Pseudoprime L-Ideals in a Class of F-Rings

Suzanne Larson

Loyola Marymount University, slarson@lmu.edu

Recommended Citation
PSEUDOPRIME \(l \)-IDEALS IN A CLASS OF \(f \)-RINGS

Suzanne Larson

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. In a commutative \(f \)-ring, an \(l \)-ideal \(I \) is called pseudoprime if \(ab = 0 \) implies \(a \in I \) or \(b \in I \), and is called square dominated if for every \(a \in I \), \(|a| \leq x^2 \) for some \(x \in A \) such that \(x^2 \in I \). Several characterizations of pseudoprime \(l \)-ideals are given in the class of commutative semiprime \(f \)-rings in which minimal prime \(l \)-ideals are square dominated. It is shown that the hypothesis imposed on the \(f \)-rings, that minimal prime \(l \)-ideals are square dominated, cannot be omitted or generalized.

Introduction. Let \(X \) be a topological space and \(C(X) \) be the \(f \)-ring of all continuous real-valued functions on \(X \) with coordinatewise operations. The following characterizations of pseudoprime \(l \)-ideals of \(C(X) \) are known.

(L. Gillman and C. Kohls [4, 4.1]) For an \(l \)-ideal \(I \) of \(C(X) \), the following are equivalent:

1. \(I \) is pseudoprime.
2. The prime ideals containing \(I \) form a chain.
3. \(\sqrt{I} \) is prime.

In [11], Subramanian asks whether this characterization of pseudoprime \(l \)-ideals generalizes to semiprime \(f \)-rings. The answer in general is no, as can be seen by Example 2.7. In this work, we investigate pseudoprime \(l \)-ideals in the class of commutative semiprime \(f \)-rings in which minimal prime \(l \)-ideals are square dominated. In this class of \(f \)-rings, we give some alternate characterizations of pseudoprime \(l \)-ideals, and we show that in normal \(f \)-rings conditions (2) and (3) characterize pseudoprime \(l \)-ideals. We also show that if all prime \(l \)-ideals are square dominated, a generalization of condition (3) characterizes pseudoprime \(l \)-ideals in archimedean \(f \)-algebras. Finally, we show that the hypothesis imposed on our \(f \)-rings, that minimal prime \(l \)-ideals be square dominated, cannot be omitted or generalized in any way by showing that if any of the characterizations hold in a semiprime \(f \)-ring \(A \), then all minimal prime \(l \)-ideals of \(A \) are square dominated. We assume throughout that all rings are commutative and semiprime.

1. Preliminaries. An \(f \)-ring is a lattice ordered ring which is a subdirect product of totally ordered rings. For general information on \(f \)-rings see [2]. Given an \(f \)-ring \(A \) and \(x \in A \), we let \(A^+ = \{ a \in A : a \geq 0 \} \), \(x^+ = x \lor 0 \), \(x^- = (\neg x) \lor 0 \), and \(|x| = x \lor (\neg x) \).
A ring ideal \(I \) of an \(f \)-ring \(A \) is an \(l \)-ideal if \(|x| \leq |y|, y \in I \) implies \(x \in I \). Given any subset \(S \subset A \), there is a smallest \(l \)-ideal containing \(S \), and we denote this by \((S)\).

Suppose \(A \) is an \(f \)-ring and \(I, J \) are \(l \)-ideals of \(A \). We let \(I: J = \{a \in A: aJ \subseteq I\} \).

The \(l \)-ideal \(I \) is semiprime (prime) if \(a^2 \in I \) \((ab \in I)\) implies \(a \in I \) \((a \in I \text{ or } b \in I)\).

The \(f \)-ring \(A \) is semiprime (prime) if \(\{0\} \) is a semiprime (prime) \(l \)-ideal. We let \(\sqrt{I} \) denote \(\{a \in A: a^n \in I \text{ for some } n\} \), the smallest semiprime \(l \)-ideal containing \(I \).

It is well known that all \(l \)-ideals containing a given prime \(l \)-ideal form a chain. The following result is also well known.

