in support of
our kinematical conformal cosmology and determined the
values of its fundamental parameters. In particular, we have
focused our analysis on reproducing the Hubble plots for
type Ia supernovae, with the same level of accuracy obtained
by standard cosmology.

To achieve this goal, we critically reconsidered all the
standard distances commonly used in cosmology and added
a new scaling property for mass (or energy) as a function of
the redshift parameter. Our new expression for the distance
modulus as a function of redshift can effectively fit the “gold-
silver” SNe data with the required accuracy and also yield a
current-time value for our fundamental parameter δ0, which
is small and positive as expected.

Since type Ia supernovae or other astrophysical candles
are distant cosmological objects, our second point of focus
was to consider more local effects due to our kinematical
conformal cosmology, which might be more suitable for

the determination of the parameters. In particular, a local
blueshift region was expected, given the estimated values of
the quantities in our model, and is possibly evidenced by the
recently discovered Pioneer anomaly.

We have seen how our model can account for this
effect and can be used to estimate our second fundamental
parameter γ0, which together with δ0 will determine all the
other quantities in our model. More precise evaluations of
these parameters are certainly needed and should come from
an extended analysis of the Pioneer data or through a
dedicated future spacecraft mission, which has already been
proposed.

We argued that a direct detection of a frequency/wave-
length shift in electromagnetic radiation, traveling over
distances comparable to the size of our solar system, could be
explained only in terms of a conformal space-time stretching
and would be the best evidence in support of our kinematical
approach. If the Pioneer anomaly, or similar phenomena,
will prove in the next few years to be positive indications of
these effects, they might also signal a possible time variation
of dimensionless fundamental quantities, such as the fine-
structure constant and our cosmological time δ. This would
constitute an important step towards a deeper understanding
of the role and values of all the fundamental physical con-
stants and also impact our current understanding of the
fundamental interactions.

Appendix

K-Corrections in Luminosity Measurements

In this appendix, we will briefly review the theory of K-
corrections used in luminosity measurements of standard
candles (especially type Ia SNe) and check if our new
cosmology will require any changes in the definition of
such corrections. We recall that a luminosity distance versus
magnitude equation, such as (17) used in standard cosmolo-
gy or our revised formula (43), usually relates the theoretical
expression of dL to the “bolometric” apparent and absolute
magnitudes of the light source, that is, considering radiation
emitted over the whole wavelength spectrum.

On the contrary, CCD detectors or other photometric
devices used in astronomy usually observe radiation within
certain wavelength bands (such as those related to the U , B,
V , R, and I filters mentioned in Section 3.2), and this infor-
mation needs to be converted into bolometric magnitudes
before it can be used in the luminosity distance equations.
“K-corrections” are introduced for this purpose. Moreover,
due to the large redshifts of some of the SNe being observed,
photometry in a highly redshifted filter (such as in the R-
band) has sometimes to be compared to nearby photometry
of a reference supernova in a different filter (such as B, V ,
or other), thus involving also conversions between different
filters, in addition to the standard correction from one band
to bolometric magnitudes.

The theory of K-corrections was originally introduced by
Humason et al. [60] and later reviewed by Oke and Sandage
[61] in 1968. It was later adapted to the modern case of type
Ia SNe spectra in a series of papers (see, e.g., [62–64]). In this
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appendix, we will follow the notation used in these modern
reviews.

The standard K-correction connects the apparent magni-
tude mx in some “x” filter band of a light source at redshift
z, to the distance modulus μ(z) according to the following
equation [62]:

μ(z) = mx(z, tobs)−Mx(z = 0, trest)− Kx(z, trest),

Kx(z, trest) = 2.5 log10(1 + z)

+2.5 log10

{ ∫
F(λ)Sx(λ)dλ

∫
F[λ/(1 + z)]Sx(λ)dλ

}

,

(A.1)

where Mx is the absolute x magnitude, and the appropriate
correction Kx is detailed in the second line of the equation,
with F(λ) being the spectral energy distribution “at the
source” and Sx(λ) the filter transmission. The time variables
are connected by the standard time dilation equation tobs =
trest(1 + z), where trest is the time in the supernova rest frame,
and tobs is the time in the observer frame. These times cor-
respond, respectively, to our times tz and t0 as discussed in
Section 2.3, related in the same way, but with a different
interpretation. We will omit the time dependence in the
following since it is not essential for our discussion.

