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J. Group Theory 7 (2004), 287–310 Journal of Group Theory
( de Gruyter 2004

A new proof of a theorem of Phan

Curtis D. Bennett and Sergey Shpectorov*

(Communicated by A. V. Borovik)

Abstract. We apply diagram geometry and amalgam techniques to give a new proof of a
theorem of K.-W. Phan, characterizing the special unitary group as a group generated by cer-
tain systems of subgroups SUð2; q2Þ.

1 Introduction

Suppose that n > 2 and that q > 2 is a prime power. Consider G ¼ SUðnþ 1; q2Þ and
let Ui G SUð2; q2Þ, i ¼ 1; 2; . . . ; n, be the subgroups of G corresponding to the 2� 2
blocks along the main diagonal. Let Di be the diagonal subgroup in Ui (Di is a maxi-
mal torus of size qþ 1). Then G is generated by the subgroups Ui, and the following
hold:

(P1) if ji � jj > 1 then ½x; y� ¼ 1 for all x A Ui and y A Uj;

(P2) if ji � jj ¼ 1 then Uij ¼ hUi;Uji is isomorphic to SUð3; q2Þ; and

(P3) ½x; y� ¼ 1 for all x A Di and y A Dj.

Suppose now that G is an arbitrary group generated by subgroups Ui G SUð2; q2Þ,
i ¼ 1; 2; . . . ; n, and that a maximal torus Di of size qþ 1 is chosen in each Ui. If the
conditions (P1)–(P3) above hold for G then we will say that G contains a Phan system

of rank n, after Kok-Wee Phan, who in 1975 published the following result [8]:

Theorem 1.1. If G contains a Phan system of rank n with q > 4 then G is isomorphic to

a factor group of SUðnþ 1; q2Þ.

Those familiar with the Curtis–Tits theorem will recognize a similarity between
that theorem and Phan’s theorem. Just as the Curtis–Tits theorem was used in the
classification of the finite simple groups, being the principal means for identification
of Chevalley groups, Phan’s theorem was used for the identification of simple groups
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having a standard component of unitary type. Thus Phan’s theorem is important for
the revision of the classification led by R. Lyons and R. Solomon.

Over the years it has become apparent that the published proof of Phan’s theorem
is not entirely satisfactory. Some lemmas rely on heavy computations in the unitary
group (and, not surprisingly, the computations are omitted in the published text).
Other lemmas are given proofs that are too sketchy, so that even for a specialist it is
hard to fill in the gaps. Taking into account the importance of Phan’s theorem, it is
desirable to give it a new and complete proof, preferably one that is short and trans-
parent.

Ideas for the new proof can be found in the area of flag-transitive diagram geom-
etries and the area of amalgams of groups. In fact, Phan’s theorem can be regarded
as a characterization of the geometry N ¼ Nðn; qÞ of all proper non-singular sub-
spaces in the unitary space for SUðnþ 1; q2Þ. The relation to geometry was first ob-
served by M. Aschbacher [1]. He and K. M. Das did some work toward a new proof
of Phan’s theorem. In particular, Das [2] proved that N is simply connected when-
ever q is odd and q0 3.

In this paper we present a complete proof of Phan’s theorem. In Section 2 we de-
fine the geometry N, and in Section 3 we prove that N is simply connected if n > 3,
or n ¼ 3 and q > 3. The case ðn; qÞ ¼ ð5; 2Þ was exceptional for our proof and was
covered by a computation in GAP performed by J. Dunlap, whom we thank for this
contribution. This extends the result of Das to the case of characteristic 2, and even,
to some extent, to the cases q ¼ 2 and 3. In Sections 4–12 we carry out a careful anal-
ysis of amalgams related to Phan systems and achieve the complete classification.
This part was essentially missing from the original paper by Phan, although his the-
orem implicitly claims that the amalgam is unique.

In fact, we obtain somewhat more than Phan’s Theorem. For q > 4 our assump-
tions are slightly weaker than Phan’s. Furthermore, we fully cover the case q ¼ 4 and
obtain partial results for q ¼ 2 and q ¼ 3. We now give the exact statements of our
theorems.

We will say that subgroups U1 and U2 of SUð3; q2Þ form a standard pair whenever
each Ui is the stabilizer in SUð3; q2Þ of a non-singular vector vi (vi is then unique up
to a scalar factor) and, furthermore, v1 and v2 are perpendicular. By Witt’s theorem,
standard pairs are exactly the conjugates of the pair formed by the two subgroups
SUð2; q2Þ arising from the 2� 2 blocks on the main diagonal. Standard pairs in
PSUð3; q2Þ will be defined as the images under the natural homomorphism of the
standard pairs from SUð3; q2Þ.

We say that a group G possesses a weak Phan system if G contains subgroups
Ui G SUð2; q2Þ, i ¼ 1; 2; . . . ; n and Ui; j, 1c i < jc n so that the following hold:

(wP1) if ji � jj > 1 then Ui; j is a central product of Ui and Uj;

(wP2) for i ¼ 1; 2; . . . ; n� 1, Ui and Uiþ1 are contained in Ui; iþ1, which is isomor-
phic to SUð3; q2Þ or PSUð3; q2Þ; moreover, Ui and Uiþ1 form a standard pair
in Ui; iþ1; and

(wP3) the subgroups Ui; j, 1c i < jc n, generate G.
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We have added (wP3) instead of just saying that the subgroups Ui generate G be-
cause of the case q ¼ 2. When q ¼ 2, SUð3; 4Þ is not generated by a standard pair of
subgroups SUð2; 4Þ. This fact influenced the wording of the entire definition: we have
not introduced Ui; j as hUi;Uji precisely in order to allow for the case q ¼ 2. It is
easy to see that conditions (P2) and (P3) imply that Ui and Uiþ1 form a standard pair
in Ui; iþ1 ¼ hUi;Uiþ1i. Hence every Phan system leads to a weak Phan system. Con-
sequently, Phan’s theorem is implied by the following:

Theorem 1.2. If G contains a weak Phan system of rank n with q > 3 then G is iso-

morphic to a factor group of SUðnþ 1; q2Þ.

As we have already mentioned, the Phan system set-up forbids q ¼ 2 completely.
The formulation of (wP1)–(wP3) allows the case q ¼ 2 for weak Phan systems. Thus
Theorem 1.2 leaves us with two exceptional cases q ¼ 2 and 3 instead of one. For
these cases we prove the following:

Theorem 1.3. Suppose that G contains a weak Phan system of rank n > 3 with q ¼ 2 or

3. Suppose further that the following conditions are satisfied:

(1) for i A f1; . . . ; n� 2g, the subgroup hUi; iþ1;Uiþ1; iþ2i is isomorphic to a factor

group of SUð4; q2Þ;

(2) if q ¼ 2 then

(i) for i A f1; . . . ; ng and j A f1; . . . ; n� 1g, if i B f j � 1; j; j þ 1; j þ 2g then Ui

and Uj; jþ1 commute elementwise; and
(ii) for i A f1; . . . ; n� 1g and j A f1; . . . ; n� 1g, if i B f j � 2; j � 1; j; j þ 1; j þ 2g

then Ui; iþ1 and Uj; jþ1 commute elementwise.

Then G is isomorphic to a factor group of SUðnþ 1; q2Þ.

When q ¼ 2, there exist infinite groups G that contain weak Phan systems, and so
it seems impossible to achieve a meaningful classification of all such groups G. Thus
Theorem 1.3 appears to be best possible when q ¼ 2. A complete classification of
groups G for q ¼ 3 may be feasible. However, it is expected that, when q ¼ 3, new
examples (that is, other than the factor groups of SUðnþ 1; 3Þ) of groups with a weak
Phan system exist for all ranks n > 2, and these new examples must be constructed
before a complete classification can be attempted.

2 The geometry N

Let V be an ðnþ 1Þ-dimensional vector space over the field GFðq2Þ, equipped with
a non-degenerate unitary form. We define a pregeometry (also called an incidence
system) N ¼ Nðn; qÞ of rank n with elements of type k for k A f1; . . . ; ng, being the
non-singular subspaces of V of dimension k. Incidence in N is defined by contain-
ment. We will use the usual geometric terminology (see [9] or [6]). In particular, the
elements of N of type 1 and 2 will be called points and lines respectively. Recall that
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a pregeometry is called a geometry whenever every maximal flag contains one ele-
ment of each type.

In this section we study the basic properties of N.

Lemma 2.1. The pregeometry N is a geometry.

Proof. Let p be a point. Then every non-degenerate subspace U that properly con-
tains p bijectively corresponds to a non-degenerate subspace in p?. Namely the map
U 7! U V p? is such a bijection, establishing an isomorphism between the residue of
p and a similar pregeometry N 0 GNðn� 1; qÞ. Since every maximal flag clearly
contains a point, the induction shows that every maximal flag contains elements of all
types.

Recall that the collinearity graph G associated with N is the graph on points of N
in which two points are adjacent whenever they are incident to a common line. Fur-
ther note that a line of N contains q2 � q points.