(1.1) If \(I \) is an \(l \)-ideal of a semiprime \(f \)-ring \(A \), then \(\cap_{n=1}^{\infty} (I^n) \) is semiprime.

(1.2) A prime \(l \)-ideal \(P \) of a commutative semiprime \(f \)-ring is minimal if and only if \(a \in P \) implies there is a \(b \notin P \) such that \(ab = 0 \).

A subset \(M \) of an \(f \)-ring \(A \) is called an \(m \)-system if whenever \(a, b \in M \) there exists an \(x \in A \) such that \(axb \in M \). If \(M \) is a \(l \)-system, then there is a prime \(l \)-ideal \(P \) such that \(I \subseteq P \), and \(P \cap M = \emptyset \).

We call an ideal \(I \) pseudoprime if \(ab = 0 \) implies \(a \in I \) or \(b \in I \). In a semiprime \(f \)-ring \(A \), a pseudoprime \(l \)-ideal contains a prime \(l \)-ideal as shown in [11, 2.1]. Also, in a commutative \(f \)-ring a pseudoprime and semiprime \(l \)-ideal is necessarily a prime \(l \)-ideal as shown in [9, 1.3] and [11, 2.5].

(1.3) In a commutative \(f \)-ring \(A \), a \(z \)-ideal \(I \) is prime if and only if for all \(a \in A \), either \(a^+ \in I \) or \(a^- \in I \).

Henriksen, in [5] calls an \(l \)-ideal \(I \) of an \(f \)-ring \(A \) square dominated if \(I = \{a \in A: |a| \leq \alpha^2 \text{ for some } x \in A \text{ such that } x^2 \in I\} \). Every prime square dominated \(l \)-ideal \(P \) satisfies \(P = (P^2) \).

An \(f \)-ring (and more generally a Riesz space) \(A \) is called normal if \(A = \{a^+, a^+\} \) for all \(a \in A \), or equivalently if \(a \wedge b = 0 \) implies \(A = \{a^+, b^-\} \). Several conditions equivalent to normality for an \(f \)-ring can be found in [8, 6.3], and for a Riesz space in [7, Theorem 9].

Given an \(f \)-ring \(A \) and an element \(x > 0 \) in \(A \), the sequence \(\{f_n\}_{n=1}^{\infty} \) is said to converge \(x \)-uniformly to the element \(f \in A \) if for every \(\varepsilon > 0 \), there exists a positive integer \(N_\varepsilon \) such that \(|f - f_n| < \varepsilon x \) for all \(n \geq N_\varepsilon \). An \(x \)-uniform Cauchy sequence is defined similarly. If for every \(x \geq 0 \), every \(x \)-uniform Cauchy sequence has a unique limit, then \(A \) is said to be uniformly complete. We say \(A \) is archimedean if \(a, b \in A^+ \) with \(na \leq b \) for all \(n \) implies \(a = 0 \). If \(A \) is an archimedean \(f \)-algebra with identity element, it is well known that \(A \) is commutative and semiprime. In [1, 4.1(d)], it is shown that:

(1.4) For any archimedean \(f \)-algebra \(A \) with identity element, there is an embedding \(e \) of \(A \) into a uniformly complete \(f \)-algebra \(A^* \) (the uniform completion of \(A \)).

2. In this section we give several characterizations of pseudoprime \(l \)-ideals in the class of commutative semiprime \(f \)-rings with minimal prime \(l \)-ideals square dominated. This class contains, of course, all commutative semiprime square root
closed f-rings. First we give a lemma that will be used later and that also gives a characterization of commutative semiprime f-rings in which minimal prime l-ideals are square dominated.

LEMMA 2.1. Let A be a commutative semiprime f-ring.

1. A semiprime l-ideal I is square dominated if every prime l-ideal minimal with respect to containing I is square dominated.

2. Every minimal prime l-ideal of A is square dominated if and only if for every a ∈ A+, the l-ideal \(\{a\}^d = \{b ∈ A : ab = 0\} \) is square dominated.

