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above and in [HW 1]. In many instances, more general results are known for 
noncompact spaces. 

A continuous surjection f: X -- Y is said to be irreducible if no proper 
closed subset of X is mapped by f onto Y. It is shown in [DHH] that if 
X is compact, there is an essentially unique quasi-F space QF(X) that maps 
irreducibly onto X minimally in the sense that any continuous surjection of 
a compact quasi-F space factors through QF(X); for details see [DHH] or 
[HVW]. The space QF(X) is called the quasi-F cover of X. 

A subspace is called a regular closed set if it is the closure of its interior. 
Let Z(X) denote the family of zero sets of functions in C(X), and let Z#(X) 
denote the set of regular closed members of Z(X) . Then Z#(X) is a lattice and 
it is shown in [HVW, 2.11-2.12] that for any compact space X, the continuous 
surjection a: QF(X) -- X induces a lattice isomorphism of Z#(QF(X)) onto 
Z#(X). Thus, by Proposition 2.2 of [CM], the map ~o': C(X) -- C(QF(X)) 
such that (o'(f) = f o (o' for each f E C(X) is a rigid embedding. So, by 
Proposition 3.2(1), we have: 

Proposition 5.1. If a compact space has finite rank, then so does its quasi-F cover. 

The space [0, 1] has infinite rank at each of its points while its quasi-F cover 
is extremally disconnected and hence has rank 1. (See [DHH, Theorem 4.7].) 
So, the converse of this proposition fails. We do not know if the analogue of 
5.1 holds for SV-spaces. In particular, we do not know if every quasi-F space 
of finite rank is an SV-space. 

It is shown in [HdP2, 6.2] that QF(X) is an F-space if and only if: 
(*) If Cl, C2 are disjoint cozero sets, then there are zero sets Zi, Z2 such 

that Cl C Zi, C2 CZ2, and int(Z1 n Z2) = 0. 
Thus, (*) is a sufficient but not necessary condition for QF(X) to be an 

SV-space. 
As was shown in [HJ] and [HM], Min (C(X)) is compact and basically dis- 

connected if and only if the lattice Pr(C(X)) of principal polars in C(X) is a 
Boolean algebra. See Section 2. Recall that a space is basically disconnected if 
closures of cozero sets are open. Clearly every basically disconnected space is 
an F-space. 

Next, we give the previously advertised example of a ring that is Prufer but 
not locally Prufer. It appears in [MW] for slightly different purposes. We repeat 
it for the sake of completeness while leaving the verification of some details to 
the reader. 

Example 5.2. Let X denote the space obtained by attaching the free union of 
two copies of the compact space flwc\cw at a non-P-point q. It is well known 
that ficw\cw is an F-space in which every zero set is a regular closed set, and 
it follows that X is a quasi-F space because it has no proper dense cozero set. 
Thus C(X) is a Prufer ring. Because it is the union of two closed F-spaces, it is 
an SV-space as was shown in [HW 1]. Hence C(X) has finite rank by Theorem 
4.1. If it were also locally Prufer, then it would be Bezout by Theorem 4.5. 
This cannot be the case because there are two minimal prime ideals of C(X) 
contained in the maximal ideal Mq. 

In view of Proposition 5. 1, it seems natural to ask if the inverse image of a 
compact space of finite rank under an irreducible continuous surjection must 
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have finite rank. We shall answer this question in the negative. In what follows, 
we abbreviate Min (C(X)) by mX, and assume that it carries the hull-kernel 
topology. A nonempty closed subspace E of a space X is called a P-set if 
E C Z(f) for any f E C(X) implies E C IntZ(f). 