Lemma 2.2. If L is a line and a is a point not on L, then a is collinear with at least

q2 � 2q� 1 points on L.

Proof. Let U be the 3-space ha;Li and let W ¼ U V a?. Observe that a is not col-
linear to a point b on L if and only if X ¼ ha; bi is singular. On the other hand, if X
is a singular 2-space with yHX HU then X ¼ hy; si, where s is a singular 1-space
from W (s is the radical of X ). So the lemma will follow once we show that the
number of these 1-spaces s is at most qþ 1.

Since L is a line (a non-singular 2-space), the radical of U has dimension at most 1.
Hence the radical of W also has dimension at most 1. By inspection, the number of
singular 1-spaces in W is qþ 1 if W is non-singular and 1 if W is singular.

Lemma 2.3. Suppose that nd 2. Then the diameter of G is 2 provided that

ðn; qÞ0 ð2; 2Þ.

Proof. Suppose first that nd 3 and let a and b be non-collinear points. Then ha; bi
is a singular but not totally singular subspace of V of codimension at least 2. Hence
also ha; bi? is singular but not totally singular. This means that there is a point c
perpendicular to (and hence collinear with) both a and b. Indeed ha; ci and hb; ci are
lines of N.

On the other hand, if n ¼ 2 and q > 2 then the claim immediately follows from
Lemma 2.2.

The case ðn; qÞ ¼ ð2; 2Þ is indeed an exception as G is then a disconnected union of
four 3-cliques.

Corollary 2.4. The geometry N is connected unless ðn; qÞ ¼ ð2; 2Þ. Moreover, it is

residually connected if q0 2.
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Proof. The first claim follows from Lemma 2.3, and the second claim follows from
that lemma and induction on the rank.

Observe that the group GUðnþ 1; q2Þ (i.e., GUðnþ 1; q2Þ extended by the field
automorphisms) acts on N. This action is not faithful as the scalar matrices act
trivially.

Lemma 2.5. The group SUðnþ 1; q2Þ acts flag-transitively on N.

Proof. Let G ¼ SUðnþ 1; q2Þ. It follows from Witt’s theorem that G is transitive on
points. Pick a point p. Then Gp contains SUðn; q2Þ acting on the residue of p, which
is isomorphic to Nðn� 1; qÞ. By induction Gp is flag-transitive on the residue of p

and hence G is flag-transitive on N.

To summarize our discussion, we state the following result:

Proposition 2.6. The pregeometry N is a geometry. It is connected unless

ðn; qÞ ¼ ð2; 2Þ, and it is residually connected if q0 2. The group SUðnþ 1; q2Þ acts on
N flag-transitively.

Let � �U
denote the class of rank 2 geometries Nð3; qÞ. Then the diagram of N

looks as follows:

�
q2�q�1

U �
q2�q�1

U �
q2�q�1

� � � �
q2�q�1

U �:
q2�q�1

3 Simple connectivity

The purpose of this section is to show that the geometry N is almost always simply
connected.

Proposition 3.1. Suppose that nd 3. Then the geometry N is simply connected unless

ðn; qÞ ¼ ð3; 2Þ or ð3; 3Þ.

We will prove this in a series of lemmas. Throughout the rest of this section
we assume that q > 3 or n > 3. One of our lemmas (Lemma 3.6) fails when
ðn; qÞ ¼ ð5; 2Þ. We thank J. Dunlap for verifying the simple connectedness of Nð5; 2Þ
on a computer, using GAP ([3]). Due to his computation we shall assume in what
follows that ðn; qÞ0 ð5; 2Þ.

In order to prove the proposition, we need to show that p1ðNÞ ¼ 1; that is, we
need to show that every cycle in the incidence graph of N is homotopic to the triv-
ial cycle. Recall that two cycles are called elementary homotopic if they are obtained
from one another by inserting or deleting a 2-cycle (return) or a 3-cycle. The homo-

topy relation is the transitive closure of the elementary homotopy relation.
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We will say that a cycle is geometric if it is fully contained in fagU resðaÞ for some
a A N. In other words, all vertices on a geometric cycle are incident to some fixed
element a A N.

Lemma 3.2. Every geometric cycle is homotopic to the trivial cycle.

Proof. Suppose that g ¼ x1x2 . . . xkx1 is a cycle without returns. If kc 3 then g is
homotopic to the trivial cycle by definition. So we assume that k > 3. If x1 ¼ a or
x3 ¼ a then x1 is incident to x3 and so g is homotopic to a shorter geometric cycle,
namely x1x3 . . . x1. Similarly, if x2 ¼ a or x4 ¼ a then g is homotopic to x1x2x4 . . . x1.
Finally, if a0 xi, ic 4, then g is homotopic to x1ax4 . . . x1. Thus, in all cases, g is
homotopic to a shorter geometric cycle, and the claim follows by induction.

Corollary 3.3. If two cycles are obtained from one another by inserting or deleting a

geometric cycle then they are homotopic.

Fix a point x and let it be our base-point. That is, the cycles forming p1ðNÞ begin
and end at x. Let S be the subgraph in the incidence graph of N induced by all
points and lines. For an element a A N that is neither a point nor a line, define
Sa ¼ SV resðaÞ. Thus Sa consists of all points and lines incident with a.

Lemma 3.4. Every cycle starting at x is homotopic to a cycle that is fully contained in S.

Proof. For a cycle g let sðgÞ be the number of vertices on g that are neither points
nor lines. We will prove the lemma by induction on sðgÞ. If sðgÞ ¼ 0, then g is fully
contained in S and there is nothing to prove. Assume that the claim of the lemma
holds for all g with sðgÞ < k, and let g ¼ xx1x2 . . . xmx be a cycle with sðgÞ ¼ k. Let
xi be the first vertex on g that is not contained in S. Let a be a point or a line that
is incident with both xi and xiþ1 (where we take a ¼ x if i ¼ m). Let b also be an
element of type n that is incident with xi and xiþ1. Since the types of xi�1 and a are
smaller than the type of xi, we have that b is incident with xi�1 and a. Observe that
resðbÞGNðn� 1; qÞ. Since ðn; qÞ0 ð3; 2Þ, Lemma 2.4 implies that there is a path
a from xi�1 to a that is fully contained in Sb. By Corollary 3.3, g is homotopic to
g 0 ¼ x . . . xi�2axiþ1 . . . x. Since sðg 0Þ ¼ k � 1, the claim of the lemma follows.

In view of Corollary 3.3 and Lemma 3.4, it su‰ces to show that every cycle in
S can be decomposed as a product of geometric cycles. Observe that N is a partial
linear space (that is, any two collinear points lie on a unique line). This implies that
every cycle in S can be recovered from the sequence of points on it. In fact, the cycles
in S that start from a point and that have no returns correspond bijectively to the
cycles in the collinearity graph of N (call it G), having the property that no three
consecutive points lie on the same line. This allows us to work with G rather than
with S. For an element a A N, where a is not a point, let Ga be the subgraph in G
induced by all points incident with a. We will call a cycle in G geometric if it is fully
contained in some Ga. As follows from the discussion above, we need to show that

Curtis D. Bennett and Sergey Shpectorov292



every cycle in G can be decomposed as a product of geometric cycles. We will achieve
this goal in two steps. We will first show that every triangle (3-cycle) in G can be
decomposed. After that, it su‰ces to prove that every cycle in G is a product of
triangles (and returns).

Recall that our points are non-singular 1-spaces in V . Two points a and b are
collinear if and only if the 2-space ha; bi is non-singular. In particular, the latter is
true whenever a and b are perpendicular; i.e., perpendicular points are collinear. We
are now prepared to realize our two-step plan.

Lemma 3.5. Every triangle in G is decomposable.

Proof. Let g ¼ abca be a triangle (3-cycle) in G. If the subspace U ¼ ha; b; ci is non-
singular then g is geometric. Indeed, dimV d 4 and hence U is a proper subspace. So
suppose that U is singular. Since ha; bi is a line, the radical of U is 1-dimensional.
Therefore U is contained in a non-singular 4-space. If n > 3 then that 4-space is
proper and hence g is geometric. Thus we are down to the case n ¼ 3. By assumption,
in this case we have q > 3.

We deal first with the case where two points on g (say, a and b) are perpendicular.
In this case we say that g is of perp type. Let W ¼ ha; ci?. Since ha; ci is a line, W is
non-singular, and hence it is a line, too. Clearly all points on W are collinear with a

and c. By Lemma 2.2, at least q2 � 2q� 1 of them are also collinear with b. If d is a
point on W that is collinear with b then we say that d is good if the triangle dbcd is
geometric, and that it is bad otherwise. We claim that the number of bad points is at
most qþ 1. Indeed, if d is bad then hb; c; di is non-singular with a 1-dimensional
radical s. Clearly s is a singular 1-space contained in hb; ci?, which is a line. Hence
the number of choices for s is at most qþ 1. Since hb; c; di ¼ hb; c; si, the claim fol-
lows.