PROOF. (1) Let \(b ∈ I^+ \). Let \(M = \{c_1^n : c_1 \neq 0\} \). Then \(M \) is an m-system. Suppose \(M \cap I = \emptyset \). Then there is a prime l-ideal P such that \(I ⊆ P \) and \(M ∩ P = \emptyset \). Let \(P_1 ⊆ P \) be a prime l-ideal minimal with respect to containing I. By hypothesis, \(P_1 \) is square dominated, so there is a \(p \in A \) such that \(b ≤ p^2 \) and \(p^2 P_1 \). But then \(p^2 \notin M \cap P \), contrary to assumption. So \(M ∩ P = \emptyset \). Let \(c_1^n : c_1^n \in M ∩ I, \) \(b ≤ c_1^n \) for each i. Then \(b ≤ c_1^n ∧ ∨ c_2^n = (|c_1^n| ∧ ∨ |c_2^n|)^2 \). Also, \(0 ≤ (|c_1^n| ∧ ∨ |c_2^n|)^2 ≤ c_1^n ∧ c_2^n \). This implies \((|c_1^n| ∧ ∨ |c_2^n|)^2 ∈ I \), and because I is semiprime, \((|c_1^n| ∧ ∨ |c_2^n|)^2 ∈ I \).

(2) Suppose that every minimal prime l-ideal is square dominated. Let \(a ∈ A^+ \). Suppose \(P \) is a prime l-ideal minimal with respect to containing \(\{a\}^d \). Then \(M = \{b : b ∈ A \setminus P\} \cup \{a^n : n ∈ N\} \cup \{ab^n : b ∈ A \setminus P, n ∈ N\} \) is an m-system such that \(M ∩ \{a\}^d = \emptyset \). So there is a prime l-ideal \(P_1 \) satisfying \(\{a\}^d P_1 P_1 \). By our choice of \(P_1 \) implies \(P_1 = P \) and \(a P_1 \).

Now if \(P_2 \) is a minimal prime l-ideal contained in \(P, a P_2 \) implies \(\{a\}^d P_2 \). Hence \(P_2 = P \), and \(P \) is in fact a minimal prime l-ideal which is square dominated. So every prime l-ideal minimal with respect to containing \(\{a\}^d \) is square dominated, and part (1) implies \(\{a\}^d \) is square dominated.

Our first characterization of pseudoprime l-ideals follows.

THEOREM 2.2. Let A be a commutative, semiprime f-ring with identity element and in which every minimal prime l-ideal is square dominated. The following are equivalent for an l-ideal I:

1. I is pseudoprime.
2. \(\bigcap_{n=1}^{∞} (I^n) \) is prime.
3. \((I: \sqrt{I}) \) is pseudoprime.
4. \(I: \sqrt{I} \) is pseudoprime and \(I: \sqrt{I} \) is prime.

PROOF. (1) ⇒ (2). Let P be a minimal prime l-ideal contained in I. Since P is square dominated, \(P = \bigcap_{n=1}^{∞} (P^n) \subseteq \bigcap_{n=1}^{∞} (I^n) \). So \(\bigcap_{n=1}^{∞} (I^n) \) is pseudoprime. By 1.1, it is also semiprime and therefore prime.

(2) ⇒ (3). Trivial.

(3) ⇒ (4). By (3), all l-ideals containing \((I: \sqrt{I}) \) form a chain. So \(I : \sqrt{I} ⊆ \sqrt{I} \) or \(\sqrt{I} ⊆ I : \sqrt{I} \).

(4) ⇒ (1). Either hypothesis implies that there is a minimal prime l-ideal \(P \) contained in \(\sqrt{I} \) and also in \(I : \sqrt{I} \). Then since \(P \) is square dominated, \(P = \langle P^2 \rangle \subseteq \langle I : \sqrt{I} \rangle \). □
Recall that in a commutative ring, an ideal I is primary if $ab \in I$, $a \notin I$ implies $b^n \in I$ for some n. It is well known that \sqrt{I} is prime for every primary l-ideal I. Thus in $C(X)$, every primary l-ideal is pseudoprime. This is not true in general (as can be seen by Example 2.7) and the following corollary gives a condition under which primary l-ideals are pseudoprime.