Example 5.3. Let X be a compact F-space. One can then view mX as a 
topological space whose underlying set is X and which has {clx C C is 
a cozero set of X } as an open base. (See [DHKV] for a discussion of this.) 
Obviously the identity map from mX onto X is a continuous surjection. (This 
corresponds to mapping the unique minimal prime ideal of X that "lives at" 
the point x of X to the unique maximal ideal M, of C(X) consisting of 
members of C(X) that vanish at x.) Let j denote this identity map and 
flj its extension to f1(mX). Clearly flj is a perfect continuous surjection. 
Suppose that it were not irreducible. Then there would be a regular closed 
proper subset A of /3(mX) for which flj(A) = X. As A is regular closed 
in /.(mX), A n mX is dense in A and so flj(A n mX) is dense in X. But 
flj(A n mX) =A n X, so A n X is dense in X. But A n mX is a proper 
regular closed subset of mX, so there is a nonempty cozero set C of X such 
that clx C C mX\(A n mX) = X\(A n X), contradicting the fact that A n X is 
dense in X. Consequently we conclude that flj is indeed irreducible. 

There is in [DHKV, Corollary 6] an example in ZFC of a compact F-space 
X in which every zero set is regular closed and which contains a compact P-set 
E, and a continuous surjection g: X -- [0, 1] which maps E irreducibly onto 
[0, 1]. Suppose now that X is a space with these specifications. 

It is shown in the proof of Theorem 3 [DHKV] that if M is a countable 
dense subset of [0, 1], and V(M) = U{intx g-1(p) :p e M}, then V(M) e 
coz(mX) and E C clmx V(M). It should be clear that if M and S are disjoint 
countable dense subsets of the interval [0, 1], then V(M) n V(S) = 0. Thus, 
if {M(i): i < co} is a countable family of pairwise disjoint countable dense 
subsets of [0, 1], and we let W(i) (i < co) be pairwise disjoint cozero sets 
of f3(mX), for which V(M(i)) = W(i) n mX, we obtain an infinite pairwise 
disjoint family of cozero sets of f3(mX) for which the f,(mX)-closures all 
contain E. By Proposition 3.1, all points of E have infinite rank in f,(mX). 

Thus, flj maps the space ,B(mX) of infinite rank onto the F-space X in 
which each point has rank 1. 

For our next result we need some additional background information. 
A topological space X is called weakly Lindelof if each open cover of X 

contains a countable subfamily, the union of which is dense in X. If every 
family of pairwise disjoint open sets is countable we say that X satisfies the 
ccc. It is noted in [PW, 3P] that if X satisfies the ccc then every open subspace 
of X is weakly Lindelof. 

Suppose that Y is a subspace of X. Then Y is z -embedded in X if every 
cozero set of Y is the trace on Y of a cozero set of X. We say that Y is 
Z#-embedded in X if for each f E C(Y) there is a g E C(X) such that 
clx(intx(Z(g))) n Y = cly(inty(Z(f))). When Y is dense in X, then the 
restriction map induces an embedding of C(X) as an f-subalgebra of C(Y); 
then it is easy to check that Y is Z#-embedded in X precisely when C(X) is 
rigidly embedded in C(Y). 

It is shown in [HVW, 3.2], that a C*-embedding is always a z-embedding, 
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which in turn is always a Z#-embedding. If Y is a dense subspace of X which 
is Z#-embedded, and X is quasi-F, then Y is C*-embedded. 

Finally, in 3.7 of [HVW] it is shown that every dense weakly Lindelof sub- 
space and every cozero set is Z#-embedded. 

Applying Proposition 3.2(1) and Corollary 1.8.1, we get: 

Proposition 5.4. Suppose X is a compact space. 
(a) If X has finite rank, then so does every cozeroset and every dense weakly 

Lindelof subspace. 
(b) If X is both an SV-space and a quasi-F space, then so is every dense cozero 

set and every dense weakly Lindelof subspace. 

Recall also that weakly Lindelof and cozero subspaces of F-spaces are F- 
spaces as is noted in [HVW]. From this it is easy to show: 

Proposition 5.5. If a compact space is finitely an F-space, then so is any weakly 
Lindelof subspace. 

Our next result shows that every infinite compact space of finite rank contains 
a plethora of copies of /?co . 

