
Physics Faculty Works Frank R. Seaver College of Science and 
Engineering 

2012 

Conformal Cosmology and the Pioneer Anomaly Conformal Cosmology and the Pioneer Anomaly 

Gabriele U. Varieschi 
Loyola Marymount University, gvarieschi@lmu.edu 

Follow this and additional works at: https://digitalcommons.lmu.edu/phys_fac 

 Part of the Physics Commons 

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation 
Varieschi, Gabriele U., "Conformal Cosmology and the Pioneer Anomaly" (2012). Physics Faculty Works. 9. 
https://digitalcommons.lmu.edu/phys_fac/9 

This Article is brought to you for free and open access by the Frank R. Seaver College of Science and Engineering at 
Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in 
Physics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and 
Loyola Law School. For more information, please contact digitalcommons@lmu.edu. 

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/phys_fac
https://digitalcommons.lmu.edu/cse
https://digitalcommons.lmu.edu/cse
https://digitalcommons.lmu.edu/phys_fac?utm_source=digitalcommons.lmu.edu%2Fphys_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.lmu.edu%2Fphys_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/phys_fac/9?utm_source=digitalcommons.lmu.edu%2Fphys_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


Hindawi Publishing Corporation
Physics Research International
Volume 2012, Article ID 469095, 12 pages
doi:10.1155/2012/469095

Research Article

Conformal Cosmology and the Pioneer Anomaly

Gabriele U. Varieschi

Department of Physics, Loyola Marymount University, Los Angeles, CA 90045, USA

Correspondence should be addressed to Gabriele U. Varieschi, gvarieschi@lmu.edu

Received 9 August 2011; Revised 9 October 2011; Accepted 10 October 2011

Academic Editor: A. Beesham

Copyright © 2012 Gabriele U. Varieschi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We review the fundamental results of a new cosmological model, based on conformal gravity, and apply them to the analysis of
the early data of the Pioneer anomaly. We show that our conformal cosmology can naturally explain the anomalous acceleration
of the Pioneer 10 and 11 spacecrafts, in terms of a local blueshift region extending around the solar system and therefore affecting
the frequencies of the navigational radio signals exchanged between Earth and the spacecraft. By using our model, we explain the
numerical coincidence between the value of the anomalous acceleration and the Hubble constant at the present epoch and also
confirm our previous determination of the cosmological parameters γ ∼ 10−28 cm−1 and δ ∼ 10−4–10−5. New Pioneer data are
expected to be publicly available in the near future, which might enable more precise evaluations of these parameters.

1. Introduction

The Pioneer 10 and 11 spacecrafts were launched in the early
1970s, to conduct explorations in the region of the solar
system beyond the orbit of Mars and to perform close obser-
vations of Jupiter. They were also the first spacecraft to ex-
plore the outer solar system and to send back to Earth their
navigational signals for almost thirty years (for a review see
[1] and references therein).

In recent years, the orbits of Pioneer 10 and 11 were re-
constructed very accurately, by using the original radiometric
Doppler tracking data, based on the signals exchanged
between the spacecraft and NASA’s terrestrial tracking sta-
tions. This reconstruction yielded a persistent discrepancy
between the observed and predicted data, equivalent to
an unexplained small acceleration of the spacecraft in the
direction of the Sun. This effect is evidenced by measuring
a small frequency shift (toward higher frequencies, i.e., a
“blueshift”) of the signal reaching us from the spacecraft.
The nature of this anomalous acceleration or of the related
blueshift remains unexplained; this effect has become known
as the “Pioneer anomaly” ([2–4]).

This is not the only known gravitational anomaly in the
solar system, since several others are currently under inves-
tigation (for general reviews see [5, 6]), such as the secular

increase of the astronomical unit [7], the anomalies in plan-
etary flybys ([8–10]), the anomalous perihelion precession
of Saturn ([11, 12]), the increase in the eccentricity of the
Moon’s orbit ([13, 14]), and other effects related in general
with ephemerides of planets and the Moon ([15, 16]).

The importance of all these effects is not related to how
they affect the spacecraft navigation, since they all produce
very small corrections to the orbits, but to the possibility that
these anomalies might be an indication of new gravitational
physics. In particular, several nonconventional explanations
of these effects have been proposed (see general discussion
in [1, 2, 4]) such as modifications of the law of gravity, or
a modified inertia, as proposed by the Modified Newtonian
Dynamics (MOND) theory, the existence of a dark matter
halo around the Earth, or in the solar system, which might
slightly alter the gravitational force acting on the spacecraft,
and several others ([17–21]).