Corollary 2.2. Let A be a commutative semiprime f-ring with identity element in which every minimal prime l-ideal is square dominated. A primary l-ideal I is pseudoprime if and only if $I : \sqrt{I}$ is pseudoprime.

Proof. Assume that $I : \sqrt{I}$ is pseudoprime. If $I = \sqrt{I}$, then I is prime, so we may assume that $I \neq \sqrt{I}$. Let $a \in \sqrt{I} \setminus I$. We will show $I : \sqrt{I} \subseteq \sqrt{I}$. Suppose $b \in I : \sqrt{I}$. Then $ab \in I$, and since $a \notin I$, we must have $b \in \sqrt{I}$. So $I : \sqrt{I} \subseteq \sqrt{I}$. It follows from the previous theorem that I is pseudoprime. □

It is well known that in $C(X)$, an l-ideal I is pseudoprime if and only if \sqrt{I} is prime [4, 4.1]. In [11], Subramanian asks whether this characterization of pseudoprime l-ideals holds in semiprime f-rings. The answer in general is no (even in archimedean f-rings), as witnessed by Example 2.7. However, our next goal is to show that the characterization of pseudoprime l-ideals as those l-ideals I for which \sqrt{I} is prime also holds in a class of normal f-rings.

First, we will give two characterizations of normal f-rings, one of which is the f-ring analogue to a characterization given by Huizingmans in [7]. It should also be noted that the f-ring $C(X)$ is normal if and only if the topological space X is an F-space and that the characterizations of normal f-rings given next are similar to two characterizations of F-spaces given in [3, 14.25]. If P is any prime ideal, the P component of 0 is $O_P = \{a \in A : \exists b \notin P \text{ such that } ab = 0\}$.

Theorem 2.4. Let A be a commutative semiprime f-ring with identity element. The following are equivalent.

1. A is normal.
2. Every ideal O_P, where P is a (proper) prime l-ideal, is prime.
3. Every ideal O_M, where M is a maximal l-ideal, is prime.

Proof. (1) \Rightarrow (2). Since O_P is a z-ideal, 1.3 implies that it will suffice to show that for all $a \in A$, either $a^+ \in O_P$ or $a^- \in O_P$. Suppose $a \in A$. If $a^+ \notin O_P$ and $a^- \notin O_P$, then $\{a^+\}^d \subseteq P$ and $\{a^-\}^d \subseteq P$. But this would imply $A = \{a^+\}^d + \{a^-\}^d \subseteq P$, contrary to hypothesis.

(2) \Rightarrow (3). Obvious.

(3) \Rightarrow (1). Suppose A is not normal. Then there is an element $a \in A$ such that $\{a^+\}^d + \{a^-\}^d \neq A$. Let M be a maximal l-ideal containing the l-ideal $\{a^+\}^d + \{a^-\}^d$. Then O_M is a z-ideal such that $a^+ \notin O_M$ and $a^- \notin O_M$. By 1.3, O_M is not prime, contrary to our hypothesis. □

This characterization allows us to make the following observation.

Lemma 2.5. If A is a commutative, semiprime normal f-ring with identity element then every minimal prime l-ideal of A is square dominated.

Proof. Let P be a minimal prime l-ideal of A. Since the l-ideals containing P form a chain, there is a unique maximal l-ideal M containing P. Now $O_M \subseteq P$ and, by the previous theorem O_M is prime. Therefore, $O_M = P$. We will show O_M
is square dominated. Let \(a \in O^+_M \). Then there exists a \(b > 0 \) such that \(b \notin M \) and \(ab = 0 \). Then \(a \land b = 0 \) and \(\{a\}^d + \{b\}^d = A \). Thus, there exists \(x \in \{a\}^d, y \in \{b\}^d \) such that \(x + y = a \lor 1 \). It follows from \(y \in \{b\}^d \) and \(b \notin M \), that \(y \in O_M \). We have \(y \in O_M \), and \(a < \frac{y}{2} \).

