8-1-1990

Sums of Semiprime, Z, and D L-Ideals in a Class of F-Rings

Suzanne Larson
Loyola Marymount University, slarson@lmu.edu

Repository Citation

Recommended Citation
SUMS OF SEMIPRIME, z, AND d l-IDEALS IN A CLASS OF f-RINGS

SUZANNE LARSON

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. In this paper it is shown that there is a large class of f-rings in which the sum of any two semiprime l-ideals is semiprime. This result is used to give a class of commutative f-rings with identity element in which the sum of any two z-ideals which are l-ideals is a z-ideal and the sum of any two d-ideals is a d-ideal.

INTRODUCTION

An l-ideal I of an f-ring A is called semiprime if \(a^2 \in I \) implies \(a \in I \). An ideal I of a commutative ring A with identity element is called a z-ideal if whenever \(a, b \in A \) are in the same set of maximal ideals and \(a \in I \), then \(b \in I \). Given an element \(a \) of an f-ring \(A \), let \(\{a\}^d = \{x \in A : xa = 0\} \) and \(\{a\}^{dd} = \{x \in A : xy = 0 \text{ for all } y \in \{a\}^d\} \). An ideal I of a commutative f-ring is called a d-ideal if \(a \in I \) implies \(\{a\}^{dd} \subseteq I \).

Several authors have studied the sums of semiprime l-ideals, z-ideals, and d-ideals in various classes of f-rings. In [2, 14.8] it is shown that the sum of two z-ideals in \(C(X) \), the f-ring of all real-valued continuous functions defined on the topological space \(X \), is a z-ideal; and in [11, 4.1 and 5.1], Rudd shows that in absolutely convex subrings of \(C(X) \), the sum of two semiprime l-ideals is semiprime and the sum of two z-ideals is a z-ideal. Mason studies sums of z-ideals in absolutely convex subrings of the ring of all continuous functions on a topological space and in more general rings in [10]. An example is given in [5, §7] of an f-ring in which there are two (semiprime) z-ideals whose sum is not a z-ideal or semiprime. Huijsmans and de Pagter show in [7, 4.4] that in a normal Riesz space, the sum of two d-ideals is a d-ideal.

In [4, 3.9], Henriksen gives a condition on two semiprime l-ideals of an f-ring which is necessary and sufficient for their sum to be semiprime. Henriksen also notes in [4] that this condition can be difficult to apply globally, and so it seems difficult to use this result to determine in what classes of f-rings are the sum of any two semiprime l-ideals semiprime.
In this note we show that there is a large class of \(f \)-rings, specifically those \(f \)-rings in which minimal prime \(l \)-ideals are square dominated, in which the sum of any two semiprime \(l \)-ideals is semiprime. We use this result to show that in a commutative \(f \)-ring with identity element in which minimal prime \(l \)-ideals are square dominated, if the sum of any two minimal prime \(l \)-ideals is a \(z \)-ideal (resp. \(d \)-ideal), then the sum of any two \(z \)-ideals which are \(l \)-ideals is a \(z \)-ideal (resp. the sum of any two \(d \)-ideals is a \(d \)-ideal). As a corollary we show that in a commutative semiprime normal \(f \)-ring with identity element, the sum of any two \(z \)-ideals which are \(l \)-ideals (resp. \(d \)-ideals) is a \(z \)-ideal (resp. \(d \)-ideal).

1. Preliminaries

An \(f \)-ring is a lattice-ordered ring which is a subdirect product of totally ordered rings. For general information on \(f \)-rings see [1]. Given an \(f \)-ring \(A \) and \(x \in A \), we let \(A^+ = \{a \in A: a \geq 0\} \), \(x^+ = x \vee 0 \), \(x^- = (-x) \vee 0 \), and \(|x| = x \vee (-x) \).

A ring ideal \(I \) of an \(f \)-ring \(A \) is an \(l \)-ideal if \(IxI < II \), \(y \in I \) implies \(x \in I \). Given any element \(a \in A \) there is a smallest \(l \)-ideal containing \(a \), and we denote this by \(\langle a \rangle \).

Suppose \(A \) is an \(f \)-ring and \(I \) is an \(l \)-ideal of \(A \). The \(l \)-ideal \(I \) is semiprime (prime) if \(a^2 \in I \) (\(ab \in I \)) implies \(a \in I \) (\(a \in I \) or \(b \in I \)). It is well known that in an \(f \)-ring, an \(l \)-ideal is semiprime if and only if it is an intersection of prime \(l \)-ideals, and that all \(l \)-ideals containing a given prime \(l \)-ideal form a chain. In an \(f \)-ring a semiprime \(l \)-ideal that contains a prime \(l \)-ideal is a prime \(l \)-ideal as shown in [12, 2.5], [7, 4.2].

