Digital Commons@

Loyola Marymount University
LMU Loyola Law School

Biology Faculty Works Biology

6-2008

Improving the Computer Science in Bioinformatics Through Open
Source Pedagogy

John David N. Dionisio
Loyola Marymount University, dondi@Imu.edu

Kam D. Dahlquist
Loyola Marymount University, kdahlquist@Imu.edu

Follow this and additional works at: https://digitalcommons.Imu.edu/bio_fac

b Part of the Bioinformatics Commons, Biology Commons, and the Computer Sciences Commons

Digital Commons @ LMU & LLS Citation

Dionisio, John David N. and Dahlquist, Kam D., "Improving the Computer Science in Bioinformatics
Through Open Source Pedagogy" (2008). Biology Faculty Works. 21.
https://digitalcommons.Imu.edu/bio_fac/21

This Article is brought to you for free and open access by the Biology at Digital Commons @ Loyola Marymount
University and Loyola Law School. It has been accepted for inclusion in Biology Faculty Works by an authorized
administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information,
please contact digitalcommons@Imu.edu.

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/bio_fac
https://digitalcommons.lmu.edu/bio
https://digitalcommons.lmu.edu/bio_fac?utm_source=digitalcommons.lmu.edu%2Fbio_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.lmu.edu%2Fbio_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.lmu.edu%2Fbio_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lmu.edu%2Fbio_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/bio_fac/21?utm_source=digitalcommons.lmu.edu%2Fbio_fac%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu

Improving the Computer Science in Bioinformatics
Through Open Source Pedagogy

John David N. Dionisio
Department of Electrical Engineering &
Computer Science
Loyola Marymount University
Los Angeles, CA 90045, USA
dondi@Imu.edu

Kam D. Dahlquist

Department of Biology
Loyola Marymount University
Los Angeles, CA 90045, USA

kdahlquist@Imu.edu

Abstract. Bioinformatics relies more than ever on information technologies. This pressures scientists to keep up with
software development best practices. However, traditional computer science curricula do not necessarily expose
students to collaborative and long-lived software development. Using open source principles, practices, and tools
forms an effective pedagogy for software development best practices. This paper reports on a bioinformatics teaching
framework implemented through courses introducing computer science students to the field. The courses led to an
initial product release consisting of software and an Escherichia coli K12 GenMAPP Gene Database, within a total

“incubation time” of six months. (1)

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Science

Education — computer science education
General Terms: Design, Management

Keywords: Bioinformatics education, Curriculum development, Open source, Pedagogy, Scientific computing

1. SCIENTIFIC COMPUTING AND THE DIGITAL

DIVIDE
Bioinformatics is just one example of how disciplines
beyond computer science and engineering are, more than
ever, relying on computational techniques and information
technologies to conduct research and apply its results. This
trend can place undue pressure on practitioners in those
fields, who frequently have to rediscover, relearn, or keep
up with work in the computer science and software
development realms in order to get the most out of their
work. These practitioners may have little to no formal
training in these domains, resulting in unnecessary (and
sometimes unknowing) repetitions of past discoveries and
errors that could have been avoided through the use of
current best practices in software development [21]. In
some cases, this “update burden” is abandoned, and tools or
paradigms that are viewed as out-of-date in computer
science and software engineering remain in use in other
disciplines. These practitioners then fail to maximize the
potential of the computational power and technology that is
available to them. At worst, software flaws slow or impede
research. For instance, numerous researchers were affected
by the retraction of five papers published over a six-year
period due to the discovery of software flaws [13].