In [9, 3.6] it is shown that if \(I \) is an \(l \)-ideal of a commutative semiprime \(f \)-ring with identity element such that \(I = I : \sqrt{I} \), then \(I \) is an intersection of primary \(l \)-ideals. We will use this fact in the proof of the next theorem.

Theorem 2.6. Let \(A \) be a commutative semiprime normal \(f \)-ring with identity element. The following are equivalent for an \(l \)-ideal \(I \).

1. \(I \) is pseudoprime.
2. The prime \(l \)-ideals containing \(I \) form a chain.
3. \(\sqrt{I} \) is prime.

Proof. We need only show (3) \(\Rightarrow \) (1). Suppose that \(\sqrt{I} \) is prime. Let \(P \) be a minimal prime \(l \)-ideal contained in \(\sqrt{I} \) and \(J = P \cap I \). We will show that \(J \) is pseudoprime. Knowing that \(\sqrt{J} \) is square dominated (Lemma 2.5), it is not hard to show that \(J : \sqrt{J} = (J : \sqrt{J}) : \sqrt{J} \). Let \(M \) be the maximal \(l \)-ideal containing \(P \). For any \(x \in M \setminus J : \sqrt{J} \), there is a primary \(l \)-ideal \(Q \) containing \(J : \sqrt{J} \), but not \(x \) by the result mentioned above [9, 3.6]. The \(l \)-ideals containing \(P \) form a chain, so \(P = \sqrt{J} \subseteq J : \sqrt{J} \subseteq Q_x \subseteq M \). Knowing \(Q_x \subseteq M \), it is easy to show that \(O_M \subseteq Q_x \) for all \(x \). Now \(J : \sqrt{J} = M \cap (\bigcup Q_x) \), so \(O_M \subseteq J : \sqrt{J} \). By Theorem 2.4, \(O_M \) is a prime \(l \)-ideal. Thus \(J : \sqrt{J} \) is a pseudoprime \(l \)-ideal. Also, since the \(l \)-ideals containing \(O_M \) form a chain, we have \(J : \sqrt{J} \subseteq \sqrt{J} \) or \(\sqrt{J} \subseteq J : \sqrt{J} \). In either case, Theorem 2.1 now implies that \(J \) is pseudoprime.

In particular, this result implies that in an \(f \)-ring satisfying the hypotheses of the theorem, every primary \(l \)-ideal is pseudoprime.

The next example shows that the hypothesis of normality cannot be left out of this theorem. It also shows that the characterization of pseudoprime \(l \)-ideals as being those \(I \) for which \(\sqrt{I} \) is prime does not hold in archimedean \(f \)-algebras. In fact, primary \(l \)-ideals in archimedean \(f \)-algebras are not necessarily pseudoprime.

Example 2.7. Let \(B = \{ f \in C[0,1] : \exists x_f \in (0,1) \text{ such that } f(x) = \sum_{i=1}^{n} a_i x_i^{r_i}, \text{ where } a_i \in \mathbb{R}, r_i \in \mathbb{Q} \text{ for all } x \in [0,x_f] \} \). Let \(P = \{ f \in B : f(0) = 0 \} \). Then \(P \) is a prime \(l \)-ideal of \(B \). Let \(A = \{ (f,g) \in B \times B : f - g \in P \} \). Then as shown in [6], \(A \) is a semifinite archimedean \(f \)-algebra with identity element. It is not hard to show that every prime \(l \)-ideal of \(A \) is square dominated.

Let \(I = \{(f,g) \in A : f(x), g(x) \leq nx^2 \text{ for some } n, \forall x \in [0, x_f \land x_g] \} \). Then \(I \) is an \(l \)-ideal of \(A \). We will show that \(I \) is primary. Suppose \((f,g)(h,k) \in I \), and \((f,g) \notin I \). For every \(n \), either \(f(x) \notin nx^2 \) or \(g(x) \notin nx^2 \) on \([0, a] \) for any \(a \in (0,1) \). Suppose \(f(x) \notin nx^2 \). Then \(h(0) = 0 \) and \(h \in P \). But \(h - k \in P \), so \(k \in P \). This implies there must exist some \(N \) such that \((h,k)^N \in I \). Hence \(I \) is primary, and \(\sqrt{I} \) is prime. Yet \(I \) is not pseudoprime since \((x,0)(0,x) = (0,0) \) while \((x,0) \notin I \) and \((0,x) \notin I \).

