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A new proof of a theorem of Phan

Curtis D. Bennett and Sergey Shpectorov*
(Communicated by A. V. Borovik)

Abstract. We apply diagram geometry and amalgam techniques to give a new proof of a
theorem of K.-W. Phan, characterizing the special unitary group as a group generated by cer-
tain systems of subgroups SU(2, ¢2).

1 Introduction

Suppose that n > 2 and that ¢ > 2 is a prime power. Consider G = SU(n + 1, ¢?) and
let U; = SU(2,4¢%),i=1,2,...,n, be the subgroups of G corresponding to the 2 x 2
blocks along the main diagonal. Let D; be the diagonal subgroup in U; (D; is a maxi-
mal torus of size ¢ + 1). Then G is generated by the subgroups U;, and the following
hold:

(P1) if i — j| > 1 then [x, y] =1 forall xe U; and y € Uj;
(P2) if |i — j| = 1 then Uy = (U, U;) is isomorphic to SU(3,¢%); and
(P3) [x,y] =1forall xe D;and y € D;.

Suppose now that G is an arbitrary group generated by subgroups U; = SU(2, ¢?),
i=1,2,...,n, and that a maximal torus D; of size ¢ + 1 is chosen in each U;. If the
conditions (P1)—(P3) above hold for G then we will say that G contains a Phan system
of rank n, after Kok-Wee Phan, who in 1975 published the following result [§]:

Theorem 1.1. If G contains a Phan system of rank n with q > 4 then G is isomorphic to
a factor group of SU(n+ 1,4?).

Those familiar with the Curtis—Tits theorem will recognize a similarity between
that theorem and Phan’s theorem. Just as the Curtis—Tits theorem was used in the
classification of the finite simple groups, being the principal means for identification
of Chevalley groups, Phan’s theorem was used for the identification of simple groups
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having a standard component of unitary type. Thus Phan’s theorem is important for
the revision of the classification led by R. Lyons and R. Solomon.

Over the years it has become apparent that the published proof of Phan’s theorem
is not entirely satisfactory. Some lemmas rely on heavy computations in the unitary
group (and, not surprisingly, the computations are omitted in the published text).
Other lemmas are given proofs that are too sketchy, so that even for a specialist it is
hard to fill in the gaps. Taking into account the importance of Phan’s theorem, it is
desirable to give it a new and complete proof, preferably one that is short and trans-
parent.

Ideas for the new proof can be found in the area of flag-transitive diagram geom-
etries and the area of amalgams of groups. In fact, Phan’s theorem can be regarded
as a characterization of the geometry 4" = A"(n,q) of all proper non-singular sub-
spaces in the unitary space for SU(n + 1, ¢?). The relation to geometry was first ob-
served by M. Aschbacher [1]. He and K. M. Das did some work toward a new proof
of Phan’s theorem. In particular, Das [2] proved that ./ is simply connected when-
ever ¢ is odd and ¢ # 3.

In this paper we present a complete proof of Phan’s theorem. In Section 2 we de-
fine the geometry ./, and in Section 3 we prove that ./" is simply connected if n > 3,
or n =73 and ¢ > 3. The case (n,¢q) = (5,2) was exceptional for our proof and was
covered by a computation in GAP performed by J. Dunlap, whom we thank for this
contribution. This extends the result of Das to the case of characteristic 2, and even,
to some extent, to the cases ¢ = 2 and 3. In Sections 4-12 we carry out a careful anal-
ysis of amalgams related to Phan systems and achieve the complete classification.
This part was essentially missing from the original paper by Phan, although his the-
orem implicitly claims that the amalgam is unique.

In fact, we obtain somewhat more than Phan’s Theorem. For ¢ > 4 our assump-
tions are slightly weaker than Phan’s. Furthermore, we fully cover the case ¢ = 4 and
obtain partial results for ¢ = 2 and ¢ = 3. We now give the exact statements of our
theorems.

We will say that subgroups U; and U, of SU(3, ¢?) form a standard pair whenever
each U; is the stabilizer in SU(3, ¢?) of a non-singular vector v; (v; is then unique up
to a scalar factor) and, furthermore, v; and v, are perpendicular. By Witt’s theorem,
standard pairs are exactly the conjugates of the pair formed by the two subgroups
SU(2,¢?) arising from the 2 x 2 blocks on the main diagonal. Standard pairs in
PSU(3,¢?) will be defined as the images under the natural homomorphism of the
standard pairs from SU(3, ¢?).

We say that a group G possesses a weak Phan system if G contains subgroups
U;~SU(22,¢°),i=1,2,...,nand U;}, | <i< j< nso that the following hold:

(wP1) if |i — j| > 1 then U;; is a central product of U; and Uj;

(wP2) fori=1,2,...,n—1, U; and Uy are contained in U; ;;;, which is isomor-
phic to SU(3, ¢?) or PSU(3, ¢?); moreover, U; and U, form a standard pair
in U; j31; and

wP3) the subgroups U; ;, 1 <i < j < n, generate G.
groups Uj ; J g
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We have added (wP3) instead of just saying that the subgroups U; generate G be-
cause of the case ¢ = 2. When ¢ = 2, SU(3,4) is not generated by a standard pair of
subgroups SU(2,4). This fact influenced the wording of the entire definition: we have
not introduced U; ; as {Uj;, U;) precisely in order to allow for the case g = 2. It is
easy to see that conditions (P2) and (P3) imply that U; and U;;; form a standard pair
in U; 41 = {U;, Ui ). Hence every Phan system leads to a weak Phan system. Con-
sequently, Phan’s theorem is implied by the following:

Theorem 1.2. If G contains a weak Phan system of rank n with q > 3 then G is iso-
morphic to a factor group of SU(n + 1,4?).

As we have already mentioned, the Phan system set-up forbids ¢ = 2 completely.
The formulation of (WP1)—(wP3) allows the case ¢ = 2 for weak Phan systems. Thus
Theorem 1.2 leaves us with two exceptional cases ¢ = 2 and 3 instead of one. For
these cases we prove the following:

Theorem 1.3. Suppose that G contains a weak Phan system of rank n > 3 with ¢ = 2 or
3. Suppose further that the following conditions are satisfied:

(1) for i€ {l,....,n—2}, the subgroup <Us 1, Usc1 2> is isomorphic to a factor
group of SU(4, ¢*);

(2) if g =2 then
(i) forie{l,...,n} and je{l,...,n—=1}, ifi¢{j—1,j,j+1,j+2} then U;
and U; 1 commute elementwise; and
() forie{l,....n—1}and je{l,....n—1} ifi¢{j—-2,j—1,/,j+1,j+2}
then U; iy1 and U; j 1 commute elementwise.

Then G is isomorphic to a factor group of SU(n + 1,¢?).

When ¢ = 2, there exist infinite groups G that contain weak Phan systems, and so
it seems impossible to achieve a meaningful classification of all such groups G. Thus
Theorem 1.3 appears to be best possible when ¢ = 2. A complete classification of
groups G for ¢ = 3 may be feasible. However, it is expected that, when ¢ = 3, new
examples (that is, other than the factor groups of SU(n + 1, 3)) of groups with a weak
Phan system exist for all ranks » > 2, and these new examples must be constructed
before a complete classification can be attempted.

2 The geometry A"

Let ¥ be an (n + 1)-dimensional vector space over the field GF(g?), equipped with
a non-degenerate unitary form. We define a pregeometry (also called an incidence
system) A" = A (n, q) of rank n with elements of type k for k € {1,...,n}, being the
non-singular subspaces of ¥ of dimension k. Incidence in ./ is defined by contain-
ment. We will use the usual geometric terminology (see [9] or [6]). In particular, the
elements of 4" of type 1 and 2 will be called points and lines respectively. Recall that
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a pregeometry is called a geometry whenever every maximal flag contains one ele-
ment of each type.
In this section we study the basic properties of /"

Lemma 2.1. The pregeometry N is a geometry.

Proof. Let p be a point. Then every non-degenerate subspace U that properly con-
tains p bijectively corresponds to a non-degenerate subspace in p*. Namely the map
U — UN pt is such a bijection, establishing an isomorphism between the residue of
p and a similar pregeometry A" =~ A"(n —1,q). Since every maximal flag clearly
contains a point, the induction shows that every maximal flag contains elements of all

types.