This “digital divide” impacts research using scientific
computing, but it has its roots in education — after all,
tomorrows scientists are todays students. If these

students are to be prepared adequately for careers in
research and industry, then today’s curricula must find
ways to help close this technological gap. One of the fields
for which this need is most pressing is biology, where
mathematical and computational skills are required to
answer the questions of 21% century biology [20].
However, addressing the digital divide requires more than
simply combining traditional biology and computer science
coursework to create a bioinformatics degree (described by
Altman [2]): pedagogical practices in computer science
itself may be disconnected from the expectations and skill
sets required of computer scientists in industry or
interdisciplinary research groups (Table 1). Computer
science undergraduates typically work alone instead of in a
team, produce isolated programs from scratch instead of
large modular projects, and throw away their code after the
assignment has been graded instead of maintaining and
improving it over an extended period of time [8].

Baxter et al. responded to the issue of the digital divide
with a list of suggested best practices for software
development in bioinformatics research [4]. These
practices include up-front project design, program and
process documentation, quality control, data standards, and
project management. Note, from Table 1, how these best
practices are missed by the traditional computer science
curriculum, yet correspond to real-world expectations in
computer science industry or research. Baxter et al. give

examples of project management software and large
bioinformatics projects that incorporate these principles.
With one exception, all of these tools and applications are

open source.

Table 1. Disparity between traditional computer science
curriculum [8] and software development best practices
in industry/research [4].

Traditional ‘Real world” .
. Best practices
computer expectations
; . for software
science (industry or
. development
curriculum research)
Students work Members work Project
alone together as teams management
Tsolated programs Large 1_nodular Up-fronF project
projects design
Program &
Code maintained process
Throw away code L
after eradin over an extended documentation;
grading period of time quality control;

data standards

The open source connection is no coincidence — open
source principles (a) foster the best practices recommended
by Baxter et al., and (b) fulfill the real-world expectations
of computer science industry and research practitioners [3].
Open source and bioinformatics make for a particularly
natural fit, since this research community has been at the
forefront of the open source movement (e.g., Open
Bioinformatics Foundation [16]). Would open source,
then, hold keys to closing the digital divide in fields such as
bioinformatics?

This paper reports on an effort to explore precisely that
question. Initially implemented in two graduate courses,
“open source pedagogy’ has resulted in a new way to teach
bioinformatics, an open source project, XMLPipeDB, that
evolved from initial conception to a released product in six
months [22], and a master’s thesis that built upon the
project to produce new versions and releases [15].

2. OPEN SOURCE: FROM SOFTWARE TO
PEDAGOGY

The open source movement has begun to influence
computer science education [10, 11]. David A. Patterson,
past president of the Association for Computing Machinery
(ACM), suggests leveraging open source software and best
practices for coursework [18]. Recourse, a curriculum
development project at Loyola Marymount University
(LMU) that is partially funded by the National Science
Foundation, is currently integrating open source elements
into the computer science curriculum [8]. The work
described in this paper was performed within the context of
that project.

The open source culture is defined by a set of software
criteria (the official Open Source Definition [17]),
community values derived from these criteria, and software
development practices and tools (Table 2 [5, 9, 19]). From
the perspective of the framework proposed by Baxter et al.
(Table 1 [4]), up-front project design, program & process
documentation, and project management are addressed by
the cultures sense of accountability and community, which
results in continuous integration and test-driven workflows
[5, 9]. Quality control emerges from the sense of
responsibility that accompanies the rights provided by open
source licenses. Finally, the availability, modifiability, and
longevity of source code facilitate data standards.

The middle column of Table 2 indicates how these
values and best practices have implications for
bioinformatics pedagogy. Source code becomes the
concrete artifact representing an effort to solve an authentic
problem with realistic complexity — a cornerstone of
science curricular reform movements such as problem-
based [1, 6] or case-based learning [14]. Nothing is thrown
away, remaining available for future students and the open
source community in general. Sufficiently large problems
require team effort [12]; thus, source code, by faculty and
students alike, must reside in a centralized, public
repository. Everyone’s work becomes visible for code
review or debugging. Quality is emphasized: students are
compelled to document and perform automated tests on
their code. An added benefit of this open source pedagogy
is that it facilitates long-term course projects beyond the
current semester and class.