To see directly that \(A \) is not normal, consider the element \((x,-x) : \{(x,-x)^+\}^d + \{(x,-x)^-\}^d = \{(x,0)\}^d + \{(0,x)\}^d = \{(f,g) : f, g \in P \} \neq A \).
We have found some generalizations of the condition that \(\sqrt{I} \) be prime that characterize pseudoprime \(l \)-ideals in archimedean \(f \)-algebras in which minimal prime \(l \)-ideals are square dominated. However, each of these conditions are difficult to verify for most \(l \)-ideals. If we strengthen our hypotheses to insist that all prime \(l \)-ideals of the \(f \)-algebra are square dominated, we can give the following generalization to the condition which is a characterization of pseudoprime \(l \)-ideals.

Theorem 2.8. Let \(A \) be an archimedean \(f \)-algebra with identity element in which prime \(l \)-ideals are square dominated. If \(I \) is an \(l \)-ideal then \(I \) is pseudoprime if and only if when \(\{f_{ij}\}_{j=1}^{\infty}, \{f_{nj}\}_{j=1}^{\infty} \) are increasing positive Cauchy sequences such that \(f_{1j}f_{2j} \cdots f_{nj} = 0 \) for all \(j \), there is a sequence \(\{f_{ij}\}_{j=1}^{\infty} \), for which there exists a positive integer \(N \) such that \(f_{ij}^N \in I \) for all \(j \).

Proof. Let \(A^* \) denote the uniform completion of \(A \), and \(e: A \rightarrow A^* \) be the embedding.

\(\Leftarrow \) Suppose that whenever \(\{f_{ij}\}_{j=1}^{\infty}, \{f_{nj}\}_{j=1}^{\infty} \) are increasing positive Cauchy sequences such that \(f_{1j}f_{2j} \cdots f_{nj} = 0 \) for all \(j \), there is a sequence \(\{f_{ij}\}_{j=1}^{\infty} \), for which there exists a positive integer \(N \) such that \(f_{ij}^N \in I \) for all \(j \). In \(A^* \), let \(M = \{x_1 \cdots x_m: \text{for each } x_i, \forall j \exists a_{ij} \in A \text{ such that } 0 < e(a_{ij}) < x_i \text{ and } a_{ij} \notin I \} \).

Then \(M \) is an \(m \)-system. First we will show that \(M \cap \{0\} = \emptyset \). Suppose that for \(i = 1, 2, \ldots, m \), \(x_i \in A^* \), such that for every \(j \in \mathbb{N} \), there is an \(a_{ij} \in A \) such that \(0 < e(a_{ij}) < x_i \) and \(a_{ij} \notin I \). Define

\[
 f_{ij} = \sum_{k=1}^{j} \frac{1}{2^k} (a_{ik} \land 1) \text{ for } i = 1, 2, \ldots, m, \ j = 1, 2, \ldots
\]

Then \(0 \leq (1/2)^j e(a_{ij} \land 1) \leq e(f_{ij}) \leq x_i, \text{ for } i = 1, 2, \ldots, m, \ j = 1, 2, \ldots \), and \(\{f_{ij}\}_{j=1}^{\infty} \) is an increasing positive Cauchy sequence for \(i = 1, 2, \ldots, m \). Now for each sequence \(\{f_{ij}\}_{j=1}^{\infty} \), there cannot be a natural number \(N \) such that \(f_{ij}^N \in I \) for all \(j \), because the existence of such an \(N \) would imply that \((a_{ij} \land 1)^N \), and hence \(a_{ij}^N \), is in \(I \) for all \(j \). So by hypothesis, \(f_{1j}f_{2j} \cdots f_{mj} \neq 0 \) for some \(j \). This, and the fact that \(0 \leq e(f_{1j})e(f_{2j}) \cdots e(f_{mj}) \leq x_1x_2 \cdots x_m \) implies \(x_1x_2 \cdots x_m \neq 0 \). Therefore, \(M \cap \{0\} = \emptyset \).