Thus the number of good points is at least ðq2 � 2q� 1Þ � ðqþ 1Þ ¼ q2 � 3q� 2.
Since q > 3, good points exist, and we may let d be one of them. Since a is perpen-
dicular to b and d and since hb; di is a line, the 3-space ha; b; di is non-singular.
Hence abda is a geometric triangle. Similarly, adca is geometric, since d is perpen-
dicular to a and c. Also dbcd is geometric, since d is good. Thus abda, dbcd and adca

are all geometric and hence g ¼ abca is decomposable.
Finally, let g ¼ abca be arbitrary. Let W ¼ ha; ci?. By Lemma 2.2, at least

q2 � 2q� 1 points on W are collinear with b. Let d be one of these points. Then all
three triangles abda, dbcd and adca are of perp type. Hence all triangles g are de-
composable.

In view of this lemma, it remains to decompose an arbitrary cycle in G as a product
of triangles. By Lemma 2.3, the diameter of G is 2. By the standard argument, if the
diameter of a graph is k then every cycle in it can be decomposed as a product of
cycles of length at most 2k þ 1. Hence Proposition 3.1 will follow once we show that
4-cycles and 5-cycles in G can be decomposed as products of triangles.

Lemma 3.6. Every 4-cycle in G is decomposable.
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Proof. Let g ¼ abcda be a 4-cycle. If a is collinear with c, or b is collinear with d, then
clearly g is decomposable. So, without loss of generality, we may assume that a and c

are not neighbors, and similarly we may assume b and d are not neighbors.
Let L be a line contained in the non-singular ðn� 1Þ-space ha; bi?. If c is on

L, then it is collinear with all of the points on L. If c is not on L, then Lemma 2.2
implies that c is collinear with at least q2 � 2q� 1 points on L. In each case c is
collinear with all but at most qþ 1 points on L. Clearly the same holds for d. There-
fore there are at least ðq2 � qÞ � 2ðqþ 1Þ ¼ q2 � 3q� 2 points on L that are collinear
with both c and d. If q > 3 then q2 � 3q� 2 > 0 and hence we can choose a point e
on L that is collinear with c and d. Since L is contained in ha; bi?, e is also collinear
with a and b, and hence g is decomposable. It remains to deal with the cases q ¼ 2
and q ¼ 3. Recall that in these cases we have n > 3.

Notice that U ¼ ha; b; ci is a 3-space whose radical has dimension at most 1.
Therefore U? is not totally singular as dimV d 5. This means that there is a point e
perpendicular to a, b and c. Similarly, there is a point f perpendicular to a, d and c.
Observe that g decomposes as a product of the 4-cycle g 0 ¼ aecfa and four triangles
abea, ebce, fcdf and afda. Thus it remains to decompose g 0. If e and f are not col-
linear this is not the desired decomposition. So suppose that he; f i is singular. If
W ¼ ha; e; c; f i is 3-dimensional then W? is not totally singular, and hence there is
a point perpendicular to all four points a, e, c and f . Thus we may assume that
dimW ¼ 4. However this means that W is the orthogonal direct sum of two singular
2-spaces, ha; ci and he; f i. Hence the radical of W is of dimension 2. This shows
that dimV d 6; that is, nd 5. If dimV d 7 then W? is not totally singular, and
hence again there is a point perpendicular to all four points on g 0. Thus we may as-
sume that dimV ¼ 6. Since ðn; qÞ0 ð5; 2Þ by assumption, we then have q ¼ 3.

Observe that ha; e; ci? is 3-dimensional and its radical is 1-dimensional. Hence it
contains a line L. According to Lemma 2.2, f is collinear with a point on L, and that
point is then collinear with all of a, e, c and f .

We now deal with the 5-cycles.

Lemma 3.7. Every 5-cycle in G is decomposable.

Proof. Let g ¼ abcdea be a 5-cycle. We claim that there is a point f that is collinear
with a, c and d. Indeed, if n > 3 then ha; c; di? is not totally singular, and hence f

can be chosen in it. If n ¼ 3 then q > 3. In this case L ¼ hc; di? is a line and we can
take as f any point in L that is collinear with a. Such a point exists by Lemma 2.2,
and the claim follows.

Now it follows from Lemmas 3.5 and 3.6 that g is decomposable, since it is the
product of abcfa, fcdf and afdea.

This completes the proof of Proposition 3.1.

Before moving on to the portion of the paper using amalgams, we state and prove
a technical lemma for use in Section 12. We borrow this lemma from [4], which is
logically dependent on the results of the present paper. To avoid any questions of
circular logic, we borrow this lemma together with its proof.
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Recall that the direct sum G1 lG2 of geometries G1 and G2 is defined as follows.
The type set (respectively, element set) of G1 lG2 is the disjoint union of the type sets
(respectively, element sets) of G1 and G2. The incidence relation on G1 lG2 is given
by the incidence relations on G1 and G2 together with the extra requirement that every
element of G1 is incident with every element of G2.

Lemma 3.8. Assume that S ¼ S1 lS2 with S1 connected of rank at least 2. Then S is

simply connected.

Proof. Certainly S is connected. Choose a base-point x A S1. We first notice that
every cycle xx1 . . . xn�1x fully contained in S1 is null-homotopic. Indeed, if y A S2

then y is incident to x and every xi.
Thus it su‰ces to show that every cycle xx1 . . . xn�1x is homotopic to a cycle

contained in S1. We proceed by induction on the number of elements on the cycle
that are not in S1. Suppose that s is minimal such that xs B S1. Let y A S1 be such that
y0 xsþ1 and y is incident with xsþ1. (Recall that S1 has rank at least 2.) Notice that
y is incident with xs. Since the residue of xs contains S1 (and S1 is connected), there
exists a path xs�1 y1 . . . yk�1 y fully contained in S1. Furthermore, this path is homo-
topic to the path xs�1xs y, since all elements on it are incident with xs. Thus our origi-
nal path is homotopic to the path xx1 . . . xs�1 y1 . . . yk�1 yxsþ1 . . . xn�1x. This path has
fewer elements outside S1, and our lemma follows.

4 Amalgams: preliminaries

A general definition of an amalgam of groups can be found, say, in [10]. In this paper
we need the simplest kind of amalgams, defined as follows. An amalgam A is a set
with a partial operation of multiplication and a collection of subsets fGigi A I , such
that the following hold:

(1) A ¼ 6
i A I Gi;

(2) the product ab is defined if and only if a; b A Gi for some i A I ;

(3) the restriction of the multiplication to each Gi turns Gi into a group; and

(4) Gi VGj is a subgroup both in Gi and Gj for all i; j A I .

We call the groups Gi the members of the amalgam A. Let A ¼ 6
i A I Gi and

B ¼ 6
i A I Hi be two amalgams over the same index set I . A mapping f : A ! B is

an amalgam homomorphism if for every i A I the restriction of f to Gi is a homo-
morphism from Gi to Hi. If f is bijective and it establishes an isomorphism between
each Gi and the corresponding Hi, then f is an amalgam isomorphism. An automor-

phism of A is an isomorphism of A onto itself. As usual, the automorphisms of A
form the automorphism group, AutðAÞ.

An amalgam B ¼ 6
i A I Hi is a quotient of the amalgam A ¼ 6

i A I Gi if there is
a homomorphism f from A to B such that the restriction of f to every Gi maps Gi

onto Hi.
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A group G is called a completion of A if there exists a mapping p : A ! G such
that

(1) for all i A I the restriction of p to Gi is a homomorphism of Gi to G; and

(2) pðAÞ generates G.

Among all completions of A there is a ‘largest’ one, having the following presenta-
tion:

UðAÞ ¼ hug; g A A j uxuy ¼ uz; whenever xy ¼ z in Ai:

Since we can map A to UðAÞ via c : g 7! ug, UðAÞ is indeed a completion of A. If
G is an arbitrary completion of A and p is the corresponding mapping from A to G

then the mapping ug 7! pðgÞ leads to a surjective homomorphism p̂p from UðAÞ to G.
Thus every completion of A is an image of UðAÞ. Because of this, UðAÞ is called
the universal completion of A. We say that A collapses if UðAÞ ¼ 1. (Some adjust-
ments to this notion for the case q ¼ 2 will be necessary in Section 5.) Notice that if B
is a quotient of A then UðBÞ is (isomorphic to) a factor group of UðAÞ. In partic-
ular, if B does not collapse then neither does A.

Suppose that G is a geometry and GcAutG is a flag-transitive group. Corre-
sponding to G and G, there is an amalgam A ¼ AðG;GÞ, defined as follows. Let F
be a maximal flag in G. Define A to be the union 6

x AF Gx, where Gx denotes the
stabilizer of x in G. Since G is flag-transitive, it follows that A is independent (up to
conjugation) of the choice of F . In general, for q0F0 JF , we call GF0

a parabolic

subgroup, or just a parabolic. Parabolics are ordered by inclusion, which corresponds
to the reverse inclusion of the associated flags. The maximal parabolics are the sta-
bilizers of one-element subflags and thus we call A the amalgam of maximal para-

bolics. Notice that every parabolic GF0
is an intersection of maximal parabolics,

GF0
¼ 7

x AF0
Gx, and hence we can also view A as the union of all parabolics GF0

,
where q0F0 JF . The rank of the parabolic GF0

is defined to be the rank of the
residue of F0 in G. If the rank of G is n then the maximal parabolics have rank n� 1,
the smallest parabolic GF has rank 0 and is called the Borel subgroup, and parabolics
of rank 1 are called the minimal parabolics.