Proposition 5.6. Every infinite compact space of finite rank contains a copy of 

Proof. Suppose that X is an infinite compact space of finite rank. Let m 
denote the largest positive integer such that the set E = Em of points of rank > 
m is finite. Then there is a countably infinite discrete subset S = {xl, x2, ... } 
of points of rank m, the closure of which is disjoint from E. We claim that 

(*) if y E cl(S)\S, then S is C* C*-embedded in S U {y}. 

For, otherwise, there is a partition S = VI U V2 into infinite subsets, so that 
both V1 and V2 contain y in their closures. Let T1 and T2 be distinct free 
ultrafilters on co such that {i < cO0: xi E Vi} E Tk for k = 1, 2. For each 
i < c(, let {P1j: 1j < m} denote the set of minimal prime ideals contained 
in M,,. Next, let Pj(Tk) = {f E C(X) : {i <(0 : f E P1j} E Tk} for k = 1, 2 
and 1 < j < m. As in the proofs of Theorems 4.1 and 4.2, each Pj(Tk) is a 
minimal prime ideal contained in My, thus making the rank of y at least 2m, 
which is a contradiction. This establishes (*). 

This implies that cl(S) is homeomorphic to JJS = ?clo, and the proof is 
complete. 0 

Owing to Corollary 1.8.1, the preceding result gives the following corollary, 
a property which (compact) SV-spaces share with F-spaces; see 14N.5 of [GJ]. 

Corollary 5.7. Every infinite closed subspace of a compact space offinite rank has 
at least 2c points. 

As usual, let Z (X) denote the lattice of zero sets of the space X and coz (X) 
denote the lattice of cozero sets of X. If S C Z (X), we use cS to denote 
{X\Z : Z E S}. Evidently, cS is a family of cozero sets. An ultrafilter of sub- 
sets of coz (X) is called a cozero-ultrafilter on X. The following is an unpub- 
lished result of J. Vermeer; the proof is somewhat tedious, but straightforward, 
and is therefore not included. 
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Proposition 5.8. The mapping P -* c{Z(f): f E P} is a bijection between the 
set Min(C(X)) and the set of cozero-ultrafilters on X. 

The preceding proposition allows us to present a topological characterization 
of SV-spaces. 

Recall that a totally ordered integral domain A is real-closed if (i) every 
positive element of A has a square root, (ii) every polynomial of odd degree 
over A has a root in A, and (iii) A is a valuation domain with bounded 
inversion. (See [CD] and [HW1] for more information; it is shown in [CD] that 
the real-closed domains are the ones which are convex in their real-closed field 
of quotients.) 

A prime z-ideal P of C(X) is called real-closed if C(X)/P is a real-closed 
domain. (An ideal J of C(X) is a z-ideal if f E J and Z(g) = Z(f) imply 
that g E J.) 

Theorem 5.9. Let X be a (Tychonoff) space. Then X is an SV-space if and only 
if the following condition is satisfied: if V is a cozero set, U a cozero-ultrafilter 
on X, and f E C*(V) then there exists C E coz(X)\U such that fIv\c can 
be extended continuously to X. 
Proof. It is known-see 14.7 of [GJ]-that every minimal prime ideal is a 
z-ideal. In 2.2 of [HW1] it is shown that X is an SV-space if and only if 
every minimal prime ideal is real-closed. Further, 2.4 of [HW1] shows that if 
P is a prime z-ideal of C(X), then P is real-closed if and only if for each 
cozero set V of X and each f E C*(X) there is a w E P so that fIvnz(w) 
extends continuously to all of X. Combining all this with Proposition 5.8, and 
translating appropriately, we obtain the stated claim. 0 

One of the puzzling and even frustrating aspects of the study of spaces of 
finite rank is the inability to make conclusions about the rank of a space from 
bounds placed on the ranks of points out of a dense subset. For example, if X 
is any space, it would be reasonable to suppose that rk(flX) = sup{rk(X, p) 
p E X}. This is not so in general, although we can say the following. 

Theorem 5.10. If X is a normal space, then rk(flX) = sup{rk(X, p) : p E X}. 

