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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 104, Number 3, November 1988 

PSEUDOPRIME I-IDEALS IN A CLASS OF f-RINGS 
SUZANNE LARSON 

(Communicated by Louis J. Ratliff, Jr.) 

ABSTRACT. In a commutative f-ring, an 1-ideal I is called pseudoprime if 
ab = 0 implies a E I or b E I, and is called square dominated if for every 
a E I, lal < x2 for some x E A such that x2 E I. Several characterizations 
of pseudoprime 1-ideals are given in the class of commutative semiprime f- 
rings in which minimal prime 1-ideals are square dominated. It is shown that 
the hypothesis imposed on the f-rings, that minimal prime 1-ideals are square 
dominated, cannot be omitted or generalized. 

Introduction. Let X be a topological space and C(X) be the f-ring of all con- 
tinuous real-valued functions on X with coordinatewise operations. The following 
characterizations of pseudoprime i-ideals of C(X) are known. 

(L. Gillman and C. Kohls [4, 4.1]) For an i-ideal I of C(X), the following are 
equivalent: 

(1) I is pseudoprime. 
(2) The prime ideals containing I form a chain. 

(3) s/i is prime. 
In [11], Subramanian asks whether this characterization of pseudoprime i-ideals 

generalizes to semiprime f-rings. The answer in general is no, as can be seen by 
Example 2.7. In this work, we investigate pseudoprime i-ideals in the class of com- 
mutative semiprime f-rings in which minimal prime i-ideals are square dominated. 
In this class of f-rings, we give some alternate characterizations of pseudoprime 
i-ideals, and we show that in normal f-rings conditions (2) and (3) characterize 
pseudoprime i-ideals. We also show that if all prime i-ideals are square dominated, 
a generalization of condition (3) characterizes pseudoprime i-ideals in archimedean 
f-algebras. Finally, we show that the hypothesis imposed on our f-rings, that min- 
imal prime i-ideals be square dominated, cannot be omitted or generalized in any 
way by showing that if any of the characterizations hold in a semiprime f-ring A, 
then all minimal prime i-ideals of A are square dominated. We assume throughout 
that all rings are commutative and semiprime. 

1. Preliminaries. An f-ring is a lattice ordered ring which is a subdirect 
product of totally ordered rings. For general information on f-rings see [2]. Given 
an f-ring A and x E A, we let A+ = {a E A: a > O}, x+ = x V 0, x = (-x) V 0, 
and [xl = x V (-x). 
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A ring ideal I of an f-ring A is an i-ideal if lxI < lyl, y E I implies x E I. Given 
any subset S C A, there is a smallest i-ideal containing S, and we denote this by 
(S). 

Suppose A is an f-ring and I, J are i-ideals of A. We let I: J = {a E A: aJ C I}. 
The i-ideal I is semiprime (prime) if a2 E I (ab E I) implies a E I (a e I or b E I). 
The f-ring A is semiprime (prime) if {O} is a semiprime (prime) I-ideal. We let Vdi 
denote {a E A: a' E I for some n}, the smallest semiprime i-ideal containing I. In 
[5, 3.5], it is shown that: 

(1.1) If I is an i-ideal of a semiprime f-ring A, then nn=1 (In) is semiprime. 
It is well known that all i-ideals containing a given prime i-ideal form a chain. 

The following result is also well known. 
(1.2) A prime i-ideal P of a commutative semiprime f-ring is minimal if and 

only if a E P implies there is a b 0 P such that ab = O. 
A subset M of an f-ring A is called an m-system if whenever a, b E M there 

exists an x E A such that axb E M. If in A, there is an i-ideal I and an m-system 
M such that I n M = 0, then there is a prime i-ideal P such that I C P, and 
PnM = 0. 

We call an ideal I pseudoprime if ab = 0 implies a E I or b E I. In a semiprime 
f-ring A, a pseudoprime i-ideal contains a prime i-ideal as shown in [11, 2.1]. Also, 
in a commutative f-ring a pseudoprime and semiprime i-ideal is necessarily a prime 
i-ideal as shown in [8, 4.2] and [11, 2.5]. 