An ideal \(I \) of a commutative ring \(A \) with identity element is a \(z \)-ideal if, whenever \(a, b \in A \) are contained in the same set of maximal ideals and \(a \in I \), then \(b \in I \).

In a commutative \(f \)-ring, let \(\{a\}^d = \{x \in A: ax = 0\} \) and \(\{a\}^{dd} = \{x \in A: xy = 0 \text{ for all } y \in \{a\}^d\} \). An ideal \(I \) of a commutative \(f \)-ring is called a \(d \)-ideal if \(a \in I \) implies \(\{a\}^{dd} \subseteq I \).

Henriksen, in [4] calls an \(l \)-ideal \(I \) of an \(f \)-ring \(A \) square dominated if \(I = \{a \in A: |a| \leq x^2 \text{ for some } x \in A \text{ such that } x^2 \in I\} \). Two characterizations now follow describing those commutative semiprime \(f \)-rings in which all minimal prime \(l \)-ideals are square dominated. Parts (1) and (2) of the following lemma are shown to be equivalent in [8, 2.1]. That part (3) of the following lemma is equivalent to part (1) follows easily from the equivalence of parts (1) and (2).

Lemma 1.1. Let \(A \) be a commutative semiprime \(f \)-ring. The following are equivalent:

1. Every minimal prime \(l \)-ideal of \(A \) is square dominated
2. For every \(a \in A^+ \) the \(l \)-ideal \(\{a\}^d \) is square dominated
(3) The l-ideal $O_P = \{a \in A: \text{ there exists a } b \notin P \text{ such that } ab = 0\}$ is square dominated for all prime l-ideals P of A.

2.

We begin with two results that will be needed when showing that in an f-ring in which minimal prime l-ideals are square dominated, the sum of two semiprime l-ideals is semiprime.

Theorem 2.1. Let A be an f-ring. In A, the sum of a semiprime l-ideal and a square-dominated semiprime l-ideal is semiprime.

Proof. Suppose that I, J are semiprime l-ideals and that J is square dominated. Let $a^2 \in I + J$ with $a \geq 0$. Then $a^2 \leq i + j$ for some $i \in I^+$, $j \in J^+$. Since J is square dominated, $j \leq j_1^2$ for some $j_1 \in A^+$ with $j_1^2 \in J$. So $a^2 \leq i + j_1^2$. Let $x = a - (a \wedge j_1)$ and $y = a \wedge j_1$. Since J is a semiprime l-ideal, $j_1 \in J$ and $y \in J$. Now for any positive elements a, j_1 of any totally ordered ring, $a \wedge j_1 = a$ or $a \wedge j_1 = j_1$. In the first case $(a - (a \wedge j_1))^2 = 0$, and in the second case $(a - (a \wedge j_1))^2 = (a - j_1)^2 = a^2 - a j_1 - j_1 a + j_1^2 \leq a^2 - 2j_1^2 + j_1^2 = a^2 - j_1^2$. Therefore in any totally ordered ring, $(a - (a \wedge j_1))^2 \leq 0 \vee (a^2 - j_1^2)$. This implies that in the f-ring A, $x^2 = (a - (a \wedge j_1))^2 \leq 0 \vee (a^2 - j_1^2) \leq i$. Thus, $x^2 \in I$ and hence $x \in I$. We have $a = x + y$ with $x \in I$ and $y \in J$. Therefore $a \in I + J$. □

Lemma 2.2. Let A be an f-ring in which minimal prime l-ideals are square dominated. In A, the sum of any two prime l-ideals is prime.

Proof. Let I and J be prime l-ideals of A. Let I_1, J_1 be minimal prime l-ideals contained in I, J respectively. We will show $I + J$ is an intersection of prime l-ideals. To do so, we let $z \in A$ such that $z \notin I + J$ and we will show there is a prime l-ideal containing $I + J$ but not z. The l-ideal $I_1 + J_1$ is prime, and the prime l-ideals containing it form a chain. By the maximal principle, there is a prime l-ideal Q containing $I_1 + J_1$ which is maximal with respect to not containing z. By the previous theorem, $I + J_1$ is semiprime. It also contains a prime l-ideal and is therefore prime. Similarly, $I_1 + J$ is prime. Thus $I \subseteq I + J_1 \subseteq Q$ and $J \subseteq I_1 + J \subseteq Q$. This implies that $I + J \subseteq Q$ and $z \notin Q$. Therefore $I + J$ is an intersection of prime l-ideals. So it is semiprime. It also contains a prime l-ideal and is therefore prime. □