Recall that the collinearity graph I" associated with ./ is the graph on points of A~
in which two points are adjacent whenever they are incident to a common line. Fur-
ther note that a line of .4" contains ¢> — ¢ points.

Lemma 2.2. If L is a line and a is a point not on L, then a is collinear with at least
q*> —2q — 1 points on L.

Proof. Let U be the 3-space {a,L) and let W = UNa'. Observe that « is not col-
linear to a point » on L if and only if X = {a, b) is singular. On the other hand, if X
is a singular 2-space with y « X < U then X = {y,s), where s is a singular 1-space
from W (s is the radical of X). So the lemma will follow once we show that the
number of these 1-spaces s is at most ¢ + 1.

Since L is a line (a non-singular 2-space), the radical of U has dimension at most 1.
Hence the radical of W also has dimension at most 1. By inspection, the number of
singular 1-spaces in W is ¢ + 1 if W is non-singular and 1 if W is singular.

Lemma 2.3. Suppose that n > 2. Then the diameter of T is 2 provided that
(n,q) # (2,2).

Proof. Suppose first that n > 3 and let @ and b be non-collinear points. Then <a, b)
is a singular but not totally singular subspace of V" of codimension at least 2. Hence
also {a,b)™* is singular but not totally singular. This means that there is a point ¢
perpendicular to (and hence collinear with) both ¢ and b. Indeed <a, c) and (b, ) are
lines of A"

On the other hand, if » =2 and ¢ > 2 then the claim immediately follows from
Lemma 2.2.

The case (n,q) = (2,2) is indeed an exception as I is then a disconnected union of
four 3-cliques.

Corollary 2.4. The geometry N is connected unless (n,q) = (2,2). Moreover, it is
residually connected if q # 2.
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Proof. The first claim follows from Lemma 2.3, and the second claim follows from
that lemma and induction on the rank.

Observe that the group TU(n + 1,¢?) (i.e., GU(n+ 1,¢%) extended by the field
automorphisms) acts on /. This action is not faithful as the scalar matrices act
trivially.

Lemma 2.5. The group SU(n + 1, ¢?) acts flag-transitively on N

Proof. Let G = SU(n + 1,¢?). It follows from Witt’s theorem that G is transitive on
points. Pick a point p. Then G, contains SU(n, ¢?%) acting on the residue of p, which
is isomorphic to .#'(n — 1,¢). By induction G, is flag-transitive on the residue of p
and hence G is flag-transitive on A"

To summarize our discussion, we state the following result:

Proposition 2.6. The pregeometry N is a geometry. It is connected unless
(n,q) = (2,2), and it is residually connected if q # 2. The group SU(n + 1, q?) acts on
N flag-transitively.

Let oLo denote the class of rank 2 geometries .4/7(3, ¢). Then the diagram of .4~
looks as follows:

U U U
2 2 2 s 2
¢"—q=1 q°—q=1 ¢"—q=1  ¢"—¢q—1 q"—q-1

3 Simple connectivity

The purpose of this section is to show that the geometry 4" is almost always simply
connected.

Proposition 3.1. Suppose that n = 3. Then the geometry A" is simply connected unless
(n,9) = (3,2) or (3,3).

We will prove this in a series of lemmas. Throughout the rest of this section
we assume that ¢ >3 or n>3. One of our lemmas (Lemma 3.6) fails when
(n,q) = (5,2). We thank J. Dunlap for verifying the simple connectedness of .A(5,2)
on a computer, using GAP ([3]). Due to his computation we shall assume in what
follows that (n,q) # (5,2).

In order to prove the proposition, we need to show that 7;(./") = 1; that is, we
need to show that every cycle in the incidence graph of .4 is homotopic to the triv-
ial cycle. Recall that two cycles are called elementary homotopic if they are obtained
from one another by inserting or deleting a 2-cycle (return) or a 3-cycle. The homo-
topy relation is the transitive closure of the elementary homotopy relation.
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We will say that a cycle is geometric if it is fully contained in {a} Ures(«) for some
a € /. In other words, all vertices on a geometric cycle are incident to some fixed
element a € .

Lemma 3.2. Every geometric cycle is homotopic to the trivial cycle.

Proof. Suppose that y = x1x2...xxX; is a cycle without returns. If & < 3 then p is
homotopic to the trivial cycle by definition. So we assume that k > 3. If x; = a or
x3 = a then Xx; is incident to x3 and so y is homotopic to a shorter geometric cycle,
namely x;x3 ...x;. Similarly, if x, = a or x4, = a then y is homotopic to x;x3x4 . .. X].
Finally, if a # x;, i <4, then y is homotopic to xjaxs...x;. Thus, in all cases, y is
homotopic to a shorter geometric cycle, and the claim follows by induction.

Corollary 3.3. If two cycles are obtained from one another by inserting or deleting a
geometric cycle then they are homotopic.

Fix a point x and let it be our base-point. That is, the cycles forming 7; (/") begin
and end at x. Let £ be the subgraph in the incidence graph of ./" induced by all
points and lines. For an element a € 4" that is neither a point nor a line, define
¥, = ZNres(a). Thus X, consists of all points and lines incident with a.

Lemma 3.4. Every cycle starting at x is homotopic to a cycle that is fully contained in X.

Proof. For a cycle y let s(y) be the number of vertices on y that are neither points
nor lines. We will prove the lemma by induction on s(y). If s(y) = 0, then y is fully
contained in ¥ and there is nothing to prove. Assume that the claim of the lemma
holds for all y with s(y) < k, and let y = xx1x2 ... x;,x be a cycle with s(y) = k. Let
x; be the first vertex on y that is not contained in X. Let ¢ be a point or a line that
is incident with both x; and x;;; (where we take a = x if i = m). Let b also be an
element of type #n that is incident with x; and x;.;. Since the types of x;_; and a are
smaller than the type of x;, we have that b is incident with x;_; and a. Observe that
res(h) = A (n—1,q). Since (n,q) # (3,2), Lemma 2.4 implies that there is a path
o from x;_; to a that is fully contained in ¥,. By Corollary 3.3, y is homotopic to
p' = Xx...xi_p0X;41 ... x. Since s(y") = k — 1, the claim of the lemma follows.

In view of Corollary 3.3 and Lemma 3.4, it suffices to show that every cycle in
¥ can be decomposed as a product of geometric cycles. Observe that .4 is a partial
linear space (that is, any two collinear points liec on a unique line). This implies that
every cycle in £ can be recovered from the sequence of points on it. In fact, the cycles
in X that start from a point and that have no returns correspond bijectively to the
cycles in the collinearity graph of /" (call it I'), having the property that no three
consecutive points lie on the same line. This allows us to work with I" rather than
with 2. For an element a € ./, where « is not a point, let I, be the subgraph in T’
induced by all points incident with a. We will call a cycle in I' geometric if it is fully
contained in some I',. As follows from the discussion above, we need to show that
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every cycle in I" can be decomposed as a product of geometric cycles. We will achieve
this goal in two steps. We will first show that every triangle (3-cycle) in I' can be
decomposed. After that, it suffices to prove that every cycle in I' is a product of
triangles (and returns).

Recall that our points are non-singular 1-spaces in V. Two points ¢ and b are
collinear if and only if the 2-space <{a,b) is non-singular. In particular, the latter is
true whenever a and b are perpendicular; i.e., perpendicular points are collinear. We
are now prepared to realize our two-step plan.

Lemma 3.5. Every triangle in T is decomposable.

Proof. Let y = abca be a triangle (3-cycle) in I'. If the subspace U = {a, b, ¢) is non-
singular then y is geometric. Indeed, dim ' > 4 and hence U is a proper subspace. So
suppose that U is singular. Since {a,b) is a line, the radical of U is 1-dimensional.
Therefore U is contained in a non-singular 4-space. If n > 3 then that 4-space is
proper and hence y is geometric. Thus we are down to the case n = 3. By assumption,
in this case we have g > 3.