Let us conclude this section by describing the parabolics in the case of
G ¼ SUðnþ 1; q2Þ acting on our geometry N. Recall that according to Lemma 2.5,
G acts flag-transitively on N. Let E ¼ fe1; . . . ; enþ1g be an orthonormal basis in the
natural unitary space V for G. Without loss of generality, we may assume that this is
the standard basis, so that every element of G is naturally an ðnþ 1Þ � ðnþ 1Þ uni-
tary matrix. In order to define the parabolics of G, we must first choose a maximal
flag F . Let F ¼ fE1;E2; . . . ;Eng, where

Ei ¼ he1; . . . ; eii:

Notice that every subspace Ei is non-degenerate; hence F is indeed a maximal flag of
N. Choose a subflag F0 of F , say F0 ¼ fEi1 ;Ei2 ; . . . ;Eikg. Without loss we assume
that i1 < i2 < � � � < ik. This subflag corresponds to a decomposition
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V ¼ Ei1 l ðEi2 VE?
i1
Þl ðEi3 VE?

i2
Þl � � �lE?

ik
:

Let us denote the members of this decomposition by V0; . . . ;Vk, so that

Vj ¼ heijþ1; . . . ; eijþ1
i for j ¼ 0; . . . ; k;

where i0 ¼ 0 and ikþ1 ¼ nþ 1. The corresponding parabolic subgroup GF0
is the

full stabilizer of this decomposition; namely, it is a block-diagonal subgroup with
blocks of size m0 ¼ i1, m1 ¼ i2 � i1; . . . ; mk�1 ¼ ik � ik�1, mk ¼ nþ 1� ik. Because
our group is SUðnþ 1; q2Þ, the determinant of the entire matrix must be 1, and thus

GF0
G ðGUðm0; q

2Þ �GUðm1; q
2Þ � � � � �GUðmk�1; q

2Þ �GUðmk; q
2ÞÞþ:

The Borel subgroup in this case is simply the group D of diagonal matrices, and its
order is ðqþ 1Þn. The minimal parabolics arise when all but one of the blocks have
size 1, and the remaining block has size 2. Thus, a minimal parabolic is a product of
SUð2; q2Þ and D. The parabolics of rank 2, on the other hand, come in two sorts.
Either the generic matrix in the parabolic has two blocks of size 2 giving rise to a
subgroup of the form SUð2; q2Þ � SUð2; q2Þ extended by D, or the generic matrix has
one block of size 3, giving rise to a subgroup of the form SUð3; q2Þ, again extended
by D. This shows that our geometry N leads to a configuration like that of Phan.
The subgroups Ui and Ui; j from the Phan system are normal subgroups in the para-
bolics of rank 1 and rank 2, and the corresponding parabolic is always the product of
D with Ui or Ui; j .

For a more detailed discussion of amalgams and related methods see [7, Part II].

5 Phan amalgams

Our goal in this section is to translate the above into the language of amalgams and
derive a more general class of amalgams, which we call Phan amalgams and which
we shall classify.

As before, let G ¼ SUðnþ 1; q2Þ, and let V be the natural unitary space for G with
an orthonormal basis E ¼ fe1; . . . ; enþ1g. A decomposition V ¼ 0Vi is called com-

patible (with E) if each Vi is spanned by a subset of E of the form fej; ejþ1; . . . ; ekg for
some j with 1c jc kc nþ 1, exactly the decompositions we saw in the previous
section. The compatible decompositions are indexed by subsets of I ¼ f1; . . . ; ng.
Indeed, a subset J ¼ fi1 < i2 < � � � < ikg of I defines the decomposition with the fol-
lowing k þ 1 summands:

V0 ¼ he1; . . . ; ei1i; V1 ¼ hei1þ1; . . . ; ei2i; . . . ; Vk ¼ heikþ1; . . . ; enþ1i:

We denote the decomposition corresponding to the subset J by DJ . Write, as
above, F ¼ fU1;U2; . . . ;Ung, where Ui ¼ he1; . . . ; eii. If F0 ¼ fUi1 ;Ui2 ; . . . ;Uikg is
the subflag of F then the type of F0 is exactly the set J. The relation between F0

and the decomposition DJ can be described as follows. To find F0 in terms of
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DJ we set Uij ¼ 0 j�1

s¼0
Vs. Conversely, DJ is obtained from F by taking V0 ¼ Ui1 ,

V1 ¼ Ui2 VU?
i1
; . . . ; Vk�1 ¼ Uik VU?

ik�1
and Vk ¼ U?

ik
.

For a non-degenerate subspace U of V , let SUðUÞ denote the subgroup of
G consisting of all elements stabilizing U and acting trivially on U?. Clearly
SUðUÞG SUðm; q2Þ, where m ¼ dimU . For JJ I , let LJ ¼

Q
SUðViÞ where

V ¼ 0Vi is the decomposition DJ . Notice that if F0 is the subflag of F of type J,
then the parabolic GF0

is equal to LJD, where D ¼ GF is the diagonal group defined
above. The level of a subgroup LJ is by definition n� jJj, which is the size of the
complement J of J in I . Clearly the level of LJ coincides with the rank of the para-
bolic GF0

.
Let S be a subset of the power set of I ¼ f1; . . . ; ng closed under supersets (that is,

if A A S then every B with AHBJ I is also in S). The standard Phan amalgam of

shape S is the amalgam ÂAS ¼ 6
J AS LJ . In the particular case where S ¼ Sk consists

of all subsets JH I with jJjc k, we call ÂAS the standard Phan amalgam of level k

(and rank n) and we denote it by ÂAk ¼ ÂAðn; k; qÞ. This is the amalgam formed by all
subgroups LJ of level at most k. The shape Sk will be called the straight level k shape.
If SKSk then we say that S is of level (at least) k.

By an arbitrary Phan amalgam of shape S we will understand an amalgam
A ¼ 6

J AS UJ where UJ is a group isomorphic to a quotient of LJ over a subgroup
of the center of LJ . Furthermore, if JH J 0, then we require that UJ 0 be contained in
UJ , namely, that UJ 0 be the image of LJ 0 under the natural homomorphism from LJ

onto UJ .
To make our notation compatible with Phan’s, we let Ui ¼ Ufig for i A I , and

similarly we let Ui; j ¼ Ufi; jg for i; j A I , i < j.

For example, when S ¼ S2, we have the following configuration: A contains sub-
groups Ui for 1c ic n and Ui; j for 1c i < jc n, so that

(1) for i A I , Ui G SUð2; q2Þ;

(2) for i; j A I , with i < j, we have
(a) if j � i > 1 then Ui; j is a central product of Ui and Uj;
(b) if j � i ¼ 1 then Ui; j G SUð3; q2Þ or PSUð3; q2Þ; moreover Ui and Uj form a

standard pair in Ui; j.

(Notice that in (1) the group Ui cannot be isomorphic to PSUð2; q2Þ as can be seen in
Uj; jþ1 where j ¼ i or i � 1.)

If a group G contains a weak Phan system U1; . . . ;Un then A ¼ 6ði; jÞ A I Ui; j is a

Phan amalgam of level 2, where the groups Ui; iþ1 are as in (wP2) and Ui; j ¼ UiUj if
j � i > 1. This amalgam A does not collapse, because G is a quotient of its universal
completion.

The converse is also true: a Phan amalgam that does not collapse leads to a group
with a weak Phan system.

Lemma 5.1. Suppose that A is a Phan amalgam with q0 2 and of shape S with

S2 JS. Suppose further that G is a non-trivial completion of A via a mapping p. Then
pðU1Þ; . . . ; pðUnÞ form a weak Phan system in G.
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Proof. It su‰ces to see that p is injective on every Ui. Indeed, suppose that u A U #
i

and pðuÞ ¼ 1. Let j ¼ i � 1 or i þ 1. Since q0 2 we have hUi;UjiG SUð3; q2Þ,
which is quasisimple (indeed hUi;Uji is Ui; j or Uj; i). Since 10 u A Ui, we have
u B ZðhUi;UjiÞ. This implies that pðhUi;UjiÞ ¼ 1, that is, pðUiÞ ¼ 1 and pðUjÞ ¼ 1.
Clearly this leads to a contradiction. Thus p is injective on every Ui.

The conclusion of this lemma is false when q ¼ 2, since a standard pair in SUð3; 22Þ
generates in this group a normal subgroup of index 4. (See Lemma 2.3, Corollary 2.4
and the comment between them.) Since we need the conclusion of this lemma in what
follows, we modify our notion of a non-collapsing Phan amalgam. Namely, when
q ¼ 2, a Phan amalgam is called non-collapsing if there exists a completion into which
the groups Ui map injectively under the corresponding mapping p.