Proof. First, since C(JJX) = C*(X), the bounded subring of C(X), and is 
rigidly embedded in C(X), these two f-rings have the same spaces of maximal 
ideals and also the same spaces of minimal prime ideals; (see the comments 
leading up to Proposition 3.2, as well as those preceding Proposition 1.9). So, 
rk(X, p) = rk(JJX, p), for each p E X. 

Now, suppose that rk(JJX, q) > k, for some point q E flX. This implies 
that there is a family { V(i) : 1 < i < k} of pairwise disjoint cozero sets of f,X 
so that their fiX-closures all contain q. Next, since 

Clflx V(i) = cl?x(clx(V(i) n X)), 

we have that 

n{clflx V(i):1 < i < k} = n{clflx(clx(V(i) n X)) : 1 < i < k} 

=Cl?lx(fl{clx(V(i)flx): 1 <X ik}) 

the latter identity owing to the assumption that X is normal. 
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Thus, nf{clx(V(i)fnX): 1 < i < k} I 0; on the other hand, the V(i)fnX are 
k pairwise disjoint cozero sets of X. This says that any point of X lying in all 
their closures has rank at least k . This completes the proof of the theorem. 0 

The conclusion of Theorem 5. 10 need not hold if the hypothesis of normality 
is dropped. A (Tychonoff) space X is called an F '-space if disjoint cozero sets 
have disjoint closures. Equivalently, X is an F '-space if and only if each of its 
points has rank 1. Every normal F'-space is an F-space, and in Example 8.14 
of [GH] an example is given of an F '-space Y that is not an F-space. If W is 
an F '-space that is not an F-space then fi W must have a point of rank greater 
than 1; for otherwise JJ W and hence W would be an F-space. In [D, Example 
1.10], A. Dow gives an example of a locally compact F'-space T that is not 
an F-space such that flT = T U {}oo is the union of two closed F-spaces, each 
containing 0 . Thus sup{rk(T, p) p E T} = 1 < rk(flT) = 2. (The interested 
reader may verify that for the space Y in Example 8.14 of [GH], flY contains 
a point of infinite rank.) 

In the next proposition we show that a certain class of points always have 
rank 1. 

Suppose that X is a Tychonoff space; a nonisolated point p E fiX is re- 
mote if it does not lie in the fiX-closure of any closed subset of X which is 
nowhere dense. Note that, necessarily, a remote point lies in ,BX\X. For more 
information on these points, such as an account of sufficient conditions for 
their existence and number, see [PW, 4AH]. For instance, 4AH(10) concludes 
that if X is not pseudo-compact, but has a countable ic-base, then there are 
exp(exp(Ro)) remote points. (A ic-base is a family of open sets with the feature 
that every open set contains a member of the family.) The results presented in 
4AH of [PW] originally appeared in [CS] and [vD]. 

Proposition 5.11. Suppose that X is a normal space; then every remote point of 
fiX has rank 1. 

Proof. Suppose, by way of contradiction, that p is remote and p belongs to the 
fiX-closures of both V and W, where V and W are disjoint cozero sets of 
fiX. As X is normal, p lies in the fiX-closure of clx(V n X) n clx(W n X), 
which is a closed, nowhere dense subset of X. This is a contradiction, and 
hence p must have rank 1. 0 

Example 5.12. Applying the proposition to fi Q, which according to [vD] has 
a dense set E of remote points, we see that fi Q has a dense subset of points 
of rank 1. However, since Q is a metric space, it is easy to find, for any closed, 
nowhere dense subset C C Q an infinite family of pairwise disjoint cozerosets 
of Q, all of which contain C in their closures. Now, any nonremote point of 
fi Q lies in the fi Q-closure of some such C; clearly then, every nonremote 
point of fi Q has infinite rank. Since these points include the rational numbers 
themselves, we have a space (fi Q) which is partitioned into two dense subsets: 
in one all the points have rank 1; in the other all the points have infinite rank. 

The next two results look at what happens to the ranks of points in product 
spaces. First, some local information. Recall, from Corollary 1.8.2 and the 
comment following Proposition 3.1, that if Y is a closed subspace of the com- 
pact space X, and p E intx Y, then the rank of p is the same whether one 
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computes it in X or Y. This observation makes the following fairly transpar- 
ent. 