We deal first with the case where two points on y (say, « and b) are perpendicular.
In this case we say that y is of perp type. Let W = (a,c)*. Since {a,c) is a line, W is
non-singular, and hence it is a line, too. Clearly all points on W are collinear with a
and c¢. By Lemma 2.2, at least g> — 2¢ — 1 of them are also collinear with b. If d is a
point on W that is collinear with b then we say that d is good if the triangle dbcd is
geometric, and that it is bad otherwise. We claim that the number of bad points is at
most g + 1. Indeed, if d is bad then <{b,¢,d) is non-singular with a 1-dimensional
radical s. Clearly s is a singular 1-space contained in ¢b, ¢)*, which is a line. Hence
the number of choices for s is at most ¢ + 1. Since <{b,¢,d> = {b, ¢, s), the claim fol-
lows.

Thus the number of good points is at least (¢ —2¢ — 1) — (¢ + 1) = ¢*> — 3¢ — 2.
Since ¢ > 3, good points exist, and we may let d be one of them. Since « is perpen-
dicular to b and d and since <{b,d) is a line, the 3-space <{a,b,d) is non-singular.
Hence abda is a geometric triangle. Similarly, adca is geometric, since d is perpen-
dicular to a and c¢. Also dbcd is geometric, since d is good. Thus abda, dbcd and adca
are all geometric and hence y = abca is decomposable.

Finally, let y = abca be arbitrary. Let W = {a,c)*. By Lemma 2.2, at least
g*> — 2g — 1 points on W are collinear with b. Let d be one of these points. Then all
three triangles abda, dbcd and adca are of perp type. Hence all triangles y are de-
composable.

In view of this lemma, it remains to decompose an arbitrary cycle in I" as a product
of triangles. By Lemma 2.3, the diameter of I' is 2. By the standard argument, if the
diameter of a graph is k then every cycle in it can be decomposed as a product of
cycles of length at most 2k + 1. Hence Proposition 3.1 will follow once we show that
4-cycles and 5-cycles in I" can be decomposed as products of triangles.

Lemma 3.6. Every 4-cycle in T is decomposable.
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Proof. Let y = abcda be a 4-cycle. If a is collinear with ¢, or b is collinear with d, then
clearly y is decomposable. So, without loss of generality, we may assume that ¢ and ¢
are not neighbors, and similarly we may assume » and d are not neighbors.

Let L be a line contained in the non-singular (n — 1)-space {a,b>*. If ¢ is on
L, then it is collinear with all of the points on L. If ¢ is not on L, then Lemma 2.2
implies that c is collinear with at least g> — 2¢ — 1 points on L. In each case ¢ is
collinear with all but at most ¢ + 1 points on L. Clearly the same holds for d. There-
fore there are at least (¢> — q) —2(¢ + 1) = ¢*> — 3¢ — 2 points on L that are collinear
with both ¢ and d. If ¢ > 3 then ¢> — 3¢ — 2 > 0 and hence we can choose a point e
on L that is collinear with ¢ and d. Since L is contained in {a,b)>*, e is also collinear
with @ and b, and hence y is decomposable. It remains to deal with the cases ¢ = 2
and g = 3. Recall that in these cases we have n > 3.

Notice that U = <a,b,c) is a 3-space whose radical has dimension at most 1.
Therefore Ut is not totally singular as dim V' > 5. This means that there is a point e
perpendicular to a, b and ¢. Similarly, there is a point f perpendicular to a, d and c.
Observe that y decomposes as a product of the 4-cycle y’ = aecfa and four triangles
abea, ebce, fedf and afda. Thus it remains to decompose y’. If e and f are not col-
linear this is not the desired decomposition. So suppose that <e, /> is singular. If
W = <a,e,c, f> is 3-dimensional then W is not totally singular, and hence there is
a point perpendicular to all four points a, e, ¢ and f. Thus we may assume that
dim W = 4. However this means that I is the orthogonal direct sum of two singular
2-spaces, <a,cy and <e, f>. Hence the radical of W is of dimension 2. This shows
that dim V > 6; that is, n > 5. If dim V' > 7 then W+ is not totally singular, and
hence again there is a point perpendicular to all four points on y’. Thus we may as-
sume that dim V' = 6. Since (n, q) # (5,2) by assumption, we then have ¢ = 3.

Observe that <{a, e, c>' is 3-dimensional and its radical is 1-dimensional. Hence it
contains a line L. According to Lemma 2.2, f is collinear with a point on L, and that
point is then collinear with all of @, e, ¢ and f.

We now deal with the 5-cycles.
Lemma 3.7. Every 5-cycle in T is decomposable.

Proof. Let y = abcdea be a 5-cycle. We claim that there is a point f that is collinear
with a, ¢ and d. Indeed, if n > 3 then {a,c,d )" is not totally singular, and hence f
can be chosen in it. If # = 3 then ¢ > 3. In this case L = {c¢,d )" is a line and we can
take as f any point in L that is collinear with a. Such a point exists by Lemma 2.2,
and the claim follows.

Now it follows from Lemmas 3.5 and 3.6 that y is decomposable, since it is the
product of abcfa, fedf and afdea.

This completes the proof of Proposition 3.1.

Before moving on to the portion of the paper using amalgams, we state and prove
a technical lemma for use in Section 12. We borrow this lemma from [4], which is
logically dependent on the results of the present paper. To avoid any questions of
circular logic, we borrow this lemma together with its proof.
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Recall that the direct sum I'y @ I'; of geometries I} and I’ is defined as follows.
The type set (respectively, element set) of I} @ I is the disjoint union of the type sets
(respectively, element sets) of I} and I';. The incidence relation on I'y @ I'; is given
by the incidence relations on I'y and I'; together with the extra requirement that every
element of I’} is incident with every element of I';.

Lemma 3.8. Assume that ¥ = %) ® X, with Xy connected of rank at least 2. Then X is
simply connected.

Proof. Certainly X is connected. Choose a base-point x € ¥;. We first notice that
every cycle xxj ...x,_1x fully contained in X, is null-homotopic. Indeed, if y e %,
then y is incident to x and every Xx;.

Thus it suffices to show that every cycle xx;...x,_1x is homotopic to a cycle
contained in ;. We proceed by induction on the number of elements on the cycle
that are not in X;. Suppose that s is minimal such that x; ¢ X;. Let y € Z; be such that
y # X541 and y is incident with x;, ;. (Recall that Z; has rank at least 2.) Notice that
y is incident with x,. Since the residue of x; contains ¥; (and X, is connected), there
exists a path x;_;y; ... yr_1y fully contained in X,. Furthermore, this path is homo-
topic to the path x,_x;y, since all elements on it are incident with x;. Thus our origi-
nal path is homotopic to the path xxj ... xs—1 1 ... Yk—1YXss1 - - - Xp—1X. This path has
fewer elements outside X;, and our lemma follows.

4 Amalgams: preliminaries

A general definition of an amalgam of groups can be found, say, in [10]. In this paper
we need the simplest kind of amalgams, defined as follows. An amalgam </ is a set
with a partial operation of multiplication and a collection of subsets {G;},_;, such
that the following hold:

(1) oA = Uie] Gi;
(2) the product ab is defined if and only if a,b € G; for some i € I,

iel>

(3) the restriction of the multiplication to each G; turns G; into a group; and
(4) GiNG; is a subgroup both in G; and G, for all i, j e I.

We call the groups G; the members of the amalgam .o/. Let o7 = Uie ; Gi and
B = Uie[ H; be two amalgams over the same index set /. A mapping ¢ : o/ — £ is
an amalgam homomorphism if for every i € I the restriction of ¢ to G; is a homo-
morphism from G; to H;. If ¢ is bijective and it establishes an isomorphism between
each G; and the corresponding H;, then ¢ is an amalgam isomorphism. An automor-
phism of .o/ is an isomorphism of .7 onto itself. As usual, the automorphisms of .o/
form the automorphism group, Aut(.<7).

An amalgam % = | ),_, H; is a quotient of the amalgam . = | J,_, G; if there is
a homomorphism ¢ from .o/ to 4 such that the restriction of ¢ to every G; maps G;
onto H;.
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A group G is called a completion of ./ if there exists a mapping 7 : ./ — G such
that

(1) for all i € I the restriction of 7 to G; is a homomorphism of G; to G; and
(2) m(.o/) generates G.

Among all completions of .o/ there is a ‘largest’ one, having the following presenta-
tion:

U() = <uy,g € o | uxuy, = u, whenever xy =z in o/ ).