In [3, 4.7], Gillman and Kohls show that in $C(X)$, the f-ring of all real-valued continuous functions defined on the topological space X, an l-ideal is an intersection of l-ideals, each of which contains a prime l-ideal. Their proof easily generalizes to prove that in an f-ring, an l-ideal which contains all nilpotent elements of the f-ring is an intersection of l-ideals, each of which contains a prime l-ideal. We will make use of this result in the proof of the following theorem.
Theorem 2.3. Let A be an f-ring in which minimal prime l-ideals are square dominated. In A, the sum of any two semiprime l-ideals is semiprime.

Proof. Let I, J be semiprime l-ideals. We will show $I + J$ is an intersection of prime l-ideals. To do so, we let $z \in A$ such that $z \notin I + J$ and we show that there is a prime l-ideal containing $I + J$ but not z. By Gillman and Kohl's result mentioned above, there is an l-ideal Q containing $I + J$ and containing a prime l-ideal but not containing z. Let P be a minimal prime l-ideal contained in Q. By Theorem 2.1, $P + I$ is semiprime. Also, it contains a prime l-ideal and so is prime. Similarly, $P + J$ is prime. Then by the previous lemma, $(P + I) + (P + J)$ is prime. Since $(P + I) + (P + J) \subseteq Q$, $z \notin (P + I) + (P + J)$ and $I + J \subseteq (P + I) + (P + J)$. □

The converse of the previous theorem does not hold, as we show next.

Example 2.4. In $C([0, 1])$, denote by i the function $i(x) = x$, and by e the function $e(x) = 1$. Let $A = \{f \in C([0, 1]) : f = ae + g \text{ where } a \in \mathbb{R}, g \in (i)\}$ with coordinate operations. Then A is a commutative semiprime f-ring.

We will show that the sum of two semiprime l-ideals of A is semiprime. So suppose I, J are semiprime l-ideals. If I or J contains an element $f = ae + g$ such that $a \neq 0$, then it can be shown that I or J is square dominated. Then by Theorem 2.1, $I + J$ is semiprime. So we may now suppose that both $I, J \subseteq (i)$. If $f^2 \in I + J$, then there is $i_1 \in I^+$, $j_1 \in J^+$ such that $f^2 = i_1 + j_1$. Also, $f \in (i)$ which implies $|f| \leq ni$ and $f^2 \leq n^2i^2$ for some $n \in \mathbb{N}$. So $i_1 \leq n^2i^2$ and $j_1 \leq n^2i^2$. Therefore $\sqrt{i_1} \leq ni$ and $\sqrt{j_1} \in A$. Since I is semiprime, $\sqrt{i_1} \in I$. Similarly, $\sqrt{j_1} \in J$. So $f \leq \sqrt{i_1} + \sqrt{j_1}$ implies $f \in I + J$. Thus $I + J$ is semiprime.

Next we show that not every minimal prime l-ideal of A is square dominated. Let f be a function such that $0 \leq f \leq i$, $f(x) = 0$ for all $x \in [1/4, 1]$, $f(x) = 0$ for all $x \in [1/(4n + 2), 1/4n]$, and $f(1/(4n + 3)) = 1/(4n + 3)$ for all $n \in \mathbb{N}$. Also, let g be a function such that $0 \leq g \leq i$, $g(x) = 0$ for all $x \in [1/4, 1]$, $g(1/(4n + 1)) = 1/(4n + 1)$, and $g(x) = 0$ for all $x \in [1/(4n + 4), 1/(4n + 2)]$ for all $n \in \mathbb{N}$. Then $g \in \{f\}^d$, and there is no element $h \in A$ which satisfies $g \leq h^2$ and $h^2 \in \{f\}^d$. So $\{f\}^d$ is not square dominated, and Lemma 1.1 implies that not every minimal prime l-ideal of A is square dominated.

Next we turn our attention to the sum of two z-ideals which are l-ideals and to the sum of two d-ideals. Note that in a commutative f-ring with identity element, a z-ideal is not always an l-ideal. However it can easily be seen that in a commutative f-ring with identity element, if every maximal ideal is an l-ideal (or equivalently if for all $x \geq 1$, x^{-1} exists), then a z-ideal is always an l-ideal. In a commutative f-ring with identity element, every d-ideal is an l-ideal. G. Mason has established three results concerning z-ideals which we will use in the proof of the next theorem. The first is as follows.
(α) In a commutative ring with identity element, every \(z \)-ideal is semiprime [9, 1.0].