An ideal I of a commutative f-ring A with identity element is a z-ideal if when- 
ever a, b E A, are contained in the same set of maximal ideals and a E I then b E I. 
In [10, 2.7], G. Mason shows 

(1.3) In a commutative f-ring A, a z-ideal I is prime if and only if for all a E A, 
either a+ E I or a- E I. 

Henriksen, in [5] calls an i-ideal I of an f-ring A square dominated if I = {a E 

A: lal < x2 for some x E A such that x2 E I}. Every prime square dominated 
i-ideal P satisfies P = (p2). 

An f-ring (and more generally a Riesz space) A is called normal if A = {a+ }d + 
{a- }d for all a e A, or equivalently if a A b = 0 implies A = {a}d + {b}d. Several 
conditions equivalent to normality for an f-ring can be found in [8, 6.3], and for a 
Riesz space in [7, Theorem 9]. 

Given an f-ring A and an element x > 0 in A, the sequence {ff}n?'1 is said to 
converge x-uniformly to the element f E A if for every E > 0, there exists a positive 
integer NE such that If - fn I < Ex for all n > N,. An x-uniform Cauchy sequence 
is defined similarly. If for every x > 0, every x-uniform Cauchy sequence has a 
unique limit, then A is said to be uniformly complete. We say A is archimedean if 
a, b E A+ with na < b for all n implies a = 0. If A is an archimedean f-algebra 
with identity element, it is well known that A is commutative and semiprime. In 
[1, 4.1(d)], it is shown that: 

(1.4) For any archimedean f-algebra A with identity element, there is an em- 
bedding e of A into a uniformly complete f-algebra A* (the uniform completion of 
A). 

2. In this section we give several characterizations of pseudoprime i-ideals in 
the class of commutative semiprime f-rings with minimal prime i-ideals square 
dominated. This class contains, of course, all commutative semiprime square root 
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closed f-rings. First we give a lemma that will be used later and that also gives a 
characterization of commutative semiprime f-rings in which minimal prime i-ideals 
are square dominated. 

LEMMA 2. 1. Let A be a commutative semiprime f-ring. 
(1) A semiprime i-ideal I is square dominated if every prime i-ideal minimal 

with respect to containing I is square dominated. 
(2) Every minimal prime i-ideal of A is square dominated if and only if for every 

a E A+, the i-ideal {a}d = {b E A: ab = O} is square dominated. 

PROOF. (1) Let b E I+. Let M = -{C2... c E : n E N; b < c?}. Then M is an m- 
system. Suppose that M n I = 0. Then there is a prime i-ideal P such that I C P 
and Mfn P = 0. Let P1 C P be a prime i-ideal minimal with respect to containing 
I. By hypothesis, P1 is square dominated, so there is a p E A such that b < p2 
and p2 E P1. But then p2 E M n P, contrary to assumption. So M n I $ 0. Let 
C2... c2 EMnI,where b < c2 for eachi. Then b < C12 A * AC2 = (IcilA ..A Cn1)2 

Also, 0 < (|c1l A A Cn1)2n < C2 ... C2. This implies (|ciI A ... A |cn1)2n E I, and 

because I is semiprime, (|ciI A * A Cn 1)2 E I. 
(2) > Suppose that every minimal prime i-ideal is square dominated. Let a E 

A+. Suppose P is a prime i-ideal minimal with respect to containing {a}d. Then 

M = {b: b E A\P} U {an: n E N} U {ban: b E A\P, n E N} is an m-system such 

that M nl {a}d 0. So there is a prime i-ideal P1 satisfying {a}d c P1 C P. But 

our choice of P implies P1 = P and a ? P. 

Now if P2 is a minimal prime i-ideal contained in P, a ? P2 implies {a}d C P2. 

Hence P2 = P, and P is in fact a minimal prime i-ideal which is square dominated. 

So every prime i-ideal minimal with respect to containing {a}d is square dominated, 

and part (1) implies {a}d is square dominated. 