Since we can map ./ to U(.</) via Y : g — uy, U(/) is indeed a completion of 7. If
G is an arbitrary completion of .7 and x is the corresponding mapping from .o/ to G
then the mapping u, — 7n(g) leads to a surjective homomorphism # from U(.«/) to G.
Thus every completion of <7 is an image of U(.«/). Because of this, U(./) is called
the universal completion of /. We say that .o/ collapses if U(</) = 1. (Some adjust-
ments to this notion for the case ¢ = 2 will be necessary in Section 5.) Notice that if %
is a quotient of .« then U(4) is (isomorphic to) a factor group of U(./). In partic-
ular, if 4 does not collapse then neither does .<7.

Suppose that I' is a geometry and G < AutT is a flag-transitive group. Corre-
sponding to I' and G, there is an amalgam .o/ = o/(I', G), defined as follows. Let F
be a maximal flag in I". Define o7 to be the union Uxe r Gx, where G, denotes the
stabilizer of x in G. Since G is flag-transitive, it follows that .o/ is independent (up to
conjugation) of the choice of F. In general, for J # Fy = F, we call Gg, a parabolic
subgroup, or just a parabolic. Parabolics are ordered by inclusion, which corresponds
to the reverse inclusion of the associated flags. The maximal parabolics are the sta-
bilizers of one-element subflags and thus we call ./ the amalgam of maximal para-
bolics. Notice that every parabolic Gp, is an intersection of maximal parabolics,
Gr, = (),e 7, Ox, and hence we can also view .o/ as the union of all parabolics G,
where (J # Fy = F. The rank of the parabolic Gy, is defined to be the rank of the
residue of Fj in T'. If the rank of T" is n then the maximal parabolics have rank n — 1,
the smallest parabolic G has rank 0 and is called the Borel subgroup, and parabolics
of rank 1 are called the minimal parabolics.

Let us conclude this section by describing the parabolics in the case of
G = SU(n + 1, ¢?) acting on our geometry ./ Recall that according to Lemma 2.5,
G acts flag-transitively on 4. Let & = {ey,...,e,+1} be an orthonormal basis in the
natural unitary space V' for G. Without loss of generality, we may assume that this is
the standard basis, so that every element of G is naturally an (n+ 1) x (n+ 1) uni-
tary matrix. In order to define the parabolics of G, we must first choose a maximal
flag F. Let F = {E|, Ea, ..., E,}, where

Ei = <ela"'7ei>'

Notice that every subspace E; is non-degenerate; hence F is indeed a maximal flag of
A" Choose a subflag Fy of F, say Fy = {E;,E,,, ..., E; }. Without loss we assume

s
that i; < iy < --- < i. This subflag corresponds to a decomposition
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V=E, ®E,NE)®(E,NE.)® - ®E;.
Let us denote the members of this decomposition by V), ..., V, so that
Vi=<ejy1,--- e,y for j=0,... Kk,

where iy =0 and i1 =n+ 1. The corresponding parabolic subgroup Gp, is the
full stabilizer of this decomposition; namely, it is a block-diagonal subgroup with
blocks of size my =i;, my =i, —iy,..., mp_1 = i — ix_1, mxy =n+ 1 — i;. Because
our group is SU(n + 1, ¢?), the determinant of the entire matrix must be 1, and thus

Gr, = (GU(my,q*) x GU(my,q*) x -+ x GU(my_1,¢4*) x GU(my,q%))".

The Borel subgroup in this case is simply the group D of diagonal matrices, and its
order is (¢ + 1)". The minimal parabolics arise when all but one of the blocks have
size 1, and the remaining block has size 2. Thus, a minimal parabolic is a product of
SU(2,¢?) and D. The parabolics of rank 2, on the other hand, come in two sorts.
Either the generic matrix in the parabolic has two blocks of size 2 giving rise to a
subgroup of the form SU(2, ¢%) x SU(2, ¢*) extended by D, or the generic matrix has
one block of size 3, giving rise to a subgroup of the form SU(3, ¢%), again extended
by D. This shows that our geometry ./ leads to a configuration like that of Phan.
The subgroups U; and U; ; from the Phan system are normal subgroups in the para-
bolics of rank 1 and rank 2, and the corresponding parabolic is always the product of
D with Ul' or Ui,j-

For a more detailed discussion of amalgams and related methods see [7, Part 11].

5 Phan amalgams

Our goal in this section is to translate the above into the language of amalgams and
derive a more general class of amalgams, which we call Phan amalgams and which
we shall classify.

As before, let G = SU(n + 1,¢?), and let V be the natural unitary space for G with
an orthonormal basis & = {ey,...,e,41}. A decomposition V = P V; is called com-
patible (with &) if each V; is spanned by a subset of & of the form {¢;, ej11,...,ex} for
some j with 1 < j <k <n+ 1, exactly the decompositions we saw in the previous
section. The compatible decompositions are indexed by subsets of I ={l,...,n}.
Indeed, a subset J = {ij < i, < --- < it} of I defines the decomposition with the fol-
lowing k + 1 summands:

I/():<617"'7€i1>7 V1:<ei1+l7"'aeiz>7"'a Vk:<eik+la"'aen+l>'

We denote the decomposition corresponding to the subset J by Z;. Write, as
above, F = {U, Us,..., U,}, where U; =<ey,...,eiy. If Fpb ={U;,U,,...,U;,} is
the subflag of F then the type of Fj is exactly the set J. The relation between Fj
and the decomposition 2; can be described as follows. To find Fy in terms of
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Yy we set U = @;:_01 V;. Conversely, &, is obtained from F by taking Vy = U,
V1 = Uiszﬁy---, Vk—l = U,,(ﬂUlA . and sz Ul,\L

For a non-degenerate subspace U of V, let SU(U) denote the subgroup of
G consisting of all elements stabilizing U and acting trivially on U*. Clearly
SU(U) = SU(m,q*), where m =dimU. For J <1, let L;=][[SU(V;) where
V =P V; is the decomposition ;. Notice that if Fy is the subflag of F of type J,
then the parabolic G, is equal to L;D, where D = Gy is the diagonal group defined
above. The level of a subgroup L; is by definition n — |J|, which is the size of the
complement J of J in I. Clearly the level of L; coincides with the rank of the para-
bolic Gp,.

Let S be a subset of the power set of I = {1, ...,n} closed under supersets (that is,
if 4 €S then every B with 4 = B< [ is also in S). The standard Phan amalgam of
shape S is the amalgam .Zs = U ;s Lu. In the particular case where S = Sy consists
of all subsets J = I with |J| < k, we call s the standard Phan amalgam of level k
(and rank n) and we denote it by ./, = .o/ (n, k, q). This is the amalgam formed by all
subgroups L; of level at most k. The shape Sj will be called the straight level k shape.
If S = Sk then we say that S is of level (at least) k.

By an arbitrary Phan amalgam of shape S we will understand an amalgam
o = s Ur where Uy is a group isomorphic to a quotient of L; over a subgroup
of the center of L;. Furthermore, if J = J’, then we require that U, be contained in
Uy, namely, that U, be the image of L; under the natural homomorphism from L;
onto Uj.

To make our notation compatible with Phan’s, we let U; = U for i e I, and
similarly we let U; ; = U{ 3 fori,jel, i< j.

For example, when S = S,, we have the following configuration: .«/ contains sub-
groups U; for 1 <i<nand U, for 1 <i < j<n,so that

(1) foriel, U = SU(2,4¢%);

(2) for i, jel, with i < j, we have
(a) if j—i> 1 then U; is a central product of U; and Uj;
(b) if j —i=1then U;; = SU(3,4?) or PSU(3, ¢?); moreover U; and U; form a
standard pair in U ;.

(Notice that in (1) the group U; cannot be isomorphic to PSU(2, ¢?) as can be seen in
Uj j+1 where j=iori—1.)

If a group G contains a weak Phan system Uy,..., U, then &/ = U (ijer Uijisa
Phan amalgam of level 2, where the groups U; ;; are as in (WP2) and U; ; = U;U; if
j—1i> 1. This amalgam .o/ does not collapse, because G is a quotient of its universal
completion.

The converse is also true: a Phan amalgam that does not collapse leads to a group
with a weak Phan system.