In this line of reasoning, alternative gravitational theories
such as conformal gravity (CG), originally proposed by Weyl
in 1918 ([22–24]) and revisited by Mannheim and Kazanas
([25–27]), have provided a new framework for cosmological
models, with the advantage of avoiding some of the most
controversial elements of current standard cosmology, such
as dark matter, dark energy, inflation, and others.
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Following the original CG, we have recently studied an
alternative approach to these models which was named
“kinematical conformal cosmology” [28], but that for brevity
will be called conformal cosmology (CC) in the rest of this
paper. This approach was based on the direct application of
the conformal symmetry to the Universe, that is, considering
the possibility that a “stretching” of the spacetime fabric
might be acting over cosmological scales. In a second part of
this work [29], it was shown that this model can successfully
fit type-Ia Supernovae data, without assuming the existence
of dark matter or dark energy.

A preliminary analysis also performed in our second
paper [29] indicated that CC might be able to explain the
existence of the Pioneer anomaly, since the observed blueshift
of the spacecraft signal could be due to a region of cosmologi-
cal blueshift surrounding our solar system, which is naturally
predicted by our model. A new comprehensive review of the
Pioneer anomaly has been published [1], together with more
details of the Pioneer early data [30], thus prompting us to
reconsider and improve our previous analysis [29], based on
the conformal cosmology approach. In addition, a revised
analysis of the Pioneer anomaly, based on extended data sets,
has recently appeared in the literature [31], confirming the
existence of the anomaly and adding new insights into its
temporally varying behavior.

In the next section, we will briefly review our CC solu-
tions, showing how a local blueshift region can naturally
emerge, while, in Section 3, we will fit all current Pioneer
data [30] with our cosmological solutions and determine the
values of the parameters in our model. Finally, in Section 4,
we will discuss our results and compare them to the existing
physical limits of standard gravity in the solar system.

2. Conformal Cosmology

In our first CC paper [28], we used as a starting point the
line element originally derived by Mannheim and Kazanas
[25] as an exterior solution for a static, spherically symmetric
source in conformal gravity theory, that is, the analogue of
the Schwarzschild exterior solution in general relativity:

ds2 = −B(r)c2dt2 +
dr2

B(r)
+ r2dψ2, (1)

where dψ2 = dθ2 + sin2θ dφ2 in spherical coordinates and

B(r) = 1− β
(
2− 3βγ

)

r
− 3βγ + γr − κr2, (2)

with the parameters β = MG/c2 (cm), γ (cm−1), κ (cm−2),
where M is the mass of the (spherically symmetric) source
and G is the gravitational constant. Conformal gravity intro-
duces two new parameters γ and κ which are not present in
standard general relativity, while the familiar Schwarzschild
solution is recovered in the limit for γ, κ → 0, in the
equations above.

We then considered regions far away from matter distri-
butions, thus ignoring the matter dependent β terms, and
rewrote the last equation in a simplified form:

B(r) = 1 + γr − κr2 = 1 + γr +

(
γ2

4
+ k

)

r2 = −g00(r),

(3)

where the parameter k is linked to γ and κ, through k =
−γ2/4 − κ, and it is ultimately connected to the so-called
trichotomy constant k (in bold) of a Robertson-Walker
(RW) metric, defined as k ≡ k/|k| = 0, ±1. This is also
related to another fundamental aspect of CG: the existence
of coordinate and conformal transformations connecting the
static, spherically symmetric solution represented by (1) and
(3), with the classical Robertson-Walker metric (see details
in [28]).

It was precisely this connection between the two solu-
tions which prompted us to consider the CG static, spheri-
cally symmetric solution as an alternative description of the
standard cosmological evolution, based on the RW metric.
In other words, the CG static solution might also contain
information about the cosmological redshift, the expansion
of the Universe, and so forth, and constitute an alternative
approach to cosmology. In particular, the CG expressions
in (2) or (3) contain a linear and a quadratic term, in the
radial coordinate r, which might yield considerable effects at
large distances, (by using the contribution of the linear term
γr, the flat galactic rotation curves were in fact explained
by Mannheim ([32, 33]) without the need of dark matter.)
including a strong gravitational redshift which could be,
at least in part, responsible for the observed cosmological
redshift.

Therefore, we postulated in [28] that the observed red-
shift is due to this gravitational effect, which influences the
wavelength or frequency of a light signal emitted at time t and
position r, and observed at the origin (r = 0) at the current
time t0, in the following way:

1 + z = R(0)
R(r)

= λ(r, t)
λ(0, t0)

= ν(0, t0)
ν(r, t)

=
√
√√−g00(0)
−g00(r)

= 1
√

1 + γr +
(
γ2/4 + k

)
r2
.