6 Characteristic completions

Suppose that A is an amalgam. A completion G of A is called characteristic if and
only if every automorphism of A extends to an automorphism of G. Notice that
since G is generated by (the image of ) A, the extension is unique. Clearly the uni-
versal completion is always characteristic, but there may be other characteristic com-
pletions as well. In particular, in this section we prove the following result.

Proposition 6.1. The group G ¼ SUðnþ 1; q2Þ, nd 2, is a characteristic completion of

the standard Phan amalgam ÂAS for any shape SKS2.

Later on we will show that, in most (but not all) cases, SUðnþ 1; q2Þ is the uni-
versal completion of ÂAk. To prove the above proposition we will need a lemma.

Lemma 6.2. Let G ¼ SUð3; q2Þ, and let U1, U2 be a standard pair in G. Then

(1) the joint stabilizer T in AutG of U1 and U2 is an extension of a group of order

ðqþ 1Þ2, which consists of diagonal automorphisms, by the field automorphisms;

(2) the centralizer in T of U1 is of order qþ 1.

Proof. Every automorphism of G comes from a semi-linear transformation of
the natural module. Since he3i is the only 1-dimensional subspace left invariant by
U1 and he1i is the only 1-dimensional subspace left invariant by U2, both he1i and
he3i (and hence also he2i) are stabilized by T . Since any automorphism t A T is then
the product of a diagonal matrix (over the basis fe1; e2; e3g) with a field automor-
phism f acting on the coordinates (under the same basis), taking a diagonal matrix
M ¼ diagða; a�1; 1Þ in U1, we see that for M to commute with t requires af ¼ a.
Since a is arbitrary, f is trivial, and (1) holds.

It is now clear that the centralizer in T of U1 consists of all the diagonal matrices
diagðb; b; b�2Þ and (2) holds.

We now prove Proposition 6.1.

A new proof of a theorem of Phan 299



Proof of Proposition 6.1. We begin with the case of straight level 2, the case ÂA2.
We claim that the group D of automorphisms of ÂA2 is of order ðqþ 1Þn � f where
q2 ¼ p f , p a prime. Clearly D has at least this order. Indeed the diagonal and field
automorphisms of G induce a group of this order on ÂA2. Thus we only need to show
that the order of D is at most ðqþ 1Þn � f . We argue by induction on n. We start the
induction with n ¼ 2, in which case D is the group of automorphisms of SUð3; q2Þ
stabilizing U1 and U2. Hence the claim follows from Lemma 6.2 (1) in this case. Sup-
pose that the claim holds for n ¼ k, and let n ¼ k þ 1. Let B̂B be the amalgam of
all members of ÂA2 which are contained in the upper left n� n block of G. Then B̂B
is a similar standard Phan amalgam of straight level 2 for n ¼ k, and in particular,
the claim will follow if we prove that C ¼ CDðB̂BÞ has order at most qþ 1. Let
U ¼ Ln�1;n G SUð3; q2Þ be the member of ÂA2 containing Un�1 and Un. By Lemma
6.2 (2), C induces on U a group of order at most qþ 1 since C acts trivially on Un�1.
The other members of ÂA2 that are not in B̂B are of the form Ui �Un, for i < n� 1.
Clearly every element of C that acts trivially on Un acts trivially on every such group.

Thus D has order as claimed, and as already mentioned, every element of D is
induced by an automorphism of G.

Now we consider an arbitrary shape SIS2. Observe that ÂA2 is a subamalgam of
ÂAS (that is, every member of ÂA2 is also a member of ÂAS) and hence every auto-
morphism f of ÂAS induces an automorphism c of ÂA2. By the above, c extends
uniquely to an automorphism p of G. Let H ¼ LJ be one of the members of ÂAS. We
claim that pjH ¼ fjH so that p is an extension of f. Indeed H ¼

Q
SUðViÞ, where

V ¼ 0Vi is the compatible decomposition DJ defined by J. It su‰ces to show that p
and f agree on every SUðViÞ. If dimðViÞc 3 then SUðViÞ is a member of ÂA2 and
there is nothing to show. Suppose dimðViÞ > 3. By the above K ¼ SUðViÞ is a char-
acteristic completion of the amalgam formed by all members of ÂA2 contained in K .
Thus there is a unique extension of fjK to K . This shows that p and c must agree on
K , as both are extensions of f.

Corollary 6.3. For JH I ¼ f1; . . . ; ng with jJjd 3, the group LJ is a characteristic

completion of the amalgam 6
J 0IJ

LJ 0 .

Proof. Let V ¼ 0Vi be the compatible decomposition DJ defined by J. If only one
summand Vi has dimension greater than 1, then LJ ¼ SUðViÞ, and the claim follows
immediately from Proposition 6.1. Now suppose that at least two factors of LJ are
non-trivial. Then every Hi ¼ SUðViÞ is a member of the amalgam B ¼ 6

J 0IJ
LJ 0 . So

if f is an automorphism of B, then its action on each Hi is known, and this defines a
unique automorphism c of LJ ¼

Q
Hi. Since every LJ 0 is the direct product of its

intersections with the factors Hi, it is clear that c extends f.

We will use the notion of a characteristic completion via the following technical
lemma.

Lemma 6.4. For i ¼ 1; 2, let Ai be an amalgam and let Gi be a completion of Ai via the

mapping pi. Suppose that there exist isomorphisms c : A1 ! A2 and f : G1 ! G2 such
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that fp1 ¼ p2c. If G1 is a characteristic completion of A1, then for any isomorphism

c 0 : A1 ! A2 there exists a unique isomorphism f 0 : G1 ! G2 such that f 0p1 ¼ p2c
0.

Proof. Consider a ¼ ðc 0Þ�1c. This is an automorphism of A1. Since G1 is a charac-
teristic completion, a extends to an automorphism of G1; that is, there is an auto-
morphism b of G1 such that p1a ¼ bp1. A simple check shows that f 0 ¼ fb�1 satisfies
the requirement of the lemma.

7 Unambiguous Phan amalgams

The definition of a Phan amalgam leaves some ambiguity as to what is the exact struc-
ture of each UJ . For example, in the straight level 2 case, when j � i > 1, either Ui

and Uj have trivial intersection, or they have a common central involution. Similarly,
when j � i ¼ 1, Ui; j may be either SUð3; q2Þ or PSUð3; q2Þ. Finally, the intersections
of the members of the amalgam might be larger than expected. We call a Phan amal-
gam unambiguous if (1) every UJ is isomorphic to the corresponding LJ (cf. Section
5); and (2) UJ VUJ 0 ¼ UJUJ 0 for all J and J 0.

By a covering of a Phan amalgam A ¼ 6
J AS UJ of shape S we mean a second

Phan amalgam ~AA ¼ 6
J AS

~UUJ of the same shape S, together with an amalgam ho-
momorphism p : ~AA ! A, such that p induces a surjective homomorphism of ~UUJ

onto UJ for every J A S. We call two coverings ðA1; p1Þ and ðA2; p2Þ of A equivalent

if there is an isomorphism f of A1 onto A2 such that p1 ¼ p2f.

Proposition 7.1. Every Phan amalgam A has a unique (up to the above equivalence)
unambiguous covering ~AA.

Proof. We proceed by induction on jSj, where S is the shape of A ¼ 6
J AS UJ . Our

basis is the case S ¼ q, which corresponds to an empty amalgam A. Vacuously, this
amalgam is unambiguous. Suppose now that S is a non-empty shape, and that for
every shape S 0 HS the claim holds. Let J be a minimal (under inclusion) element of
S and set S 0 ¼ SnfJg and A 0 ¼ 6

J 0 AS 0 UJ 0 . Then S 0 is a shape, and A 0 is a Phan
subamalgam in A of shape S 0.

By the inductive assumption, there is a (unique) unambiguous covering Phan
amalgam ð ~AA 0 ¼ 6

J 0 AS 0 U
0
J 0 ; p 0Þ of A 0. We will find an unambiguous covering ð ~AA; pÞ

of A by gluing a copy of LJ to ~AA 0 and by extending p 0 to the new member of
the amalgam. To glue LJ to the amalgam ~AA 0, we need to construct an isomor-
phism from the subamalgam B ¼ 6

J 0IJ
U 0

J 0 of ~AA 0 onto the corresponding amalgam
C ¼ 6

J 0IJ
LJ 0 of subgroups of LJ . By the definition of a Phan amalgam, there is a

homomorphism c from LJ onto UJ mapping C onto D ¼ 6
J 0IJ

UJ 0 . Note that D is
a Phan amalgam of shape fJ 0 j J 0 I Jg. Note further that ðB; p 0jBÞ and ðC;cjCÞ are
two unambiguous coverings of D. By induction, the uniqueness of the unambiguous
covering holds, so that there is an amalgam isomorphism f from B onto C such that
cf ¼ p 0jB. Clearly f tells us how to glue LJ to ~AA 0 to produce ~AA, and furthermore,
as p we can take the union of c and p 0. The condition cf ¼ p 0jB guarantees that c
and p 0 agree on the intersection B ¼ C (identified via f). Finally, notice that ~AA is
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an unambiguous Phan amalgam of type S, so that ð ~AA; pÞ is an unambiguous cover-
ing of A.