Table 2. Concordance between open source values [8], an active
learning pedagogy [1, 6, 14], and open source software
development practices and tools [5, 9, 19].

Active Learning/ Open Source
Open Source . . .
Bioinformatics Practices &
Values
Pedagogy Tools
. Central code
Source code is . .
. Authentic problem repository;
available, . .
. to solve with version control;
modifiable, and A .
. realistic complexity | provenance of
long-lived
code
Task and bug
o .. trackers;
Accountability to a Participatory and CKEIS;
. continuous
developer and user | collaborative work; . 7
community peer review integration;
test-driven
workflows
e R nsibility an Documentation:
Responsibilities espons k.)l y and ocumentatio
accompany rights ownership of the in-line, user
learning process manual, Wiki

3. IMPLEMENTATION IN BIOINFORMATICS

COURSES
Computer Science 698/Biology 498: Special Studies in
Bioinformatics was an experimental course team-taught by
a biologist (K.D.D.) and a computer scientist (J.D.N.D.).
Enrollment in Spring 2006 consisted of eight students from
LMU’s graduate program in computer science. Several
students concurrently worked in industry; none of them had
more than college-level introductory biology, and most had
not taken biology since high school. Instead of attempting
to survey the broad field of bioinformatics topics [2], we
decided to focus on biological databases and to develop
software to address a need in this area. This project
became XMLPipeDB, a reusable, open source tool chain
for building relational databases from XML sources [22,
23].

The topics covered in the course were driven by the
needs of the software project. The biologist began with a
brief introduction to the entire field of bioinformatics to put
the later work in context, and the students were charged
with studying examples of several different biological
databases. The computer scientist discussed the relational
data model, XML data sources, XML-object-relational
mapping, and modeling languages. Finally, the students
were introduced to an existing bioinformatics software
package, GenMAPP (Gene Map Annotator and Pathway
Profiler), a tool for viewing and analyzing genomic and
proteomic data on biological pathways [7]. The goal of the
XMLPipeDB project was to facilitate the creation of new
GenMAPP gene databases for species that were not
currently supported by the software. This problem is
authentic, serving a research need, and was of sufficient
complexity due to the ongoing bioinformatics issue of
reliably relating gene identifiers.

Throughout this project, students were expected to
uphold the best practices advocated by Baxter et al. [4].
The students were asked to perform up-front project design
and program and process documentation. Quality control
came in the form of in-class code reviews and bug tracking.
The project itself utilized XML data standards and was
managed by the instructors with cycles of design reviews,
setting of milestones, and evaluation of results. Each
student chose their own development environment (e.g.,
Eclipse, NetBeans, text editor + ant, etc.) but worked as a
team from a SourceForge-hosted repository [23].

Because of the initial success of the bioinformatics
course, a summer session course entitled Open Source
Software Development Workshop followed, which covered
the following topics: the open source definition, open
source licenses, open source development practices and
tools, version control, test-driven development, continuous
integration, bug/task tracking, development life cycles,
documentation, community participation and roles,
comparison between open- and closed-source projects, and
the economic impact of open source development. The

workshop format used classroom meetings as coordination
and update sessions, with much of the actual work taking
place outside the classroom.

Four students continued XMLPipeDB development in
this course. Three of these students were in the prior
bioinformatics course, while one of the students was new to
the project, thus modeling the entry of new members into
an open source community. The “new member” reviewed
XMLPipeDB’s existing documentation and source code
while prior members continued with software development.
Eventually, the new member became a committer as well,
finishing the course by contributing some refinements and
a Web site “first draft” for the project.