Proposition 5.13. Suppose that X and Y are compact spaces, and p and q are 
points of X and Y respectively. Then 

(a) rk(X x Y, (p, q)) > rk(X, p)rk(Y, q). 
(b) If p is isolated, then rk(X x Y, (p, q)) = rk(Y, q). 

Sketch of Proof. (a) is an immediate consequence of 3.1. As to (b), simply note 
that an isolated point has rank 1, and that {p} x Y is clopen in the product. 0 

The estimate in part (a) in the preceding proposition can be strict; in fact, 
even the result of (b) does not hold in general for points of rank 1. The next 
theorem takes care of that. We have not been able to determine, however, 
whether (b) holds if p is a P-point of X. 

Before stating the theorem in question, we need a lemma. 

Lemma 5.14. Iko x Ihlo has infinite rank. 
Proof. Let g: fJ(co x co) -, /clo x ?clo be the Stone extension of the iden- 
tity map on co x co. By 16.11 of [CN], there exists a p E /?co\co for which 
Ig -{(P, p)}I = exp(exp(Ro)) . Let {d(i): i < co} be a countably infinite dis- 
crete subset of g{- I (p, p)}, and {A(i): i < co} be a family of pairwise disjoint, 
infinite subsets of co x col, so that the fJ(co x co) -closure of A(i) contains d(i) . 
Then it is clear that (p, p) lies in the (fco) x f.lco)-closure of each A(i), and so 
the rank of (p, p) is infinite. 0 

Theorem 5.15. If X and Y are infinite, compact F-spaces, then X x Y has 
infinite rank. 
Proof. By Proposition 5.6, both spaces contain a copy of fclo, and so X x Y 
contains a (closed) copy of /l?co x fJco . Now apply Corollary 1.8.1. 0 

We close the section with two results; the first for compact finitely F-spaces, 
where the set of points of rank 1 is dense. Like Proposition 5.6, the other shows 
that in a compact space of finite rank there are many closed subspaces which 
are F-spaces. We leave the details of the proof of the latter to the reader. 

Proposition 5.16. If X is compact and finitely an F-space, then X has an open 
and dense subset of points of rank 1. 
Proof. Suppose X = U{X(i): 1 < i < n}, where each X(i) is a compact 
F-space. Let T = U{bdx X(i): 1 < i < n}, where bdx K stands for the 
topological boundary of K. Then T is a closed nowhere dense subset of X, 
and X\T is a locally compact, dense subspace. Since each point of X\T lies 
in the interior of a closed F-subspace, its rank is 1. 0 

Proposition 5.17. Suppose that X is a compact space of rank k < x . If {V(i): 
1 < i < k} is a family of k pairwise disjoint cozerosets of X then U{cl(V(i)): 
1 < i < k} is an F-space. 

6. ANOTHER CHARACTERIZATION OF SV-ALGEBRAS AND UNSOLVED PROBLEMS 

An ideal I of an f-ring A is said to be saturated if a + b E I and ab = 0 
imply a and b are in I. Because a = (avO)-(-avO), lal = (aVO)+(-aVO), 
and (a v 0)(-a v 0) = 0, it is clear that: 
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(") If I is saturated and a E A, then a E I if and only if lal E I. 
It is easy to see that every t-ideal J of A is saturated. For, if a = b + c E J 

and bc = 0, then lal = Ibl + Icl , so Ibl < lal E J. So b is in the t-ideal 
J. Similarly, c E J. On the other hand, in any totally ordered ring, every ideal 
is saturated. So the converse of the latter need not hold in general. We can, 
however, show that: 

Theorem 6.1. Every saturated ideal of a uniformly closed SV-algebra A with 
identity is an t-ideaL 

Proof. Recall that every uniformly closedf-ring is commutative and semiprime. 
If I is an ideal of A, and M is a maximal ideal of A, let I*(M) = I* - 