The second was proven for a commutative ring with identity element, and the third was proven for a commutative ring with identity element in which the prime ideals containing a given prime form a chain. With only very slight modifications to the proofs, these results can be given in the context of \(f \)-rings.

(β) If, in a commutative \(f \)-ring with identity element, \(P \) is minimal in the class of prime \(l \)-ideals containing a \(z \)-ideal \(J \) which is an \(l \)-ideal, then \(P \) is also a \(z \)-ideal. In particular, minimal prime \(l \)-ideals are \(z \)-ideals [9, 1.1].

(γ) If, in a commutative \(f \)-ring with identity element, the sum of any two minimal prime \(l \)-ideals is a prime \(z \)-ideal, then the sum of any two prime \(l \)-ideals not in a chain is a \(z \)-ideal [10, 3.2].

One can easily mimic the proofs to (β) and (γ) to show analogous results about \(d \)-ideals.

(β′) If, in a commutative \(f \)-ring with identity element, \(P \) is minimal in the class of prime \(l \)-ideals containing a \(d \)-ideal \(I \), then \(P \) is also a \(d \)-ideal. In particular, minimal prime \(l \)-ideals are \(d \)-ideals.

(γ′) If, in a commutative \(f \)-ring with identity element, the sum of any two minimal prime \(l \)-ideals is a prime \(d \)-ideal, then the sum of any two prime \(l \)-ideals which are not in a chain is a \(d \)-ideal.

Theorem 2.5. Let \(A \) be a commutative \(f \)-ring with identity element in which minimal prime \(l \)-ideals are square dominated.

(1) If the sum of any two minimal prime \(l \)-ideals of \(A \) is a \(z \)-ideal, then the sum of any two \(z \)-ideals which are \(l \)-ideals of \(A \) is a \(z \)-ideal.

(2) If the sum of any two minimal prime \(l \)-ideals of \(A \) is a \(d \)-ideal, then the sum of any two \(d \)-ideals of \(A \) is a \(d \)-ideal.

Proof. We first show part (1). Suppose \(I, J \) are \(z \)-ideals which are \(l \)-ideals. Then \(I, J \) are semiprime \(l \)-ideals by (α), and by Theorem 2.3, \(I + J \) is a semiprime \(l \)-ideal. We will show that \(I + J \) is the intersection of \(z \)-ideals. To do so, we let \(z \in A \) such that \(z \notin I + J \), and we will show there is a \(z \)-ideal containing \(I + J \) but not \(z \). Since \(I + J \) is a semiprime \(l \)-ideal, it is the intersection of prime \(l \)-ideals. So there is a prime \(l \)-ideal \(P \) containing \(I + J \) but not \(z \). Let \(P_1, P_2 \subseteq P \) be prime \(l \)-ideals minimal with respect to containing \(I, J \) respectively. By (β), \(P_1, P_2 \) are prime \(z \)-ideals. It follows from (γ) that \(P_1 + P_2 \) is a \(z \)-ideal. Also, \(I + J \subseteq P_1 + P_2 \) and \(z \notin (P_1 + P_2) \) since \(P_1 + P_2 \subseteq P \).

The proof of part (2) is analogous. □

Recall that for any element \(a \) of an \(f \)-ring, \(\{a\}^d \) is a \(z \)-ideal and a \(d \)-ideal. Recall also that a prime \(l \)-ideal \(P \) of a commutative semiprime \(f \)-ring is minimal if and only if \(a \in P \) implies there is a \(b \notin P \) such that \(ab = 0 \).
Corollary 2.6. Let A be a commutative semiprime f-ring with identity element in which minimal prime l-ideals are square dominated.

(1) If for every $a, b \in A^+$, $(a)^d + (b)^d$ is a z-ideal, then the sum of any two z-ideals which are l-ideals of A is a z-ideal.

(2) If for every $a, b \in A^+$, $(a)^d + (b)^d$ is a d-ideal, then the sum of any two d-ideals of A is a d-ideal.