This completes the proof of the existence of an unambiguous covering ~AA. Now we
prove the uniqueness. Suppose that we have two such coverings ~BB ¼ 6

J AS BJ and
~CC ¼ 6

J AS CJ with corresponding amalgam homomorphism p1 and p2 onto A. Select
J as in the previous paragraph, and define S 0 ¼ SnfJg. Let A 0, ~BB 0 and ~CC 0 be the
subamalgams of shape S 0 in A, ~BB and ~CC, respectively. By induction, there exists an
isomorphism f from ~BB 0 onto ~CC 0 such that p1j ~BB 0 ¼ p2f. It su‰ces to extend f to BJ .

We have two cases. First assume that the decomposition DJ has more than one
summand of dimension greater than 1. In this case, BJ GLJ is isomorphic to a direct
product of LJ 0 and LJ 00 for suitable supersets J 0 and J 00 of J. Clearly f is already
known on BJ 0 and BJ 00 , and so f extends uniquely to BJ . Since every member BK with
KI J is a direct product of its intersections with BJ 0 and BJ 00 , this extension, which
we also denote f, will be a well-defined amalgam isomorphism from B to C, and
furthermore p2 ¼ p1f.

In the second case, DJ has a unique summand of dimension md 2. In this case
BJGCJGLJGSUðm; q2Þ. Choose an arbitrary isomorphism c : BJ ! CJ , and con-
sider the mapping a : UJ ! UJ defined by aðuÞ ¼ p2fp

�1
1 ðuÞ. Notice that a is well-

defined automorphism of UJ , because the fibers of p1 are cosets of the kernel of p1,
and f takes them to cosets of the kernel of p2 (since f takes the kernel of p1 to the
kernel of p2, these being subgroups of equal order in the cyclic centers of BJ and CJ ,
respectively). Notice that every automorphism of UJ lifts to a unique automorphism
of CJ G SUðm; q2Þ. (Indeed, with finitely many exceptions CJ is the largest perfect
central extension of UJ , implying the claim in those cases; the exceptional cases can
be verified with a case-by-case analysis.) Thus there is an automorphism b of CJ such
that p2b ¼ ap2jCJ

. Define y on BJ as b�1c. First, by definition we have p1jBJ
¼ p2y.

Next, for every J 0 I J we have that y�1fBJ 0
is a lifting to BJ 0 of the identity auto-

morphism of UJ 0 , and hence it is the identity. This shows that f and y agree on every
subgroup BJ 0 , which allows us to extend f to the entire ~BB by defining it on BJ as y.

Since A is a quotient of ~AA and A does not collapse, neither does its unambiguous
covering ~AA. We can now state our uniqueness result for the amalgams arising from
the weak Phan systems.

Theorem 7.2. If A is a non-collapsing Phan amalgam of shape SKS2 then its unique

unambiguous covering ~AA is isomorphic to the standard Phan amalgam ÂAS.

In Sections 8–10 we will prove this theorem by establishing the uniqueness of an
unambiguous non-collapsing Phan amalgam for each choice of n, q and SKS2.

8 Goldschmidt’s lemma

Let G1 and G2 be two groups and S1 and S2 be subgroups in G1 and G2 respectively
so that S1 GS2. If c is an isomorphism from S1 to S2, then we can construct an
amalgam A ¼ G1 UG2 by identifying x A S1 with cðxÞ A S2. The natural question is
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this: given G1, G2, S1 and S2, how many non-isomorphic amalgams can be con-
structed in this way when we take all possible c?

Let us fix one isomorphism c. Then any other isomorphism can be obtained by
composing c with an automorphism of S1. Let A1 be the group of those automor-
phisms of S1 which are induced by an automorphism of G1 normalizing S1. Similarly,
let A2 be the group of automorphisms of S1 obtained as follows. We take all the
automorphisms of S1 of the form c�1fc, where f is an automorphism of S2 induced
by an automorphism of G2 normalizing S2. The following is a lemma from [5]:

Lemma 8.1. The number of non-isomorphic amalgams A coincides with the number of

double cosets of A1 and A2 in AutðS1Þ.

We apply this lemma in the case where G1 GG2 G SUðn; q2Þ, nd 3, and
S1 GS2 G SUðn� 1; q2Þ. In this case, Si is embedded in Gi as the stabilizer of a
non-singular vector. Every automorphism of S1 is a product of inner, diagonal
and field automorphisms. All of these are induced by automorphisms of G1. Thus
A1 ¼ AutðS1Þ and so from the above lemma the amalgam is unique. Hence Lemma
8.1 has the following corollary:

Corollary 8.2. For nd 3, up to isomorphism there exists a unique amalgam

A¼ G1 UG2, where G1GG2GSUðn; q2Þ, S ¼ G1 VG2 is isomorphic to SUðn� 1; q2Þ,
and S is embedded in both groups Gi as the stabilizer of a non-singular vector.

9 The case nF 3

In this section and the next, we prove Theorem 7.2 for the straight level 2
case, S ¼ S2. The general case is then a simple extension using Corollary 6.3. Let
A ¼ 6ði; jÞ A I Ui; j be an unambiguous Phan amalgam of shape S2 that does not col-

lapse. We will establish the uniqueness of A up to isomorphism in a series of lemmas.
When n ¼ 2, the amalgam is unique by definition. In this section we shall deal with
the case n ¼ 3.

Let n ¼ 3. For i A f1; 2; 3g, let Li ¼ Uj;k, where fi; j; kg ¼ f1; 2; 3g and j < k.
Since A is unambiguous, each subgroup Ui coincides with Lj VLk.

Define D1 ¼ NU1
ðU2Þ (this makes sense since U1;U2 cU1;2; the same applies to

the subsequent definitions) and D3 ¼ NU3
ðU2Þ. Since U1 and U2 form a standard pair

in L3, it follows that D1 has order qþ 1, and it is a maximal torus in U1. Symmetri-
cally, D3 is a maximal torus of order qþ 1 in U3. We also define D1

2 ¼ NU2
ðU1Þ and

D3
2 ¼ NU2

ðU3Þ. Again these are maximal tori of size qþ 1 in U2. The following
lemma gives us an extra condition on A that holds because A does not collapse.

Lemma 9.1. D1
2 ¼ D3

2 .

Proof. Let G be a completion of A and let p be the corresponding mapping from A
to G. Since A is non-collapsing, we may assume that p is injective on every Ui (see
Lemma 5.1 and the subsequent comment). Observe that Di

2 ¼ CU2
ðDiÞ (viewed as
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subgroups of L4�i), for i ¼ 1; 3. Thus pðDi
2Þ ¼ CpðU2ÞðpðDiÞÞ. Since D1 and D3 com-

mute elementwise in L2, we have that pðD1Þ and pðD3Þ commute elementwise, too.
Hence pðD1

2Þ ¼ CpðU2ÞðpðD1ÞÞ must be invariant under pðD3Þ. Since U2 is invariant
under D3 (in L1) and since p is injective on U2, it follows that D

1
2 is invariant under

D3 (again as subgroups of L1).
Notice that D1

2 and D3 are both cyclic of order qþ 1. Since AutðZqþ1Þ has order
fðqþ 1Þ < qþ 1 we have that D3 contains a non-trivial element d acting trivially on
D1

2 . Now it is easy to check in L1 G SUð3; q2Þ that the only elements commuting with
d in U2 are those contained in D3

2 . Hence D1
2 ¼ D3

2 .

In view of this lemma we can use the notation D2 ¼ D1
2 ¼ D3

2 .
Recall that our goal is the uniqueness of A. Now suppose that there is a sec-

ond amalgam A 0 ¼ L 0
1 UL 0

2 UL 0
3. By Corollary 8.2, the amalgams B ¼ L1 UL3

and B 0 ¼ L 0
1 UL 0

3 are isomorphic via an amalgam isomorphism c. Clearly
cðU2Þ ¼ cðL1 VL3Þ ¼ L 0

1 VL 0
3 ¼ U 0

2: We claim that without loss of generality we
may also assume that cðU1Þ ¼ U 0

1. Indeed, by definition, U 0
1 and U 0

2 form a stan-
dard pair in L 0

3 (as U1 and U2 do in L3). This means that U 0
2 is the stabilizer of a

non-singular vector v in the natural module for L 0
3 G SUð3; q2Þ. Moreover U 0

1 is
the stabilizer of a non-singular vector u lying in v?. Since U 0

2 is transitive on non-
singular 1-spaces in v?, there must be an element g A U 0

2 such that g conjugates U 0
1

to cðU1Þ. Clearly conjugation by g is an automorphism f of the amalgam B 0.
Thus, by substituting (if necessary) c with f � c, we can indeed assume that
cðU1Þ ¼ U 0

1.
Our next goal is to show that, again up to an automorphism of B 0, we can assume

that cðU3Þ ¼ U 0
3. Let V be the natural 3-dimensional unitary space for L 0

1. Since
cðU1Þ ¼ U 0

1 and cðU2Þ ¼ U 0
2, we have cðD2Þ ¼ D 0

2 ¼ NU 0
2
ðU 0

1Þ ¼ NU 0
2
ðU 0

3Þ. Here we

use the fact that A and A 0 do not collapse (see Lemma 9.1). Observe that D 0 ¼ D 0
2

is cyclic and let d be a generator of D 0. Since D 0 cU 0
2, it fixes a non-singular vector

u A V . Also D 0 normalizes U 0
3, and hence D 0 stabilizes the 1-space hvi, where v A V is

a vector fixed by U 0
3. Notice that u and v are perpendicular, since U 0

2 and U 0
3 form a

standard pair in L 0
1. Let hwi ¼ hu; vi?. Clearly hwi is also stabilized by D 0. Hence d

is diagonal with respect to the orthogonal basis fu; v;wg, with eigenvalues 1, a, a�1.
Since d has order qþ 10 2 we have a0 a�1, and hence hui, hvi and hwi are the
only 1-spaces stabilized by D 0. Let U 00

3 be the stabilizer in L 0
1 of w.