Lemma 5.1. Suppose that </ is a Phan amalgam with q # 2 and of shape S with
S, cS. Suppo se further that G is a non-trivial completion of </ via a mapping n. Then
z(UO),...,n(U,) form a weak Phan system in G.
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Proof. Tt suffices to see that 7 is injective on every U;. Indeed, suppose that u € U¥
and n(u) = 1. Let j=i—1 or i+ 1. Since g #2 we have {(U;, U;> = SU(3,4°),
which is quasisimple (indeed <(U;, U;» is U;; or U, ;). Since 1 # u e U;, we have
u ¢ Z({U;, U;)). This implies that n(<U;, U;») = 1, that is, z(U;) = 1 and 7(U;) = 1.
Clearly this leads to a contradiction. Thus 7 is injective on every U;.

The conclusion of this lemma is false when ¢ = 2, since a standard pair in SU(3,22)
generates in this group a normal subgroup of index 4. (See Lemma 2.3, Corollary 2.4
and the comment between them.) Since we need the conclusion of this lemma in what
follows, we modify our notion of a non-collapsing Phan amalgam. Namely, when
g = 2, a Phan amalgam is called non-collapsing if there exists a completion into which
the groups U; map injectively under the corresponding mapping 7.

6 Characteristic completions

Suppose that .7 is an amalgam. A completion G of .<7 is called characteristic if and
only if every automorphism of .7 extends to an automorphism of G. Notice that
since G is generated by (the image of) o7, the extension is unique. Clearly the uni-
versal completion is always characteristic, but there may be other characteristic com-
pletions as well. In particular, in this section we prove the following result.

Proposition 6.1. The group G = SU(n + 1, q%), n = 2, is a characteristic completion of
the standard Phan amalgam /s for any shape S = S,.

Later on we will show that, in most (but not all) cases, SU(n + 1, ¢?) is the uni-
versal completion of .«7;. To prove the above proposition we will need a lemma.

Lemma 6.2. Let G = SU(3,¢?), and let Uy, U, be a standard pair in G. Then

(1) the joint stabilizer T in Aut G of U, and U, is an extension of a group of order
(g + 1)2, which consists of diagonal automorphisms, by the field automorphisms;

(2) the centralizer in T of U, is of order q + 1.

Proof. Every automorphism of G comes from a semi-linear transformation of
the natural module. Since {e3) is the only 1-dimensional subspace left invariant by
U, and {e;) is the only 1-dimensional subspace left invariant by U, both <{e;)» and
{e3) (and hence also <e,) are stabilized by 7. Since any automorphism ¢ € T is then
the product of a diagonal matrix (over the basis {e, ez, e3}) with a field automor-
phism ¢ acting on the coordinates (under the same basis), taking a diagonal matrix
M = diag(a,a',1) in Uj, we see that for M to commute with ¢ requires a? = a.
Since a is arbitrary, ¢ is trivial, and (1) holds.

It is now clear that the centralizer in T of U; consists of all the diagonal matrices
diag(h, b,b2) and (2) holds.

We now prove Proposition 6.1.
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Proof of Proposition 6.1. We begin with the case of straight level 2, the case /5.
We claim that the group D of automorphisms of .7, is of order (¢ + 1)" - / where
g*> = p/, p a prime. Clearly D has at least this order. Indeed the diagonal and field
automorphisms of G induce a group of this order on .2/>. Thus we only need to show
that the order of D is at most (¢ + 1)" - /. We argue by induction on n. We start the
induction with n = 2, in which case D is the group of automorphisms of SU(3, ¢%)
stabilizing U; and U,. Hence the claim follows from Lemma 6.2 (1) in this case. Sup-
pose that the claim holds for n =k, and let n =k + 1. Let % be the amalgam of
all members of .o/, which are contained in the upper left n x n block of G. Then %
is a similar standard Phan amalgam of straight level 2 for n = k, and in particular,
the claim will follow if we prove that C = CD(Q?) has order at most ¢+ 1. Let
U=L, 1,=SU(3,¢% be the member of .2/, containing U, | and U,. By Lemma
6.2(2), C induces on U a group of order at most ¢ + 1 since C acts trivially on U,_;.
The other members of .o/, that are not in 4 are of the form U; x U, fori<n—1.
Clearly every element of C that acts trivially on U, acts trivially on every such group.

Thus D has order as claimed, and as already mentioned, every element of D is
induced by an automorphism of G.

Now we consider an arbitrary shape S > S,. Observe that </» is a subamalgam of
s (that is, every member of .o/, is also a member of ;zig) and hence every auto-
morphism ¢ of /s induces an automorphism i of .. By the above, ¥ extends
uniquely to an automorphism 7 of G. Let H = L; be one of the members of .7s. We
claim that 7|, = ¢|, so that 7 is an extension of ¢. Indeed H = [[SU(V}), where
V = P V; is the compatible decomposition &, defined by J. It suffices to show that 7
and ¢ agree on every SU(¥;). If dim(¥;) < 3 then SU(¥}) is a member of .o/, and
there is nothing to show. Suppose dim(V;) > 3. By the above K = SU(V}) is a char-
acteristic completion of the amalgam formed by all members of .7, contained in K.
Thus there is a unique extension of ¢|, to K. This shows that z and  must agree on
K, as both are extensions of ¢.

Corollary 6.3. For J = I =1{1,...,n} with |J| =3, the group Ly is a characteristic
completion of the amalgam | J,,_, L .

Proof. Let V = @ V; be the compatible decomposition &, defined by J. If only one
summand ¥; has dimension greater than 1, then L; = SU(7}), and the claim follows
immediately from Proposition 6.1. Now suppose that at least two factors of L, are
non-trivial. Then every H; = SU(V;) is a member of the amalgam % = | J,,_, L;:. So
if ¢ is an automorphism of 4%, then its action on each H; is known, and this deﬁnes a
unique automorphism y of L; = [[ H;. Since every L, is the direct product of its
intersections with the factors H;, it is clear that i extends ¢.

We will use the notion of a characteristic completion via the following technical
lemma.

Lemma 6.4. For i = 1,2, let .of; be an amalgam and let G; be a completion of </; via the
mapping 7;. Suppose that there exist isomorphisms \y : oy — </> and ¢ : G; — G, such
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that ¢my = mop. If Gy is a characteristic completion of </), then for any isomorphism
V' of) — ot there exists a unique isomorphism ¢’ : G| — G such that ¢'n| = .

Proof. Consider o = (lp’)*‘np. This is an automorphism of .¢7. Since G is a charac-
teristic completion, o extends to an automorphism of Gj; that is, there is an auto-
morphism f of Gy such that 70 = fr;. A simple check shows that ¢’ = ¢! satisfies
the requirement of the lemma.

7 Unambiguous Phan amalgams

The definition of a Phan amalgam leaves some ambiguity as to what is the exact struc-

ture of each U;. For example, in the straight level 2 case, when j — i > 1, either U;

and U; have trivial intersection, or they have a common central involution. Similarly,

when j —i =1, U; ; may be either SU(3,¢?) or PSU(3, ¢%). Finally, the intersections

of the members of the amalgam might be larger than expected. We call a Phan amal-

gam unambiguous if (1) every Uj is isomorphic to the corresponding L, (cf. Section
5); and (2) U; N Uy = Upyy for all J and J'.

By a covering of a Phan amalgam .« = | J,_¢ Us of shape S we mean a second
Phan amalgam .o/ = U es U; of the same shape S, together with an amalgam ho-
momorphism 7 : &/ — .o/, such that 7 induces a surjective homomorphism of Uy
onto Uj for every J € S. We call two coverings (.o, 1) and (o5, ) of .of equivalent
if there is an isomorphism ¢ of .| onto .o/, such that 7; = m¢.

Proposition 7.1. Every Phan amalgam </ has a unique (up to the above equivalence)
unambiguous covering <.

Proof. We proceed by induction on |S|, where S is the shape of .o/ = | J,_¢ Us. Our
basis is the case S = J, which corresponds to an empty amalgam .«/. Vacuously, this
amalgam is unambiguous. Suppose now that S is a non-empty shape, and that for
every shape S’ = S the claim holds. Let J be a minimal (under inclusion) element of
S and set S’ = S\{J} and /' = | J,,_g, Uy. Then S’ is a shape, and /' is a Phan
subamalgam in ./ of shape S’.