(I + O(M))/O(M). We show next that: 
(t) If I is a saturated ideal of A, then I* is saturated in A/0(M). 
To see this, suppose (x+O(M))+(y+O(M)) E I* and xy E O(M) for some 

x, y E A. Then x+y = z+c for some z E I and c E O(M). If y' =y -c, 
then x + y' = z E I and xy' E O(M). By definition of O(M), there is an 
a E A+\M such that xy'a = 0. Since A is uniformly closed, there is a b > 0 
such that b2 = a. Then xb + y'b = zb E I, and (xb)(y'b) = 0. Because I is 
saturated, xb and y'b are in I. Hence xb and yb are in I + O(M). Finally, 
because b is invertible mod O(M), both x + O(M) and y + O(M) are in I*. 
So (t) holds. 

Next, we show that I* is an t-ideal. To do this, it suffices by (0) to show 
that for x, y E A/0(M), x E I* whenever 0 < x < y and y E I*. Sup- 
pose the hypothesis of the latter holds. By Theorem 2.5, y = Ek , yi, where 
{Yi, * Yk} is a set of pairwise disjoint positive special elements each of which 
is in the saturated ideal I*. Then x = Ek x A yi. Since x Ayi < yi and yi is 
special, it follows from Theorem 2.14 that there is an ai such that x A yi = aiyi 
for 1 < i < k. Hence x E I* and we know that this ideal is an t-ideal. 

We will show finally that I is an t-ideal. Because A is uniformly closed, its 
space of maximal ideals Max(A) is compact; see [HJo]. Suppose 0 < x < y E I. 
Then x + O(M) < y + O(M) E I*(M), so by the above, x + O(M) E I*(M). 
Thus, there is a YM E I with (x - YM) E O(M), and hence there is a positive 
aM V M such that (x - yM)aM = 0. Let hc(aM) = {K E Max(A) : aM V K}. 
Clearly {hc(aM) M E Max(A)} is an open cover of the compact space Max (A). 
So there is a positive integer k and maximal ideals M1, ... , Mk such that 
a = aM1 + *. + aMk is invertible and xaM, = yM,aM, for 1 < i < k. It 
follows that x = a-l EZk - yMaMi E I. By (h), this completes the proof of the 
theorem. 0 

Recall that an ideal Q of an f-ring is called pseudoprime if ab = 0 implies 
a or b is in Q. Clearly, every pseudoprime ideal is saturated. In [HL], it 
is shown that a commutative semiprime f-ring with bounded inversion is an 
SV-ring if and only every pseudoprime ideal is an t-ideal. Hence we have: 

Corollary 6.2. A uniformly closed f-algebra is an SV-algebra if and only if each 
of its saturated ideals is an t-ideal. 

Recall from 14.25 of [GJ] that X is an F-space if and only if every ideal of 
C(X) is an t-ideal. 
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The major problems we have been unable to solve follow. Suppose A is a 
uniformly closed f-algebra with identity. 

Problem 6.3. If A has finite rank, must it be an SV-algebra? It was noted in 
Section 5 that we can assume without loss of generality that A = A* = C(X) 
for some compact space X. 

Problem 6.4. If A = C(X) is an SV-algebra, and X is compact, must X be a 
finite union of compact F-spaces? 

As noted in Section 5, an affirmative answer to this question would show that 
every compact SV-space X has a dense set of points of rank 1 and hence is a 
compactification of an F '-space. 

On the other hand, we do not know the answer to: 

Problem 6.5. If A is a SV-algebra, must it have a point of rank 1? 

We conclude with a special case of Problem 6.3. 

Problem 6.6. Must the quasi-F cover QF(X) of a compact SV-space X be an 
SV-space? Recall from Proposition 5.1 that under this assumption, QF(X) has 
finite rank. 

We are unable to answer this latter question even if X is finitely an F-space. 

ADDED JULY 7, 1993 

Recently, A. Dow and R. Levy have shown (in unpublished work) that if CH 
holds, then any compact space of finite rank and weight 2'0 has a dense set of 
points of rank 1. 
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