Lemma 9.2. cðU3Þ ¼ U 0
3 or cðU3Þ ¼ U 00

3 .

Proof. Since U 0
2 and cðU3Þ form a standard pair in L 0

1 and since

D 0 ¼ cðD2Þ ¼ NU 0
2
ðcðU3ÞÞ;

we conclude that D 0 must stabilize the 1-space fixed by cðU3Þ. Clearly this 1-space
must be either hvi or hwi.

Without loss of generality, fu; v;wg is an orthonormal basis. Let g A U 0
2 have

matrix
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1 0 0

0 0 �1

0 1 0

0
B@

1
CA

with respect to the basis fu; v;wg. Conjugation by g induces on U 0
2 the same action as

the contragredient automorphism (or the field automorphism of order 2, since these
automorphisms coincide on the unitary group). Define an automorphism p of the
amalgam B 0 as follows: on L 0

1, p is the composition of the conjugation by g and the
field involution and on L3, p is the trivial automorphism. This is well defined since
the action of p on L 0

1 VL 0
3 ¼ U 0

2 is trivial in both cases. Clearly p stabilizes U 0
1 and U 0

2

and interchanges U 0
3 and U 00

3 . Thus, taking if necessary p � c in place of c, we may
assume that cðU3Þ ¼ U 0

3.

Proposition 9.3. If n ¼ 3 then the amalgam A is unique up to isomorphism.

Proof. We need to show that A and A 0 are isomorphic. By the above we have
an isomorphism c : B ! B 0 which takes every Ui to U 0

i . Since L2 ¼ U1 �U3 and
L 0
2 ¼ U 0

1 �U 0
3, c clearly extends to an isomorphism from A to A 0.

10 The case nI 3

In this section we complete the proof of the uniqueness of a non-collapsing unam-
biguous Phan amalgam A of shape S2. We prove this by induction, the case n ¼ 3
being the basis of induction. Thus we assume that the claim holds for n ¼ kd 3.
Assume that n ¼ k þ 1. Let A be a non-collapsing unambiguous Phan amalgam of
shape S2. Our first step is to extend the amalgam A by adding to it two new mem-
bers, both isomorphic to SUðn; q2Þ.

Lemma 10.1. There exists a unique amalgam B ¼ AUH1 UH2, where

Hi G SUðn; q2Þ, H1 contains and the subgroups Ui; j, 1c i < jc n� 1 and is gen-

erated by them, and similarly H2 contains the subgroups Ui; j, 2c i < jc n and is

generated by them.

Proof. Let B1 ¼ 6
1ci< jcn�1

Ui; j, B2 ¼ 6
2ci< jcn

Ui; j, and C ¼ B1 VB2. By the in-

ductive assumption, Bi is isomorphic to the amalgam found in SUðn; q2Þ. Fur-
thermore, by Proposition 6.1, SUðn; q2Þ is a characteristic completion of that amal-
gam. Thus there exists an injective amalgam homomorphism pi : Bi ! Hi, where
Hi G SUðn; q2Þ. We glue Hi to the amalgam A via pi. Notice that pi sends C into
the subgroup Ki of Hi that is isomorphic to SUðn� 1; q2Þ. Since the copies of C in
K1 and K2 are standard Phan amalgams, we have an isomorphism f : K1 ! K2

that takes p1ðCÞ to p2ðCÞ. Let c be the restriction of f to C. Consider A1 ¼ p1ðCÞ
and A2 ¼ p2ðCÞ together with their embeddings into K1 and K2. Applying Lemma
6.4 with f and c as above and c 0 ¼ p2jCðp1jCÞ

�1, there exists an isomorphism
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f 0 : K1 ! K2 such that f 0jA1
¼ c 0. Thus f 0p1 ¼ p2. Identifying K1 with K2 via f 0 we

obtain our unique amalgam B.

We now start proving the uniqueness of the amalgam A. Suppose that we have
two Phan amalgams A and A 0 (where we will use the prime notation for all groups
in A 0). Extend A and A 0 to amalgams B ¼ AUH1 UH2 and B 0 ¼ A 0 UH 0

1 UH 0
2

as in Lemma 10.1. Corollary 8.2 gives us an isomorphism f from H1 UH2 onto
H 0

1 UH 0
2. By the inductive assumption, the subgroups Ui; j with 1 < i < j < n form a

standard Phan amalgam in H1 VH2. Similarly the subgroups U 0
i; j with 1 < i < j < n

form a standard Phan amalgam in H 0
1 VH 0

2. Thus 61<i< j<n
U 0

i; j and 6
1<i< j<n

fðUi; jÞ
are standard Phan amalgams in H 0

1 VH 0
2. These amalgams correspond to two choices

of an orthonormal basis in the natural unitary space for H 0
1 VH 0

2. So adjusting f, if
necessary, by an inner automorphism of H 0

1 VH 0
2, we may assume that fðUi; jÞ ¼ U 0

i; j

for 1 < i < j < n. Notice that U1 is the centralizer in H1 of hU3; . . . ;Un�1i (and the
same is true for U 0

1 in H 0
1). Therefore fðU1Þ ¼ CH 0

1
ðhU 0

3; . . . ;U
0
n�1iÞ ¼ U 0

1. Similarly
fðUnÞ ¼ U 0

n. We claim that f extends to an isomorphism from A to A 0. Indeed, f is
already defined on all Ui; j with 1 < i < j < n. Moreover inside H 0

1 we see that fðU1; iÞ
is U 0

1; i for i < n (if q > 2 this is immediate since U1; i ¼ hU1;Uii, and if q ¼ 2, the
claim still holds, because f is induced by a semi-linear transformation between the
corresponding unitary spaces). Similarly in H 0

2 we see that fðUj;nÞ ¼ U 0
j;n. It remains

to note that U1;n is the direct product of U1 and Un so that f extends to an isomor-
phism of A to A 0. Thus we have shown

Proposition 10.2. If n > 3 then the amalgam A is unique up to isomorphism.

11 Arbitrary shape

Having completed the proof of Theorem 7.2 for the case S ¼ S2, we are now ready to
attack the general case.

Proposition 11.1. If SKS2, then ÂAS is the unique (up to isomorphism) unambiguous

non-collapsing Phan amalgam of shape S.

Proof. We just prove the uniqueness of the amalgam. Suppose that A ¼ 6
J AS UJ

and A 0 ¼ 6
J AS U

0
J are non-collapsing unambiguous Phan amalgams of shape S.

If S ¼ S2, then the claim follows from Propositions 9.3 and 10.2. Otherwise, let
J A S be such that jJj > 3 and J is minimal under inclusion. Let T ¼ SnfJg,
B ¼ 6

J 0 AT UJ 0 and B 0 ¼ 6
J 0 AT U 0

J 0 be the subamalgams of shape T of A and A 0

respectively. We can assume by induction that B and B 0 are isomorphic, so that
there is an isomorphism y : B ! B 0. Thus we need to extend y to the missing mem-
ber UJ . Let C ¼ BVUJ and C 0 ¼ B 0 VU 0

J . Observe that y establishes an isomor-
phism between C and C 0. Notice that UJ and U 0

J are isomorphic, because A and A 0

are unambiguous and hence both UJ and U 0
J are isomorphic to LJ . Furthermore,

from the definition of a Phan amalgam, an isomorphism f : UJ ! U 0
J can be chosen

so that f takes C to C 0. Applying Lemma 6.4 to amalgams C and C 0, completions UJ
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and U 0
J (for which p1 and p2 are just the inclusion mappings), and isomorphisms f

and c ¼ fjC, we obtain that, for c 0 ¼ yjC, there exists an isomorphism f 0 : UJ ! U 0
J

such that c 0 ¼ f 0jC. Here we also use Corollary 6.3, which gives us that UJ GLJ is a
characteristic completion of C.

Since yjC ¼ c 0 ¼ f 0jC, the union of y and c 0 is an amalgam isomorphism between
A and A 0.