By the inductive assumption, there is a (unique) unambiguous covering Phan
amalgam (/' = | es Upnn') of 7' We will find an unambiguous covering (o, )
of .o/ by gluing a copy of Ly to ./’ and by extending 7’ to the new member of
the amalgam. To glue L; to the amalgam .2/’, we need to construct an isomor-
phism from the subamalgam % = | | o, Uy of /" onto the corresponding amalgam
% =) /o, Ly of subgroups of L;. By the definition of a Phan amalgam, there is a
homomorphism  from L; onto U; mapping % onto Z = | | o, Ur. Note that 7 is
a Phan amalgam of shape {J'|J’ = J}. Note further that (#,7’|,) and (%, y|,) are
two unambiguous coverings of 2. By induction, the uniqueness of the unambiguous
covering holds, so that there is an amalgam isomorphism ¢ from % onto % such that
V¢ =7'|,. Clearly ¢ tells us how to glue Ly to </ to produce o, and furthermore,
as m we can take the union of y and n’. The condition y¢ = n’| , guarantees that
and 7’ agree on the intersection % = % (identified via ¢). Finally, notice that .« is
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an unambiguous Phan amalgam of type S, so that (.7, 7) is an unambiguous cover-
ing of 7.

This completes the proof of the existence of an unambiguous covering .»/. Now we
prove the uniqueness. Suppose that we have two such coverings B = U ;.5 Br and
¢ = U ;s Cr with corresponding amalgam homomorphism 7; and 7 onto .«/. Select
J as in the previous paragraph, and define S’ = S\{J}. Let .«#/, %' and %’ be the
subamalgams of shape S’ in .7, # and %, respectively. By 1nduct10n there exists an
isomorphism ¢ from %’ onto %’ such that 7| 4 = m¢. It suffices to extend ¢ to B;.

We have two cases. First assume that the decomposition &, has more than one
summand of dimension greater than 1. In this case, By =~ L; is isomorphic to a direct
product of Ly and Ly~ for suitable supersets J' and J” of J. Clearly ¢ is already
known on B, and B;», and so ¢ extends uniquely to B;. Since every member B with
K o J is a direct product of its intersections with By, and By, this extension, which
we also denote ¢, will be a well-defined amalgam isomorphism from # to %, and
furthermore 7, = 71 .

In the second case, QJ has a unique summand of dimension m > 2. In this case
By~ C; =~ Ly = SU(m, ¢?). Choose an arbitrary isomorphism v : B; — C;, and con-
sider the mapping o : Uy — Uy defined by a(u) = magn; ! (u). Notice that « is well-
defined automorphism of Uy, because the fibers of 7; are cosets of the kernel of 7,
and ¢ takes them to cosets of the kernel of 7, (since ¢ takes the kernel of 7; to the
kernel of 7, these being subgroups of equal order in the cyclic centers of B; and Cj,
respectively). Notice that every automorphism of Uj lifts to a unique automorphism
of C; =~ SU(m, ¢?). (Indeed, with finitely many exceptions C; is the largest perfect
central extension of Uy, implying the claim in those cases; the exceptional cases can
be verified with a case-by-case analysis.) Thus there is an automorphism f of C; such
that 7,8 = o, | ¢,- Define 6 on B; as zp First, by definition we have 7| 5, = m0.
Next, for every J' > J we have that 6~ ¢B , 1s a lifting to B, of the identity auto-
morphism of Uy, and hence it is the 1dent1ty This shows that ¢ and 6 agree on every
subgroup B;, which allows us to extend ¢ to the entire Z by defining it on B, as 6.

Since .o/ is a quotient of </ and <7 does not collapse, neither does its unambiguous
covering /. We can now state our uniqueness result for the amalgams arising from
the weak Phan systems.

Theorem 7.2. If </ is a non-collapsing Phan amalgam of shape S 2 S then its unique
unambiguous covering o is isomorphic to the standard Phan amalgam /.

In Sections 8-10 we will prove this theorem by establishing the uniqueness of an
unambiguous non-collapsing Phan amalgam for each choice of n, ¢ and S = S>.

8 Goldschmidt’s lemma

Let G; and G5 be two groups and S and S, be subgroups in G; and G, respectively
so that S} = S,. If Y is an isomorphism from S; to S,, then we can construct an
amalgam .7 = Gy U G, by identifying x € S} with ¥/(x) € S,. The natural question is
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this: given G, G, S| and S, how many non-isomorphic amalgams can be con-
structed in this way when we take all possible y/?

Let us fix one isomorphism /. Then any other isomorphism can be obtained by
composing y with an automorphism of S;. Let A; be the group of those automor-
phisms of S} which are induced by an automorphism of G| normalizing S;. Similarly,
let A, be the group of automorphisms of S| obtained as follows. We take all the
automorphisms of S| of the form y~' ¢y, where ¢ is an automorphism of S, induced
by an automorphism of G, normalizing S,. The following is a lemma from [5]:

Lemma 8.1. The number of non-isomorphic amalgams </ coincides with the number of
double cosets of Ay and A, in Aut(S)).

We apply this lemma in the case where G; =~ G, =~ SU(n,¢?), n >3, and
S; =~ S, =2SU(n—1,¢%). In this case, S; is embedded in G; as the stabilizer of a
non-singular vector. Every automorphism of S; is a product of inner, diagonal
and field automorphisms. All of these are induced by automorphisms of G;. Thus
A; = Aut(S)) and so from the above lemma the amalgam is unique. Hence Lemma
8.1 has the following corollary:

Corollary 8.2. For n =3, up to isomorphism there exists a unique amalgam
o/ = Gy UGy, where G = Gy = SU(n, ¢?), S = G N G, is isomorphic to SU(n — 1, ¢?),
and S is embedded in both groups G; as the stabilizer of a non-singular vector.

9 Thecasen=3

In this section and the next, we prove Theorem 7.2 for the straight level 2
case, S = S,. The general case is then a simple extension using Corollary 6.3. Let
o =\ (i.jer Uij be an unambiguous Phan amalgam of shape S, that does not col-
lapse. We will establish the uniqueness of .7 up to isomorphism in a series of lemmas.
When n = 2, the amalgam is unique by definition. In this section we shall deal with
the case n = 3.

Let n=3. For ie{1,2,3}, let L; = U, where {i,j,k} ={1,2,3} and j <k.
Since ./ is unambiguous, each subgroup U; coincides with L; N Ly.

Define Dy = Ny, (U>) (this makes sense since U, U, < U, »; the same applies to
the subsequent definitions) and D3 = Ny, (U). Since U; and U, form a standard pair
in L3, it follows that D; has order ¢ 4+ 1, and it is a maximal torus in U;. Symmetri-
cally, D; is a maximal torus of order ¢ + 1 in U;. We also define D} = Ny,(U,) and
D3 = Ny, (Us). Again these are maximal tori of size ¢+ 1 in U,. The following
lemma gives us an extra condition on .o/ that holds because .« does not collapse.

Lemma 9.1. D] = D3.
Proof. Let G be a completion of .7 and let  be the corresponding mapping from .o/

to G. Since .o/ is non-collapsing, we may assume that 7 is injective on every U; (see
Lemma 5.1 and the subsequent comment). Observe that D) = Cy,(D;) (viewed as
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subgroups of Ly_;), for i = 1,3. Thus (D)) = Cyv,)(n(D;)). Since Dy and D3 com-
mute elementwise in Ly, we have that z(D;) and n(D3) commute elementwise, too.
Hence 7(D3) = Cy,)(n(D1)) must be invariant under 7(Ds). Since U, is invariant
under Ds (in L;) and since # is injective on U, it follows that Dz1 1s invariant under
Dj; (again as subgroups of L;).

Notice that D} and Dj; are both cyclic of order ¢ + 1. Since Aut(Z,,) has order
#(q + 1) < g+ 1 we have that D contains a non-trivial element d acting trivially on
D). Now it is easy to check in L; = SU(3, ¢?) that the only elements commuting with
d in U, are those contained in D3. Hence D} = Dj3.

In view of this lemma we can use the notation D, = D) = D3.