4= Let P be a minimal prime i-ideal, and f E P. By 1.2, there is a g ? P such 

that fg = 0. By hypothesis, {g}d is square dominated. So there is fi E {g}d such 

that f < f?2 and f2 E P. O 
Our first characterization of pseudoprime 1-ideals follows. 

THEOREM 2.2. Let A be a commutative, semiprime f-ring with identity ele- 
ment and in which every minimal prime i-ideal is square dominated. The following 
are equivalent for an i-ideal I: 

(1) I is pseudoprime. 
(2) nnf= 1(In) is prime. 
(3) (I4I) is pseudoprime. 
(4) I: VY is pseudoprime and I: VY C VY, or, V7 C I: VY and VY is prime. 

PROOF. (1) #, (2). Let P be a minimal prime i-ideal contained in I. Since P is 

square dominated, P = flnL1 (Pn) C floL1 (In). So nfl ' (In) is pseudoprime. By 

1.1, it is also semiprime and therefore prime. 

(2) > (3). Trivial. 

(3) = (4). By (3), all i-ideals containing (IVY) form a chain. So I: VFI C 

or VF C I : vI. 

(4) => (1). Either hypothesis implies that there is a minimal prime i-ideal P 

contained in v/7 and also in I: VI. Then since P is square dominated, P = (P2) c 

(I : _f7 _~F cI 
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Recall that in a commutative ring, an ideal I is primary if ab E I, a ? I implies 
bn E I for some n. It is well known that VI is prime for every primary i-ideal I. 
Thus in C(X), every primary i-ideal is pseudoprime. This is not true in general (as 
can be seen by Example 2.7) and the following corollary gives a condition under 
which primary i-ideals are pseudoprime. 

COROLLARY 2.3. Let A be a commutative semiprime f-ring with identity ele- 
ment in which every minimal prime i-ideal is square dominated. A primary i-ideal 
I is pseudoprime if and only if I: Vf is pseudoprime. 

PROOF. Assume that I: vI is pseudoprime. If I = VT, then I is prime, so we 
may assume that I $ VT. Let a E VI\I. We will show I: V C x/I. Suppose 
b E I: VT. Then ab E I, and since a 0 I, we must have b E VT. So I: VT c VT. 
It follows from the previous theorem that I is pseudoprime. O 

It is well known that in C(X), an 1-ideal I is pseudoprime if and only if V7 is 
prime [4, 4.1]. In [11], Subramanian asks whether this characterization of pseu- 
doprime l-ideals holds in semiprime f-rings. The answer in general is no (even in 
archimedean f-rings), as witnessed by Example 2.7. However, our next goal is to 
show that the characterization of pseudoprime l-ideals as those l-ideals I for which 
vd is prime also holds in a class of normal f-rings. 

First, we will give two characterizations of normal f-rings, one of which is the 
f-ring analogue to a characterization given by Huijsmans in [7]. It should also be 
noted that the f-ring C(X) is normal if and only if the topological space X is an 
F-space and that the characterizations of normal f-rings given next are similar to 
two characterizations of F-spaces given in [3, 14.25]. If P is any prime ideal, the 
P component of 0 is Op = {a E A: ]b 0 P such that ab = O}. 

THEOREM 2.4. Let A be a commutative semiprime f-ring with identity ele- 
ment. The following are equivalent. 

(1) A is normal. 
(2) Every ideal Op, where P is a (proper) prime l-ideal, is prime. 
(3) Every ideal OM, where M is a maximal l-ideal, is prime. 

PROOF. (1) 4 (2). Since Op is a z-ideal, 1.3 implies that it will suffice to 
show that for all a E A, either a+ E Op or a- E Op. Suppose a E A. If 
a+ 0 Op and a- 0 Op, then {a+}d C P and {a-}d C P. But this would imply 
A = {a+}d + {a- }d C P, contrary to hypothesis. 