This completes the proof of Theorem 7.2

12 The universal completion of ÂAS

In this section we complete the proofs of Theorems 1.2 and 1.3. Throughout this

section nd 3 and ðn; qÞ0 ð3; 2Þ; ð3; 3Þ. Let SðqÞ be defined as follows. If q > 3 let
SðqÞ ¼ S2, the set of all non-empty subsets JJ f1; . . . ; ng with jJjc 2. Let Sð3Þ
be obtained from S2 by adding all subsets fi; i þ 1; i þ 2g with i A f1; . . . ; n� 2g.
Finally, let Sð2Þ be obtained by adding to Sð3Þ all subsets figU f j; j þ 1g,
where i A f1; . . . ; ng, j A f1; . . . ; n� 1g and i B f j � 1; j; j þ 1; j þ 2g, and all
subsets

fi; i þ 1gU f j; j þ 1g; where i A f1; . . . ; n� 1g; j A f1; . . . ; n� 1g

and i B f j � 2; j � 1; j; j þ 1; j þ 2g: In all cases SðqÞ is closed under supersets, so
that SðqÞ is a shape as defined in Section 5.

Now the assumptions of Theorems 1.2 and 1.3 amount to the following: G con-
tains a Phan amalgam A ¼ 6

J ASðqÞ UJ of shape SðqÞ and, furthermore, G is gen-

erated by A, that is, G is a completion of A. By Proposition 7.1, A admits an
unambiguous covering ~AA. Clearly G is also a completion of ~AA, and thus ~AA is
non-collapsing. By Theorem 7.2, ~AA is isomorphic to the standard Phan amalgam
ÂASðqÞ. Thus Theorems 1.2 and 1.3 follow from the following proposition:

Proposition 12.1. For every shape SKSðqÞ, the universal completion of ÂAS is iso-

morphic to SUðnþ 1; q2Þ.

In proving Proposition 12.1, our principal tool will be the following observation
due to Tits [11].

Proposition 12.2. Let G be a group acting flag-transitively on a geometry G, and let F

be a maximal flag of G. For F0 HF let GF0
be the elementwise stabilizer of F0 in G.

Then G is the universal completion of the amalgam 6q0F0HF
GF0

if and only if G is

simply connected.

We will apply this with G equal to various residues of N ¼ Nðn; qÞ, the geometry
defined in Section 2. We select a maximal flag F ¼ fE1; . . . ;Eng of N as in Section 4.
That is, for a fixed orthonormal basis E ¼ fe1; . . . ; enþ1g, we take Ei ¼ he1; . . . ; eii.
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Proposition 12.2 and Proposition 3.1 yield that G ¼ SUðnþ 1; q2Þ is the universal
completion of the amalgam 6q0F0HF

GF0
. Recall that GF0

denotes the stabilizer in

G of the flag F0, and we call such subgroups parabolics. Notice that each subflag
F0 corresponds to a compatible (see Section 5) decomposition DJ for a subset
JJ f1; . . . ; ng. Here J is the type of the flag F0. We will also use the notation FðJÞ
for F0 when we wish to stress the type of F0.

Lemma 12.3. Suppose that S is a shape such that SKSðqÞ. Then the universal com-

pletion of the amalgam B̂BS ¼ 6
J AS GFðJÞ is isomorphic to SUðnþ 1; q2Þ.

Proof. Let ĜG be the universal completion of B̂BS. Since SUðnþ 1; q2Þ is a completion

of B̂BS it follows that B̂BS embeds into ĜG. It su‰ces to show that B̂BS can be extended
inside ĜG to the full amalgam 6q0F0HF

GF0
. By induction it su‰ces to show that

we can extend S by one new subset. Let T be a largest subset of I ¼ f1; . . . ; ng not
contained in S. Then S 0 ¼ S U fTg is again a type. Observe that the amalgam
6

JIT
GFðJÞ is fully contained in B̂BS, and this amalgam is the amalgam of all para-

bolics of GFðTÞ acting on the residue R of F ðTÞ in N (R consists of all elements x not
in FðTÞ such that fxgUF ðTÞ is again a flag). We claim that R is simply connected.
Indeed, as T is not in SðqÞ, the residue has rank kd 3. If its diagram is connected,
then R is isomorphic to the geometry Nðk; qÞ and the claim follows from Proposi-
tion 3.1. If the diagram of R has three or more connected components, then R can be
written as a direct sum of two geometries, one of which is connected. Thus the claim
follows Lemma 3.8. Finally, if the diagram of R has exactly two connected compo-
nents, then R can still be represented as a direct sum of two geometries with one of
the geometries connected. This last property is due to the assumption that SISðqÞ
and our choice for SðqÞ. Thus in all cases R is simply connected. Now Proposition
12.2 implies that the subgroup of ĜG generated by the images of all subgroups GF ðJÞ,
for JIT , is a quotient of GF ðTÞ. Since in the completion SUðnþ 1; q2Þ a similar
subgroup is isomorphic to GFðTÞ, the same assertion must hold in ĜG. Thus B̂BS extends
inside ĜG to B̂BS 0 . This establishes the result.

We now need to pass from the amalgam B̂BS to the amalgam ÂAS. Notice that every
member LJ of the amalgam ÂAS is normal in the corresponding member GFðJÞ of the
amalgam B̂BS. Furthermore, GFðJÞ is equal to LJD where D is the diagonal subgroup
in SUðnþ 1; q2Þ.

Lemma 12.4. Suppose that SKSðqÞ. Then the universal completion of B̂BS is also the

universal completion of ÂAS.

Proof. Let ~GG be the universal completion of ÂAS. Since SUðnþ 1; q2Þ is a completion

of ÂAS, the image of ÂAS in ~GG is isomorphic to ÂAS. Hence it su‰ces to show that the
image of ÂAS in ~GG can be extended to a copy of B̂BS.

Let Di be the intersection of Ui ¼ Li with the diagonal subgroup D. Notice that
D (and hence every Di) normalizes every LJ . We adopt the tilde convention, so that
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for any element x or subgroup H from ÂAS, ~xx and ~HH denote their images in ~GG. Notice
that D is not a subgroup of the amalgam ÂA, and consequently we cannot use this
convention to define ~DD; therefore we define it indirectly as follows. Let ~DD be equal to
the product of all the subgroups ~DDi. (Notice that Di H ÂAS and hence ~DDi is defined.)
We claim that ~DD is a direct product of the subgroups ~DDi, and in particular that it is
an abelian group of order ðqþ 1Þn. Indeed Di and Dj are both contained in Uij ¼ Lij

and they commute elementwise. Therefore ~DDi and ~DDj also commute elementwise. This
proves that ~DD is abelian of order at most ðqþ 1Þn. Since SUðnþ 1; q2Þ is a comple-
tion of ÂAS, and since in this completion the image of ~DD coincides with D, we see that
the size of ~DD is at least ðqþ 1Þn. This proves our claim.

In a similar spirit, for J A S define ~GGFðJÞ to be the product of the subgroups ~LLJ with
~DD. For this definition to make sense, we must show that every ~DDi normalizes ~LLJ . First
suppose that q0 2. Then LJ is generated by the subgroups Us with s B J. Inside Uis

we see that Di normalizes Us. Hence ~DDi normalizes every ~UUs, implying that ~DDi nor-
malizes ~LLJ . If q ¼ 2, then a similar proof works, using that SðqÞ contains all subsets
of the form fi; s; sþ 1g and that LJ is generated by the subgroups Us with s B J to-
gether with all subgroups Us; sþ1 where s, sþ 1 B J. Thus the subgroups ~GGFðJÞ are well
defined.

We claim that with respect to the natural homomorphism from ~GG onto
SUðnþ 1; q2Þ, ~GGFðJÞ isomorphically maps onto the group GFðJÞ. This map is clearly
surjective, and so it su‰ces to show that it is injective, or that the order of ~GGFðJÞ is at
most the order of GFðJÞ. Indeed, jGFðJÞj ¼ jDj jLJ j=jDVLJ j. Similarly,

j ~GGF ðJÞj ¼ j ~DDj j~LLJ j=j ~DDV ~LLJ j.

Notice that DVLJ is the product of the subgroups Di with i B J and so clearly
every such ~DDi is contained in ~DDV ~LLJ . Therefore j ~DDV ~LLJ jd jDVLJ j, and hence
jGF ðJÞjd j ~GGFðJÞj as desired. So we have proved that every ~GGFðJÞ is isomorphic to

GFðJÞ. Now it is clear that the natural homomorphism from ~GG onto SUðnþ 1; q2Þ
induces an isomorphism from the amalgam 6

J AS
~GGFðJÞ onto the amalgam B̂BS.

(Clearly the subgroups ~GGFðJÞ and ~GGFðJ 0Þ cannot have a smaller intersection than the
corresponding parabolics GFðJÞ and GFðJ 0Þ.) Thus we have extended the image of the

amalgam ÂAS to a copy of B̂BS. This proves that ÂAS and B̂BS have isomorphic com-
pletions.

Lemmas 12.3 and 12.4 imply Proposition 12.1, thus completing the proof of The-
orems 1.2 and 1.3.
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