Recall that our goal is the uniqueness of .o/. Now suppose that there is a sec-
ond amalgam /' = L{ULJUL}. By Corollary 8.2, the amalgams % = L; U L
and %' = L{UL} are isomorphic via an amalgam isomorphism . Clearly
Y(Uy) =y(LiNLs) =L NL; = U;. We claim that without loss of generality we
may also assume that y(U;) = U|. Indeed, by definition, U{ and U, form a stan-
dard pair in L} (as U; and U, do in L3). This means that Uj is the stabilizer of a
non-singular vector v in the natural module for L} =~ SU(3,4?). Moreover U] is
the stabilizer of a non-singular vector u lying in v*. Since Uj is transitive on non-
singular 1-spaces in v+, there must be an element g € U; such that g conjugates U/
to Y(U;). Clearly conjugation by g is an automorphism ¢ of the amalgam %’.
Thus, by substituting (if necessary) y with ¢ oy, we can indeed assume that
¥(Uh) = Uy

Our next goal is to show that, again up to an automorphism of %', we can assume
that y(Us;) = Uj. Let V be the natural 3-dimensional unitary space for L{. Since
Y(Ur) = U and y(U>) = Uj, we have (D) = Dy = Ny, (U]) = Ny, (Uy). Here we
use the fact that .7 and <" do not collapse (see Lemma 9.1). Observe that D’ = D}
is cyclic and let d be a generator of D’. Since D' < Uy, it fixes a non-singular vector
u e V. Also D' normalizes Uj, and hence D’ stabilizes the 1-space (v}, where v € V' is
a vector fixed by Us. Notice that u and v are perpendicular, since U, and U; form a
standard pair in L{. Let {w) = <u, v)*. Clearly (w) is also stabilized by D’. Hence d
is diagonal with respect to the orthogonal basis {u, v, w}, with eigenvalues 1, a, a~!.
Since d has order ¢ + 1 # 2 we have a # a!, and hence <u), {v> and {w) are the
only 1-spaces stabilized by D’. Let U;’ be the stabilizer in L] of w.

Lemma 9.2. y(U;) = Uj or y(Us) = UJ.
Proof. Since Uj and y(Us) form a standard pair in L and since
D" =y(D>) = Ny;((U3)),

we conclude that D’ must stabilize the 1-space fixed by y/(U;). Clearly this 1-space
must be either {v) or {w).

Without loss of generality, {u,v,w} is an orthonormal basis. Let g € U, have
matrix



A new proof of a theorem of Phan 305

1 0 O
0 0 -1
01 0

with respect to the basis {u, v, w}. Conjugation by g induces on U, the same action as
the contragredient automorphism (or the field automorphism of order 2, since these
automorphisms coincide on the unitary group). Define an automorphism 7 of the
amalgam %’ as follows: on L], 7 is the composition of the conjugation by g and the
field involution and on L3, 7 is the trivial automorphism. This is well defined since
the action of 7 on L] N L{ = U] is trivial in both cases. Clearly = stabilizes U{ and U,
and interchanges Uj and U;'. Thus, taking if necessary = o y in place of y, we may
assume that y(Us) = Uj.

Proposition 9.3. If n = 3 then the amalgam </ is unique up to isomorphism.

Proof. We need to show that ./ and .o/’ are isomorphic. By the above we have
an isomorphism  : 4 — %’ which takes every U; to U/. Since L, = U; x U; and
L} = U] x Uj, ¥ clearly extends to an isomorphism from ./ to .7’.

10 The case n >3

In this section we complete the proof of the uniqueness of a non-collapsing unam-
biguous Phan amalgam ./ of shape S;. We prove this by induction, the case n = 3
being the basis of induction. Thus we assume that the claim holds for n = k > 3.
Assume that n = k + 1. Let .o/ be a non-collapsing unambiguous Phan amalgam of
shape S,. Our first step is to extend the amalgam .7 by adding to it two new mem-
bers, both isomorphic to SU(n, ¢2).

Lemma 10.1. There exists a unique amalgam % = .o UH UH,, where
H; = SU(n,q*), Hy contains and the subgroups U;;, 1 <i< j<n—1 and is gen-
erated by them, and similarly H> contains the subgroups U;;, 2 <i< j<n and is
generated by them.

Proof. Let #, = Ul<i<j<n71 Uj, #> = UKKK" Ui j, and € = %, N %,. By the in-
ductive assumption, %; is isomorphic to the amalgam found in SU(n,¢?). Fur-
thermore, by Proposition 6.1, SU(n, ¢?) is a characteristic completion of that amal-
gam. Thus there exists an injective amalgam homomorphism 7; : 4; — H;, where
H; ~SU(n,¢%). We glue H; to the amalgam .o/ via 7;. Notice that 7; sends % into
the subgroup K; of H; that is isomorphic to SU(n — 1,¢?). Since the copies of % in
K; and K, are standard Phan amalgams, we have an isomorphism ¢ : K; — K5
that takes 71(%) to m2(%). Let Y be the restriction of ¢ to €. Consider /| = 7;(%)
and .o/> = m»(%) together with their embeddings into K| and K,. Applying Lemma
6.4 with ¢ and  as above and V' = nz\(g(m@)*l, there exists an isomorphism
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¢’ : Ki — K; such that ¢'| , = '. Thus ¢'n; = n,. Identifying K; with K, via ¢’ we
obtain our unique amalgam 4.

We now start proving the uniqueness of the amalgam .o/. Suppose that we have
two Phan amalgams .o/ and ./’ (where we will use the prime notation for all groups
in /'). Extend .« and /' to amalgams 4 = «/UH,UH, and 4’ = «/'UH|UH,
as in Lemma 10.1. Corollary 8.2 gives us an isomorphism ¢ from H;U H, onto
H|U Hj. By the inductive assumption, the subgroups U; ; with 1 < i < j < n form a
standard Phan amalgam in H; N H,. Similarly the subgroups U,{ jwithl <i<j<n
form a standard Phan amalgam in #{ N H;. Thus ), _,_,_, U/ ;and ), _,_;_, #(Ui ;)
are standard Phan amalgams in H{ N H;. These amalgams correspond to two choices
of an orthonormal basis in the natural unitary space for H{ N H;. So adjusting ¢, if
necessary, by an inner automorphism of H{ N H;, we may assume that ¢(U; ;) = U/,
for 1 <i < j < n. Notice that U, is the centralizer in H; of (Us,..., U,_1) (and the
same is true for U{ in Hj). Therefore ¢(U) = Cy (CUs, ..., U,_>) = UJ. Similarly
$(U,) = U). We claim that ¢ extends to an isomorphism from . to .«/’. Indeed, ¢ is
already defined on all U; ; with 1 < i < j < n. Moreover inside H{ we see that ¢(U, ;)
is U/, for i <n (if ¢ > 2 this is immediate since U, ; = (Ui, U;), and if g = 2, the
claim still holds, because ¢ is induced by a semi-linear transformation between the
corresponding unitary spaces). Similarly in H, we see that ¢(U; ,) = U; . It remains
to note that U, , is the direct product of U; and U, so that ¢ extends to an isomor-
phism of .o7 to .«/’. Thus we have shown

Proposition 10.2. If' n > 3 then the amalgam </ is unique up to isomorphism.

11 Arbitrary shape

Having completed the proof of Theorem 7.2 for the case S = S,, we are now ready to
attack the general case.

Proposition 11.1. If S 2 S, then s is the unique (up to isomorphism) unambiguous
non-collapsing Phan amalgam of shape S.

Proof. We just prove the uniqueness of the amalgam. Suppose that o/ = ( ) es Ur
and /' = s U; are non-collapsing unambiguous Phan amalgams of shape S.
If S=25,, then the claim follows from Propositions 9.3 and 10.2. Otherwise, let
J €S be such that |J| >3 and J is minimal under inclusion. Let T = S\{J},
A=\, .; Uy and 8" =\ J,,_, U}, be the subamalgams of shape T of .« and ./’
respectively. We can assume by induction that # and %’ are isomorphic, so that
there is an isomorphism 6 : # — %’'. Thus we need to extend 6 to the missing mem-
ber U;. Let 4 =#NU; and ' = %'N U/. Observe that @ establishes an isomor-
phism between % and %’. Notice that U; and U, are isomorphic, because .«/ and ./’
are unambiguous and hence both Uy and Uj are isomorphic to L,. Furthermore,
from the definition of a Phan amalgam, an isomorphism ¢ : U; — U/ can be chosen
so that ¢ takes % to 4’. Applying Lemma 6.4 to amalgams % and %', completions U;



A new proof of a theorem of Phan 307

and U/ (for which 7; and 7, are just the inclusion mappings), and isomorphisms ¢
and y = ¢|,, we obtain that, for ' = 0),, there exists an isomorphism ¢’ : Uy — Uj
such that /' = ¢'|,. Here we also use Corollary 6.3, which gives us that U; =~ L, is a
characteristic completion of €.