Following our revision of the luminosity distance, de-
tailed in Section 2.3, we will recompute in our new notation
the Kx term and compare it to the standard expression in
(A.1). Since μ(z) = m(z) −M(z = 0), where m and M are
bolometric magnitudes, the standard K-correction is actually
defined as

Kx(z) = [mx(z)−Mx(z = 0)]− [m(z)−M(z = 0)]

= −2.5 log10[lx(z)/lx(z = 0)]

+ 2.5 log10[lbol(z)/lbol(z = 0)]

=−2.5 log10

[∫
(dLz/dλ)(λz)Sx(λz)dλz

4πd2
L

× 4πd2
ref∫

(dL0/dλ)(λ0)Sx(λ0)dλ0

L0

4πd2
ref

4πd2
L

Lz

]

= 2.5 log10

(
Lz
L0

)
+ 2.5 log10

[∫
F0(λ0)Sx(λ0)dλ0∫
Fz(λz)Sx(λz)dλz

]

= 2.5 log10

[
f (1 + z)
(1 + z)

]

+ 2.5 log10

⎡

⎣
∫
F0(λ0)Sx(λ0)dλ0(

f (1 + z)/(1 + z)2
) ∫

F0(λ0)Sx(λz)dλz

⎤

⎦

= 2.5 log10

[
f (1 + z)
(1 + z)

]

+ 2.5 log10

[
(1 + z)2

f (1 + z)

]

+ 2.5 log10

[ ∫
F0(λ0)Sx(λ0)dλ0∫

F0[λz/(1 + z)]Sx(λz)dλz

]

= 2.5 log10(1 + z)

+ 2.5 log10

[ ∫
F0(λ)Sx(λ)dλ

∫
F0[λ/(1 + z)]Sx(λ)dλ

]

.

(A.2)

In this derivation, we used our new notation for all the
functions and variables involved, including the connection
between wavelengths λz = λ0(1 + z), the spectral distribution
“at the source” F0(λ0) ≡ (dL0/dλ)(λ0), and the spectral
distribution with the source placed at redshift z and observed
from the origin, Fz(λz) ≡ (dLz/dλ)(λz). We also used (21),
(24) in the chain of derivation and renamed in the last line
the wavelengths λz, λ0 simply as λ, to obtain exactly the
standard result of (A.1).

Therefore, the K-corrections computed according to the
standard theory are unchanged in our kinematical conformal
cosmology although, checking the derivation of (A.2) and
comparing it to the same derivation of the standard theory,
we observe that the final two terms originate in a slightly
different way (see, e.g., how the f (1 + z) function cancels out
in our case) and do not have the same meaning as those in
the standard theory [61].

When two different filters are used in the observations,
for example, the high-redshift photometry is observed with
a “y” filter and related to the nearby reference photometry in
the “x” filter, a new Kxy correction is used, defined as [62]

μ(z) = my(z, tobs)−Mx(z = 0, trest)− Kxy(z, trest),

Kxy(z, trest) = 2.5 log10(1 + z)

+ 2.5 log10

{ ∫
F(λ)Sx(λ)dλ

∫
F[λ/(1 + z)]Sy(λ)dλ

}

− 2.5 log10

{ ∫
Z(λ)Sx(λ)dλ

∫
Z(λ)Sy(λ)dλ

}

.

(A.3)

The meaning of the terms and variables is similar to that
of (A.1) and the main difference is the addition of a third
term in the K-correction, which accounts for the differences
in the zero points of the two filters (Z(λ) is an idealized stellar
spectral energy distribution at z = 0 for which U = B = V =
R = I = 0 in the photometric system being used [62]). The
previous expression reduces to the standard K-term for the
case when the two filters are the same and the third term
added in (A.3) is a mere technical correction due to the dif-
ferent zero points used, thus unaffected by our new ap-
proach.

In conclusion, our new approach does not practically
change the computation of K-corrections as done in the stan-
dard theory; therefore, it was correct to use the experimental
values of the distance moduli of the “gold-silver” type Ia SNe
data [48] in our analysis in Section 3.2.
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