Proof. To show part (1), we need only show that the sum of any two minimal prime l-ideals is a z-ideal. Let P, Q be minimal prime l-ideals. Suppose a, b are in the same set of maximal ideals and $b \in P + Q$. Then $b = p + q$ for some $p \in P, q \in Q$. Also, there is $p_1, q_1 \in A^+$ such that $p_1 \notin P, q_1 \notin Q$, and $pp_1 = 0, qq_1 = 0$. So $b = p + q \in (p_1)^d + (q_1)^d$. By hypothesis, $(p_1)^d + (q_1)^d$ is a z-ideal. So $a \in (p_1)^d + (q_1)^d \subseteq P + Q$.

The proof of part (2) is analogous. □

An f-ring (and more generally a Riesz space) A is called normal if $A = (a^+)^d + (a^-)^d$ for all $a \in A$, or equivalently if $a \land b = 0$ implies $A = (a)^d + (b)^d$. In [8, 2.5] it is shown that in a commutative, semiprime normal f-ring with identity element, every minimal prime l-ideal is square dominated.

Corollary 2.7. Let A be a commutative semiprime normal f-ring with identity element. In A, the sum of any two z-ideals which are l-ideals is a z-ideal and the sum of any two d-ideals is a d-ideal.

Proof. In view of the fact that minimal prime l-ideals of A are square dominated and in light of Theorem 2.5, we need only show that the sum of any two minimal prime l-ideals is a z-ideal and a d-ideal. So let P, Q be minimal prime l-ideals. We will show that if $P \neq Q$, then $P + Q = A$. If $P \neq Q$, then there is an element $p \in P \setminus Q$. Since P is a minimal prime, there is an element $q \notin P$ such that $pq = 0$. Then $p \land q = 0$, and $(p)^d + (q)^d = A$. But $(p)^d \subseteq Q, \ (q)^d \subseteq P$. So $A = P + Q$. □

Huijsmans and de Pagter show in [6, 4.4] that in a normal Riesz space the sum of two d-ideals is a d-ideal, so the d-ideal portion of the previous corollary is known.

We conclude with an example showing that in a commutative f-ring with identity element in which minimal prime l-ideals are square dominated, the sum of two minimal prime l-ideals is not necessarily a d-ideal or z-ideal. So the hypothesis that the sum of any two minimal prime l-ideals is a z-ideal or a d-ideal cannot be omitted from Theorem 2.5. The example makes use of a construction of Henriksen and Smith which appears in [5].

Example 2.8. In $C([0, 1])$, let i denote the function defined by $i(x) = x$ and let $I = \{f \in C([0, 1]) : |f^n| \leq mi$ for some $n, m \in \mathbb{N}\}$. Then I is a semiprime l-ideal of $C([0, 1])$. Let $A = \{(f, g) \in C([0, 1]) \times C([0, 1]) : f - g \in I\}$. Then as shown in [5], A is a commutative semiprime f-ring with identity element.
As shown in [5, §3], the minimal prime \(l \)-ideals of \(A \) have the form \(\{(f + g, f) \mid f \in P, g \in I\} \) or \(\{(f, f + g) \mid f \in P, g \in I\} \) for some minimal prime \(l \)-ideal \(P \) of \(C([0, 1]) \). Using this fact, it is not hard to show that minimal prime \(l \)-ideals of \(A \) are square dominated.

Define a function \(h \) by \(h(x) = \sum_{n=1}^{\infty} 1/2^n x^{1/n} \). Then \(h \in C([0, 1]) \) and \(h \notin I \). Let \(P \) be a prime \(l \)-ideal such that \(I \subseteq P \) and \(h \notin P \), and let \(P_1 \) be a minimal prime \(l \)-ideal contained in \(P \). In \(A \), let \(Q_1 = \{(f + g, f) \mid f \in P_1, g \in I\} \) and \(Q_2 = \{(f, f + g) \mid f \in P_1, g \in I\} \). Then \(Q_1 \) and \(Q_2 \) are minimal prime \(l \)-ideals of \(A \) and so are \(z \)-ideals and \(d \)-ideals. But \(Q_1 + Q_2 \) is not a \(z \)-ideal, since the only maximal ideal \((h, h) \) or \((i, i) \) is contained in is \(M = \{(f, g) \mid f(0) = g(0) = 0\} \) and yet \((i, i) \in Q_1 + Q_2 \) but \((h, h) \notin Q_1 + Q_2 \).

To see directly that \(Q_1 + Q_2 \) is not a \(d \)-ideal, note that \(\{(i, i)\}_{dd} = A \) and \(A \notin Q_1 + Q_2 \).

REFERENCES

DEPARTMENT OF MATHEMATICS, LOYOLA MARYMOUNT UNIVERSITY, LOS ANGELES, CALIFORNIA 90045