Since 0|, = y' = ¢'|,,, the union of @ and ' is an amalgam isomorphism between
o/ and o/’

This completes the proof of Theorem 7.2

12 The universal completion of .7

In this section we complete the proofs of Theorems 1.2 and 1.3. Throughout this
section n =3 and (n,q) # (3,2),(3,3). Let S(q) be defined as follows. If g > 3 let
S(q) = S, the set of all non-empty subsets J < {1,...,n} with |J| <2. Let S(3)
be obtained from S by adding all subsets {i,i+ 1,i+2} with ie{l,...,n—2}.
Finally, let S(2) be obtained by adding to S(3) all subsets {i}U{j,j+ 1},
where ie{l,...,n}, je{l,...,n—1} and i¢{j—1,j,j+1,j+2}, and all
subsets

{i,i+1}U{j,j+1}, whereie{l,...,n—1}, je{l,....,n—1}

and i¢ {j—2,j—1,j,j+1,j+2}. In all cases S(gq) is closed under supersets, so
that S(g) is a shape as defined in Section 5.

Now the assumptions of Theorems 1.2 and 1.3 amount to the following: G con-
tains a Phan amalgam .7 = UJE ) U; of shape S(¢) and, furthermore, G is gen-
erated by .7, that is, G is a completion of .«/. By Proposition 7.1, .o/ admits an
unambiguous covering .. Clearly G is also a completion of .o, and thus . is
non-collapsing. By Theorem 7.2, ./ is isomorphic to the standard Phan amalgam
o, s(¢)- Thus Theorems 1.2 and 1.3 follow from the following proposition:

Proposition 12.1. For every shape S 2 S(q), the universal completion of s is iso-
morphic to SU(n + 1,4?).

In proving Proposition 12.1, our principal tool will be the following observation
due to Tits [11].

Proposition 12.2. Let G be a group acting flag-transitively on a geometry T, and let F
be a maximal flag of T'. For Fy < F let Gy, be the elementwise stabilizer of Fy in G.
Then G is the universal completion of the amalgam UQ#FO(:F Gr, if and only if T is
simply connected.

We will apply this with T" equal to various residues of A4~ = A"(n, q), the geometry
defined in Section 2. We select a maximal flag F = {E, ..., E,} of /" as in Section 4.
That is, for a fixed orthonormal basis & = {ey,...,e,11}, we take E; = ey, ..., €.
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Proposition 12.2 and Proposition 3.1 yield that G = SU(n + 1,¢?) is the universal
completion of the amalgam U® srer OFy- Recall that Gf, denotes the stabilizer in
G of the flag Fy, and we call such subgroups parabolics. Notice that each subflag
Fy corresponds to a compatible (see Section 5) decomposition &; for a subset
J = {l1,...,n}. Here J is the type of the flag F. We will also use the notation F(J)
for Fy when we wish to stress the type of Fj.

Lemma 12.3. Suppose that S is a shape such that S 2 S (q). Then the universal com-
pletion of the amalgam Bs = Ujes Gy is isomorphic to SU(n + 1, q%).

Proof. Let G be the universal completion of %g. Since SU(n + 1, ¢?) is a completion
of &g it follows that %5 embeds into G. It suffices to show that % can be extended
inside G to the full amalgam U Sty F Gy,. By induction it suffices to show that
we can extend S by one new subset. Let T be a largest subset of 7 = {1,...,n} not
contained in S. Then S’ = SU{T} is again a type. Observe that the amalgam
U 7 Gr) is fully contained in s, and this amalgam is the amalgam of all para-
bolics of Gr(r) acting on the residue % of F(T') in ./" (% consists of all elements x not
in F(T) such that {x} UF(T) is again a flag). We claim that # is simply connected.
Indeed, as T is not in S(g), the residue has rank k > 3. If its diagram is connected,
then Z is isomorphic to the geometry .4 (k, ¢) and the claim follows from Proposi-
tion 3.1. If the diagram of # has three or more connected components, then % can be
written as a direct sum of two geometries, one of which is connected. Thus the claim
follows Lemma 3.8. Finally, if the diagram of # has exactly two connected compo-
nents, then Z can still be represented as a direct sum of two geometries with one of
the geometries connected. This last property is due to the assumption that S > S(g)
and our choice for S(g). Thus in all cases Z is simply connected. Now Proposition
12.2 implies that the subgroup of G generated by the images of all subgroups Gr(,),
for /= T, is a quotient of Gp(r). Since in the completion SU(}Z + 1, qz)Aa similar
subgroup is i§omorphic to Gp(r), the same assertion must hold in G. Thus %5 extends
inside G to % . This establishes the result.

We now need to pass from the amalgam % to the amalgam .o/s. Notice that every
member L; of the amalgam /s is normal in the corresponding member Gy of the
amalgam #s. Furthermore, G ;) is equal to L;D where D is the diagonal subgroup
in SU(n+ 1,4%).

Lemma 12.4. Suppose that S = S(q). Then the universal completion of By is also the
universal completion of <fs.

Proof. Let G be the universal completion of /. Since SU(n + 1,4?) is a completion
of &ig, the image of /s in G is isomorphic to /5. Hence it suffices to show that the
image of /s in G can be extended to a copy of Bs.

Let D; be the intersection of U; = L; with the diagonal subgroup D. Notice that
D (and hence every D;) normalizes every L;. We adopt the tilde convention, so that
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for any element x or subgroup H from /s, X and H denote their images in G. Notice
that D is not a subgroup of the amalgam .7, and consequently we cannot use this
convention to define D; therefore we define it indirectly as follows. Let D be equal to
the product of all the subgroups D;. (Notice that D; 42/5 and hence D; is defined. )
We claim that D is a direct product of the subgroups D;, and in particular that it is
an abelian group of order (¢ + 1)". Indeed D; and D; are both contained in U; = L;
and they commute elementwise. Therefore D; and D also commute elementwise. Th1s
proves that D is abelian of order at most (¢ + 1)". Since SU(n + 1,4¢?) is a comple-
tion of .7, and since in this completion the image of D coincides with D, we see that
the size of D is at least (¢ + 1)". This _proves our claim.

In a similar spirit, for J € S define GF to be the product of the subgroups . L; with
D. For this definition to make sense, we must show that every D; normalizes L;. First
suppose that ¢ # 2. Then L; is generated by the subgroups U, with s ¢ J. Inside Uj,
we see that D; normalizes U,. Hence D; normalizes every l~]s, implying that D; nor-
malizes L;. If ¢ = 2, then a similar proof works, using that S(¢) contains all subsets
of the form {i,s,s+ 1} and that L; is generated by the subgroups U, with s ¢ J to-
gether with all subgroups U 1 where s, s + 1 ¢ J. Thus the subgroups GF( ) are well
defined.

We claim that with respect to the natural homomorphism from G onto
SU(n+1,4¢%), G () isomorphically maps onto the group Gp(s). This map is clearly
surjective, and so it suffices to show that it is injective, or that the order of Gy is at
most the order of Gg(y). Indeed, |Gp(y)| = |D||Ly|/|D N Ly|. Similarly,

|Gr)| = IDI|Ls|/IDN Ly.

Notice that DN L; is the product of the subgroups D; with i¢J and so clearly
every such D; is contained in DNL,. Therefore [DNL,| > |DﬂLJ| and hence
|Gr(y| = |Gr(y)| as desired. So we have proved that every GF is isomorphic to
Gr(s)- Now it is clear that the natural homomorphism from G onto SU(n+1 q 2)
induces an isomorphism from the amalgam UJ . SGF onto the amalgam Bg.
(Clearly the subgroups G ;) and GF () cannot have a srnaller intersection than the
corresponding parabolics GF( 7y and Gg(;r).) Thus we have extended the image of the

amalgam s to a copy of %s. This proves that /s and % have isomorphic com-
pletions.

Lemmas 12.3 and 12.4 imply Proposition 12.1, thus completing the proof of The-
orems 1.2 and 1.3.
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