(2) 4 (3). Obvious. 
(3) > (1). Suppose A is not normal. Then there is an element a E A such 

that {a+}d + {a-}d 5$ A. Let M be a maximal l-ideal containing the l-ideal 
{a+}d + {a-}d. Then OM is a z-ideal such that a+ 0 OM and a- 0 OM. By 1.3, 
OM is not prime, contrary to our hypothesis. 0 

This characterization allows us to make the following observation. 

LEMMA 2.5. If A is a commutative, semiprime normal f-ring with identity 
element then every minimal prime i-ideal of A is square dominated. 

PROOF. Let P be a minimal prime l-ideal of A. Since the 1-ideals containing 
P form a chain, there is a unique maximal l-ideal M containing P. Now OM C P 
and, by the previous theorem OM is prime. Therefore, OM = P. We will show OM 



PSEUDOPRIME I-IDEALS IN A CLASS OF f-RINGS 689 

is square dominated. Let a E O+ . Then there exists a b > 0 such that b 0 M and 
ab = 0. Then aAb = 0 and {a}d + {b}d = A. Thus, there exists x E {a}d, yE {b}d 
such that x + y = a V 1. It follows from y E {b}d and b 0 M, that y E OM. We 
have y E OM, and a < y2 o 

In [9, 3.6] it is shown that if I is an i-ideal of a commutative semiprime f-ring 
with identity element such that I = I: VI, then I is an intersection of primary 
i-ideals. We will use this fact in the proof of the next theorem. 

THEOREM 2.6. Let A be a commutative semiprime normal f-ring with identity 
element. The following are equivalent for an i-ideal I. 

(1) I is pseudoprime. 
(2) The prime l-ideals containing I form a chain. 

(3) VY is prime. 

PROOF. We need only show (3) =* (1). Suppose that vI is prime. Let P be 
a minimal prime 1-ideal contained in VI and J = P n I. We will show that J is 
pseudoprime. Knowing that \X is square dominated (Lemma 2.5), it is not hard to 

show that J: VY = (J: VY): v'Y77Y. Let M be the maximal l-ideal containing 
P. For any x E M\J: V1, there is a primary i-ideal Q. containing J: VY, but not 
x by the result mentioned above [9, 3.61. The l-ideals containing P form a chain, 
so P = Va C C VQ C M. Knowing Q. C M, it is easy to show that 
OM C Q. for all x. Now J: VY = M n (n Q), so OMC J: vY. By Theorem 
2.4, OM is a prime i-ideal. Thus J: VXY is a pseudoprime i-ideal. Also, since the 
i-ideals containing OM form a chain, we have J: VY C VY or VY Ci J: VY. In 
either case, Theorem 2.1 now implies that J is pseudoprime. 0 

In particular, this result implies that in an f-ring satisfying the hypotheses of 
the theorem, every primary i-ideal is pseudoprime. 

The next example shows that the hypothesis of normality cannot be left out of 
this theorem. It also shows that the characterization of pseudoprime l-ideals as 
being those I for which V7 is prime does not hold in archimedean f-algebras. In 
fact, primary i-ideals in archimedean f-algebras are not necessarily pseudoprime. 

EXAMPLE 2.7. Let B = {f E C[O, 1]: 3Xf E (0, 1) such that f(x) = EL1 aixri, 
where ai E R, ri E Q for all x E [0,xf]}. Let P = {f E B: f(0) = 0}. Then P 
is a prime i-ideal of B. Let A = {(f,g) E B x B: f - g E P}. Then as shown in 
[6], A is a semiprime archimedean f-algebra with identity element. It is not hard 
to show that every prime i-ideal of A is square dominated. 

Let I - {(f,g) E A: f(x),g(x) < nx2 for some n, Vx E [O,xf A Xg]}. Then I 
is an i-ideal of A. We will show that I is primary. Suppose (f, g) (h, k) E I, and 
(f, g) 0 I. For every n, either f(x) $ nx2 or g(x) $ nx2 on [0, a) for any a E (0, 1). 

Suppose f(x) $ nx2. Then h(O) = 0 and h E P. But h - k E P, so k E P. This 
implies there must exist some N such that (h, k)N E I. Hence I is primary, and 
V7 is prime. Yet I is not pseudoprime since (x, 0)(0, x) = (0,0) while (x, 0) 0 I 
and (0, x) ? I. 