4. SUCCESSES, CHALLENGES, AND
RECOMMENDATIONS FOR BROADER
IMPLEMENTATION

XMLPipeDB development led to its first release, a gene

database for the Escherichia coli K12 bacterium that is

formatted for use with the GenMAPP application [7],

approximately six months after the inception of the first

Special Studies in Bioinformatics course. Development

continues along two tracks: (1) applications and libraries

relating to gene databases and (2) end-user data sets culled
from various sources and transformed or formatted using
these applications and libraries. The project has also led to

a masters’ thesis that sought to automate the process of

updating and maintaining GenMAPP gene databases based

on external XML sources that are themselves updated and
modified by third parties over time; over the course of this

work, the code was also refactored and debugged as a

whole [15]. Software development continues and is visible

on SourceForge [23], with news, updates, and

documentation posted on the projects own Web site [22].
The challenges faced in teaching this course mirrored

the real world challenges of interdisciplinary research
groups. As opposed to more traditional courses in
computer science, we found as instructors that we spent as
much time managing the students as we did on the actual
technical content of the course. Although some students
took on a leadership role, we found that most of the
students — even those with industry experience — had
brought their expectations of what the course would be like
from undergraduate experiences in a traditional curriculum
and preferred to interact with the faculty rather than each
other for questions and direction, despite our exhortation
that they treat their classmates developing modules
downstream from them as customers or clients. To foster
increased communication, accountability, and a sense of
team amongst the students in the follow-up workshop
course, we demanded more rigorous adherence to the
project management tools (task and bug tracking) and
implemented weekly reporting on a Wiki. This shifted
some of the responsibility for project management back to
the students, again preparing them for real world
expectations.

Another challenge lies in project continuity,
particularly in the area of support and maintenance:
XMLPipeDB, as well as future open source projects that
are initiated under the Recourse methodology, are
essentially student-run, and thus subject to heavy turnover
at the undergraduate and masters levels. Many software
projects — open source or otherwise — face turnover as
well, and generally this is addressed by documenting the
project from multiple perspectives (introductory, tutorial,
reference, etc.) at a sufficient level of detail. With this in
mind, the instructors designated both a users manual and a
group paper on the projects functionality and its history of
design and implementation decisions as course
deliverables; for the iew member”’who joined during the
summer session course, building a project Web site
effectively introduced this student to the work and tested
the quality of the documentation that was already available.

This documentation feeds directly into assessment and
evaluation of student work. When team projects become
direct components of student coursework, then what is the
most appropriate means for evaluating individual student
performance within these projects? In this teaching
framework, a number of instruments were established for
an objective, systematic evaluation of student work. The
computer science instructor performed code reviews.
Correlating functionality to primary contributor(s) was
facilitated by repository annotations of who committed
which section of code. The students were also graded on
the aforementioned users manual and group paper by both
the biologist and computer scientist. Review by the
biologist ensured that the documentation could be
understood by a non-specialist and that the students had
delivered on the project goals, again a hallmark of
interdisciplinary research groups. Furthermore, the
students themselves were asked to evaluate the group paper
and the project’s source code as a whole — a form of peer
review. Finally, the students submitted individual

REFERENCES

“statements of work” that detailed their contributions to the
project and a self-evaluation of the quality of their work.
Thus, as with other aspects of the project, the students were
held responsible for their own assessment and evaluation.
We found that peer evaluations of student work closely
matched instructor evaluations. Overall, both the project
content and the process were a collaborative and open
effort. And despite the fact that students had varying levels
of knowledge and skills coming into the course, even the
weakest student contributed usable code. In addition,
students reported that they were attracted to the research
area of bioinformatics and that they learned practices that
they would take back to their industry jobs.

5. CONCLUSION

A framework for teaching bioinformatics based on active-
learning pedagogy and on open source principles, values,
and practices has been successfully implemented at LMU.
Students (a) participated in a real research project that
produced actual, working software and datasets, (b)
participated in collaborative, team-based learning as goes
on in real industry and academic research, and (c) took
responsibility and felt a sense of ownership for the project
and their own learning. While the project focused on the
area of biological databases, this method can be extended
to address the needs for teaching the theoretical
foundations and algorithms of bioinformatics. =~ The
particular courses mentioned in this paper included only
graduate students, but the method is also being
implemented with undergraduates as part of a broader
curriculum improvement project.