Thus there is a prime \(l \)-ideal in \(A^* \) containing \(\{0\} \) and disjoint from \(M \). Let \(P \) be a minimal prime \(l \)-ideal with this property. We will show \(P \cap e(A) \subseteq e(I) \). Let \(f \in A^+ \) such that \(e(f) \in P \cap e(A) \).

By 1.2, there is a \(g \notin P \) such that \(e(f)g = 0 \). In \(A \), \(\{g\}_A = \{x \in A: xg = 0\} \) is a semiprime \(l \)-ideal and Lemma 2.1(1) implies it is square dominated. So \(f \leq f_1^2 \) for some \(f_1 \in A^+ \) with \(f_1 \in \{g\}_A \). Since \(\{g\}_A \) is semiprime, \(f_1 \in \{g\}_A \). As before, \(f_1 \leq f_2^2 \) for some \(f_2 \in A^+ \) with \(f_2 \in \{g\}_A \). Again \(f_2 \in \{g\}_A \). So \(f \leq f_1^2 \leq f_2^2 \). Continuing this for \(i = 3, 4, \ldots, \) we find \(f \leq f_1^2 \leq f_2^2 \leq \cdots \leq f_n^2 \leq \cdots \). Define

\[
 h_j = \sum_{i=1}^{j} \frac{1}{2^i} (f_i \land 1) \text{ for } j = 1, 2, \ldots
\]

Then \(\{h_j\}_{j=1}^{\infty} \) is an increasing Cauchy sequence in \(A \) and \(e(h_j) \) converges to an element \(h \in A^* \). Now \(hg = 0 \) and \(g \notin P \), implying \(h \in P \).
We assert that there exists some positive integer M such that
\[(1/2^M)(f_M \land 1)^{2^M} \in I.\]
For if not, $0 \leq (1/2^i)(f_i \land 1)^{2^i} \leq (f_i \land 1)^{i^2} = ((f_i \land 1)^i)^i \not\in I$
for all $i \neq 3$. We would then have
\[0 \leq (1/2^i)(f_i \land 1)^i \leq h^i \quad \text{and} \quad ((1/2^i)(f_i \land 1)^i)^i \not\in I \quad \text{for all } i.\]
But this would imply $h \in M$, contrary to the fact that $M \cap P = \emptyset$. So there exists
some positive integer M such that $(1/2^M)(f_M \land 1)^{2^M} \in I$.

We now know $(1/2^M)(f \land 1) \leq (1/2^M)(f_M \land 1)^{2^M}$ implies $(1/2^M)(f \land 1) \in I$. Therefore $(f \land 1) \in I$ and $f = (f \land 1)(f \lor 1) \in I$. We have $P \cap e(A) \subseteq e(I)$ and $P \cap e(A)$ is prime in $e(A)$. Therefore $e(I)$ is pseudoprime in A^*. This implies I is pseudoprime in A.

⇒ Suppose that I is pseudoprime and that \(\{f_{ij}\}_{j=1}^{\infty}, \{f_{nj}\}_{j=1}^{\infty} \) are increasing
positive Cauchy sequences in A with $f_{ij}f_{2j} \cdots f_{nj} = 0$ for all j. Each of the
sequences $\{e(f_{ij})\}_{j=1}^{\infty}$ converges to some element f_i in A^*. Let P be a prime l-
ideal contained in I. Then $M = \{e(a) : a \in A, a \notin P\}$ is an m-system in A^*. So there is a prime l-ideal P^* of A^* such that $P \subseteq P^*$ and $P^* \cap M = \emptyset$. Now $e(f_{1j})e(f_{2j}) \cdots e(f_{nj}) = 0$ and so $e(f_{mj}) \in P^*$ for some m. Thus $e(f_{mj}) \leq e(f_m)$ implies that $e(f_{mj}) \in P^* \cap e(A) = e(P)$ for all j. \(\Box\)

It is not difficult to show directly that in a uniformly complete f-ring, the prop-
erty characterizing a pseudoprime l-ideal I given in this theorem is equivalent to
the property that \sqrt{I} is prime.