To see directly that A is not normal, consider the element (x, -x): {(x, -X)+}d+ 

{(XI-X)}d = {(X0)}d + {(O,x)}d = {(f,g): f,g EP}0A. 0 
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We have found some generalizations of the condition that vd be prime that char- 
acterize pseudoprime i-ideals in archimedean f-algebras in which minimal prime 1- 
ideals are square dominated. However, each of these conditions are difficult to verify 
for most i-ideals. If we strengthen our hypotheses to insist that all prime i-ideals 
of the f-algebra are square dominated, we can give the following generalization to 
the condition which is a characterization of pseudoprime i-ideals. 

THEOREM 2.8. Let A be an archimedean f-algebra with identity element in 
which prime i-ideals are square dominated. If I is an i-ideal then I is pseudoprime 
if and only if when {fii}j? .. ., {fni},j l1 are increasing positive Cauchy sequences 
such that f1jf2j ... fn = 0 for all j, there is a sequence {fij3}? 1, for which there 
exists a positive integer N such that fj1 E I for all j. 

PROOF. Let A* denote the uniform completion of A, and e: A -* A* be the 
embedding. 

= Suppose that whenever {fij}j?? l {fni},j? 1 are increasing positive Cauchy 
sequences such that fljf2. fnj = 0 for all j, there is a sequence {fij}J?? 1, for 
which there exists a positive integer N such that ffN E I for all j. In A*, let 

M = {Xi ... xm: for each xi, Vj3aij E A such that 0 < e(aij) < x: and aj 0 I}. 
Then M is an m-system. First we will show that M n {O} = 0. Suppose that for 
i = 1,2,... ,m, xi E A*, such that for every j E N, there is an aij E A such that 
O < e(aij) < xi and ai yI. Define 

fij = k (aik A 1) for i = 1, 2, ..., m, j = 1, 2 .... 

Then 0 < (1/2i)e(aij A 1) < e(fij) < xi, for i = 1,2,...,m, j = 1,2,..., and 

{uii f;} 1 is an increasing positive Cauchy sequence for i = 1, 2,. .. , m. Now for 
each sequence {fiij?? 1, there cannot be a natural number N such that f N E I for 
all j, because the existence of such an N would imply that (aij A 1)N, and hence aN, 

is in I for all j. So by hypothesis, fljf2j ... fmi # 0 for some j. This, and the fact 
that 0 < e(f1j)e(f2j) * e(fmj) < X1X2 ... Xm implies XlX2 . $ Xn 0 0. Therefore, 
Mno {} = 0. 

Thus there is a prime 1-ideal in A* containing {0} and disjoint from M. Let P 
be a minimal prime 1-ideal with this property. We will show P n e(A) C e(I). Let 
f E A+ such that e(f) EP ne(A). 

By 1.2, there is a g 0 P such that e(f)g = 0. In A, {g}d = {x E A: xg = 0} is 
a semiprime 1-ideal and Lemma 2.1(1) implies it is square dominated. So f < f2 
for some fi E A+ with f2 E {g}d. Since {g}d is semiprime, fi E {g}d. As before, 
fl < f22 for some f2 E A+ with f22 E {g}Jd. Again f2 E {g}d. So f < fi2 < f24. 
Continuing this for i = 3,4,..., we find f < f?2 < f24 < . < fi2 . Define 

3. 

hj=E (fiA1) forj=1,2, .... 
i=l 

Then {hj}m=1 is an increasing Cauchy sequence in A and {e(hj)}1?0 converges to 
an element h E A*. Now hg = 0 and g 0 P, implying h E P. 
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We assert that there exists some positive integer M such that 

(1/2M)(fM A 1)2M E I 

For if not, 0 < (1/2i)(fi A 1)2' (fi A 1)i would imply (fi A l)i2 = ((fi A i)i)i I 
for all i 5 3. We would then have 

0 < (1/2i2 )(fi A 1)i < hi and ((1/2i2)(fi A 1)i)i 0 I for all i. 