ACKNOWLEDGMENTS

We would like to thank Barbara Marino and M. Catharine
McElwain for the opportunity to team-teach these courses.
We would also like to thank John Jungck for his insight and
suggestions on reporting our work.

[1] Allen D and Tanner K (2003). Approaches to cell biology teaching: learning content in context — problem-based learning. Cell

Biology Education 2:73-81.

[2] Altman RB (1998). A curriculum for bioinformatics: the time is ripe. Bioinformatics 14:549-550.

[3] Barnett L and Schwaber CE (2004). Applying open source processes in corporate development organizations. Technical report,
Forrester Research, Inc., Cambridge, MA. http://vasoftware.com/sourceforge/request_info-dl.php?paper=9.

[4] Baxter SM, Day SW, Fetrow JS, and Reisinger SJ (2006). Scientific software development is not an oxymoron. PLoS Computational

Biology 2:¢87.

[S] Beck K, Gamma E, and Saff D (2006).
http://junit.sourceforge.net/doc/testinfected/testing. htm.

[6] BioQUEST curriculum consortium. http://www.bioquest.org.

JUnit test

infected: programmers love writing tests.

[10] Howland JE (2000).

Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, and Conklin BR (2002). GenMAPP, a new tool for viewing and analyzing
microarray data on biological pathways. Nature Genetics 31:19-20.

Dionisio JD, Dickson CL, August SE, Dorin PM, and Toal R (2007). An open source software culture in the undergraduate computer
science curriculum. ACM SIGCSE Bulletin 39(2):70-74..

Fowler M (2006). Continuous integration. http://martinfowler.com/articles/continuousIntegration.html.

Software freedom, open software and the undergraduate computer science
http://www.cs.trinity.edu/~jhowland/ccsc2000/ccsc2000/ccsc2000.html.

curriculum.

[11] Kegel D (2003). The undergrad CS program, Linux, and open source. http://www kegel.com/linux/edu/curriculum.html.

[12] Linder SP, Abbott D, and Fromberger MJ (2006). An instructional scaffolding approach to teaching software design. Journal of
Computing Science in Colleges 21:238-250.

[13] Miller G (2006). A scientistS nightmare: software problem leads to five retractions. Science 314:1856-1857.

[14] National Center for Case Study Teaching in Science. http://ublib.buffalo.edu/libraries/projects/cases/case.html.

[15] Nicholas J (2006). GenMAPP Builder 2.0: A System for the Creation of GenMAPP Gene Database Files. Masters thesis,
Department of Electrical Engineering & Computer Science, Loyola Marymount University, Los Angeles.

[16] Open Bioinformatics Foundation (2006). http://www.open-bio.org.

[17] Open Source Initiative (2006). The open source definition. http://www.opensource.org/docs/osd.

[18] Patterson DA (2006). Computer science education in the 21% century. Communications of the ACM 49:2730.

[19] Raymond ES (2001). The cathedral and the bazaar: musings on Linux and open source by an accidental revolutionary. O’Reilly
Media.

20] Steen LA (2005). Math and Bio 2010: Linking undergraduate disciplines. The Mathematical Association of America.

21] Wilson GV (2006). Wheres the real bottleneck in scientific computing? American Scientist 94:5-6.

22] XMLPipeDB home page. http://xmlpipedb.cs.lmu.edu.

23] XMLPipeDB SourceForge project site. http://sourceforge.net/projects/xmlpipedb

ENDNOTE
(1) Partial support for this work was provided by the National Science Foundations Course, Curriculum, and Laboratory Improvement
Program, Award No. 0511732.

	Improving the Computer Science in Bioinformatics Through Open Source Pedagogy
	Digital Commons @ LMU & LLS Citation

	tmp.1416462063.pdf.dgRvG