Finally we show that the hypothesis that minimal prime l-ideals be square dom-
inated cannot be dropped or generalized in any way in any of our theorems char-
acterizing pseudoprime l-ideals.

Lemma 2.9. Let A be a semiprime f-ring. If in A, a pseudoprime l-ideal I is
characterized by being an l-ideal that satisfies any one of the following conditions,
then every minimal prime l-ideal of A is square dominated.

1. $\bigcap_{n=1}^{\infty} (P^n)$ is prime.
2. (I, \sqrt{I}) is pseudoprime.
3. $I : \sqrt{I}$ is pseudoprime and $I : \sqrt{I} \subseteq \sqrt{I}$, or, $\sqrt{I} \subseteq I : \sqrt{I}$ and \sqrt{I} is prime.
4. The prime l-ideals containing I form a chain.
5. \sqrt{I} is prime.

Also, if A is an archimedean f-ring, and if in A, a pseudoprime l-ideal I is
characterized by being an l-ideal that satisfies the following condition, then every
minimal prime l-ideal of A is square dominated.

6. Whenever $\{f_{1j}\}_{j=1}^{\infty}, \{f_{nj}\}_{j=1}^{\infty}$ are increasing positive Cauchy sequences
such that $f_{1j}f_{2j} \cdots f_{nj} = 0$ for all j, there is a sequence $\{f_{ij}\}_{j=1}^{\infty}$, for which there
exists a positive integer N such that $f_{ij}^N \in I$ for all j.

Proof. Let P be a minimal prime l-ideal. Note that in each case it will suffice
to show that $\langle P^2 \rangle$ is pseudoprime since $\langle P^2 \rangle \subseteq P$ and P being a minimal prime
l-ideal will then imply $\langle P^2 \rangle = P$.

If characterization (1) holds, then $\bigcap_{n=1}^{\infty} (P^n)$ is a prime l-ideal contained in $\langle P^2 \rangle$. So $\langle P^2 \rangle$ is pseudoprime.
Characterization (2) implies \(\langle P\sqrt{P} \rangle = \langle P^2 \rangle \) is pseudoprime.

Suppose characterization (3) holds. Note that \(\langle P^2 \rangle : \sqrt{\langle P^2 \rangle} = \langle P^2 \rangle : P \geq \sqrt{\langle P^2 \rangle} = P \). So \(\langle P^2 \rangle : \sqrt{\langle P^2 \rangle} \) is pseudoprime. Then characterization (3) implies \(\langle P^2 \rangle \) is pseudoprime.

Suppose characterization (4) holds. Every prime l-ideal containing \(\langle P^2 \rangle \) also contains \(P \). So the prime l-ideals containing \(\langle P^2 \rangle \) form a chain. Characterization (4) implies \(\langle P^2 \rangle \) is pseudoprime.

Suppose characterization (5) holds. Then \(\sqrt{\langle P^2 \rangle} = P \) is prime, implying that \(\langle P^2 \rangle \) is pseudoprime.

Finally, suppose that \(A \) is an archimedean f-algebra and that characterization (6) holds. Suppose that \(\{f_{1j}\}_{j=1}^{\infty}, \ldots, \{f_{nj}\}_{j=1}^{\infty} \) are increasing positive Cauchy sequences such that \(f_{1j}f_{2j} \cdots f_{nj} = 0 \) for all \(j \). Then for some \(m \), \(f_{mj} \in P \) for all \(j \). But then \(f_{mj}^2 \in \langle P^2 \rangle \) for all \(j \). So characterization (6) implies that \(\langle P^2 \rangle \) is pseudoprime. \(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, LOYOLA MARYMOUNT UNIVERSITY, LOS ANGELES, CALIFORNIA 90045