But this would imply h E M, contrary to the fact that Mfn P = 0. So there exists 
some positive integer M such that (1/2M)(fM A 1)2m E I. 

We now know (1/2M)(f A 1) < (1/2M)(fM A 1)2M implies (1/2M)(f A 1) E I. 
Therefore (f A 1) E I and f = (f A l)(f V 1) E I. We havePfne(A) C e(I) and 
P n e(A) is prime in e(A). Therefore e(I) is pseudoprime in A*. This implies I is 
pseudoprime in A. 

= Suppose that I is pseudoprime and that {fij l, * .... {f I}'"1 are increasing 
positive Cauchy sequences in A with f1jf2j fnj = 0 for all j. Each of the 
sequences {e(fjj)}j?? 1 converges to some element fi in A*. Let P be a prime 1- 
ideal contained in I. Then M = {e(a): a E A, a 0 P} is an m-system in A*. 
So there is a prime i-ideal P* of A* such that P C P* and P* n M = 0. Now 
e(fi)e(f2) ... e(fn) = 0 and so e(fm) E P* for some m. Thus e(fmj) < e(fm) 
implies that e(fmj) EP* n e(A) = e(P) for all j. 0 

It is not difficult to show directly that in a uniformly complete f-ring, the prop- 
erty characterizing a pseudoprime i-ideal I given in this theorem is equivalent to 
the property that v'7 is prime. 

Finally we show that the hypothesis that minimal prime i-ideals be square dom- 
inated cannot be dropped or generalized in any way in any of our theorems char- 
acterizing pseudoprime i-ideals. 

LEMMA 2.9. Let A be a semiprime f -ring. If in A, a pseudoprime i-ideal I i8 
characterized by being an i-ideal that satisfies any one of the following conditions, 
then every minimal prime i-ideal of A is square dominated. 

(1) nn=l (In) is prime. 
(2) (Iv.7) is pseudoprime. 
(3) I: vI is pseudoprime and I: vI C vi, or, VI C I: Vi and V'I is prime. 
(4) The prime i-ideals containing I form a chain. 

(5) V7 is prime. 
Also, if A is an archimedean f-ring, and if in A, a pseudoprime i-ideal I is 

characterized by being an i-ideal that satisfies the following condition, then every 
minimal prime i-ideal of A is square dominated. 

(6) Whenever {fi?}"?? l {fnj} 1'0 are increasing positive Cauchy sequences 
such that fljf2j - fnj = 0 for all j, there is a sequence {fijl? 1, for which there 
exists a positive integer N such that fj1 E I for all j. 

PROOF. Let P be a minimal prime i-ideal. Note that in each case it will suffice 
to show that (p2) is pseudoprime since (p2) C P and P being a minimal prime 
i-ideal will then imply (p2) = p. 

If characterization (1) holds, then fln?1 (Pn) is a prime i-ideal contained in (p2). 
So (p2) is pseudoprime. 
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Characterization (2) implies (pIP) = (p2) is pseudoprime. 
Suppose characterization (3) holds. Note that (p2) Vp2) = (p2) P D 

V/(p2 = P. So (p2) x/V7P25 is pseudoprime. Then characterization (3) implies 
(p2) is pseudoprime. 

Suppose characterization (4) holds. Every prime i-ideal containing (p2) also 
contains P. So the prime i-ideals containing (p2) form a chain. Characterization 
(4) implies (p2) is pseudoprime. 

Suppose characterization (5) holds. Then /(P2) = P is prime, implying that 
(p2) is pseudoprime. 

Finally, suppose that A is an archimedean f-algebra and that characterization 
(6) holds. Suppose that {fiw}=1, ..., {fnj};??=1 are increasing positive Cauchy 
sequences such that fljf2j .. J = 0 for all j. Then for some m, fmj E P for 
all j. But then f2 E (p2) for all j. So characterization (6) implies that (p2) iS 

pseudoprime. O 
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