(4)

In the previous equation, the redshift factor (1 + z) is
related to the ratio of cosmic scale factors R, which simply
depend on the radial distance r, in view of (3). Alternatively,
to obtain a time-dependent form of the cosmic scale factor,
we considered that the radial distance r is associated with a
look-back time (t0 − t), related to the time of travel of a light
signal. Integrating the CG metric in (1) and (3) along the null
geodesic, we obtained [28]

1 + z = R(t0)
R(t)

=
(

cos χ − δ sin χ
)

, k > 0,

1 + z = R(t0)
R(t)

=
(

1− δχ
)

, k = 0,

1 + z = R(t0)
R(t)

=
(

cosh χ − δ sinh χ
)

, k < 0,

(5)
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Figure 1: R functions obtained from (5) are shown here for
different values of k: k = −1 in red (solid), k = 0 in green (dotted),
and k = +1 in blue (dashed), and, for a positive value of the
parameter δ ∼= 0.6 (an unrealistically large value, our current value
δ = δ(t0) will be shown to be positive and close to zero).

for the three possible values of the parameter k. In the pre-
vious equation, we preferred to use dimensionless quantities
and parameters, defined as follows:

χ ≡
√
|k|c(t0 − t), δ ≡ γ

2
√|k| , (6)

so that the fundamental parameters of our conformal cos-
mology are now expressed by γ(cm−1) and the dimensionless
δ (c is the speed of light in vacuum, assumed constant).

In Figure 1, we plot the results of (5) in terms of the
inverse ratio R(χ)/R(0) = R(t)/R(t0) = 1/(1 + z) which
describes better the cosmic evolution. The dimensionless
quantity χ ≡ √|k|c(t0−t), on the horizontal axis, represents a
look-back time, so that the universal evolution of the cosmic
scale factor, from the past to the future, can be seen by
following our curves from right to left. The circular dot on
the vertical axis represents our “current time” (χ = 0). We
can clearly see that the only solution which shows a redshift
in the past (values below the horizontal black dashed line,
representing z = 0) is the red-solid curve, corresponding to
k = −1. Therefore, the other two solutions, for k = +1, 0, are
ruled out; only the k = −1 solution will be considered in the
following.

Our preferred solution in Figure 1 (red-solid) also shows
a blueshift region in the immediate past of our current time,
which in Section 3 will be related directly to the Pioneer
anomaly. This blueshift region is greatly exaggerated in the
figure, since the different curves were plotted for δ � 0.6,
an unrealistically high value. We will show in the next
sections that δ is positive and close to zero, resulting in a

very small-sized blueshift region, compared to the overall
size of the Universe. Similar plots can be obtained for
the ratio R/R0 expressed in terms of the radial distance r
(see [28] for details), which also suggest the existence of
a blueshift region localized around the observer’s position,
that is, the Earth could be surrounded by a natural blueshift
region, extending at least over the solar system region. This
might be the origin of the Pioneer anomaly. (Obviously, the
Earth’s observer is not located at any privileged position.
The same cosmological evolution described by CC would
be seen by any other observer in the Universe, provided
that the local values of the cosmological parameters δ and
γ are the same. In our previous work ([28, 29]), we have
suggested that δ might play the role of a universal time, so
that for a certain value of this parameter the evolution of
the Universe would look the same for any observer. In this
way, conformal cosmology does not violate the cosmological
principle, which postulates a homogeneous and isotropic
Universe.)

Before we proceed to analyze this possible explanation for
the anomaly, we recall a few more results obtained in our
second paper [29]. Since we have closed-form expressions
for our scale factor R, in (4) and (5), it is straightforward
to obtain the Hubble parameter (H(t) = Ṙ(t)/R(t)) and
the deceleration parameter (q(t) = −R̈(t)/R(t)H2(t) =
−R̈(t)R(t)/Ṙ2(t)) as a function of time or redshift z. For the
k = −1 case, we obtained [29]

H(t) =
√
|k|c

(
sinh χ − δ cosh χ

cosh χ − δ sinh χ

)

= ±
√
|k|c

√
(1 + z)2 − (1− δ2)

(1 + z)
,

q(t) =
(

cosh χ − δ sinh χ

sinh χ − δ cosh χ

)2

− 2

= (1 + z)2

(1 + z)2 − (1− δ2)
− 2,

(7)

and, in particular for χ → 0 or z → 0,

H(t0) = −γ
2
c, H(z = 0) = ±γ

2
c,

q(t0) = q(z = 0) = 1
δ2
− 2.

(8)

The signs of the quantities in (7) and (8) can be explained
by considering again the red-solid curve in Figure 1, which
represents the ratio R(χ)/R(0), or equivalently R(t)/R(t0),
over different cosmological epochs. This bell-shaped curve
was plotted for a positive value of δ and shows a local
blueshift area in the “past” evolution of the Universe,
extending back to χrs = arccosh[(1 + δ2)/(1 − δ2)] =
2 arctanh δ (represented by the square point in Figure 1) or
(t0 − trs) = (2/

√|k| c) arctanh δ, for the look-back time
at which the redshift (rs) starts being observed. The red
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curve has a maximum at χmax = arctanh δ or (t0 − t)max =
(1/
√|k| c) arctanh δ (we can also find (R(χ)/R(0))max =

1/
√

1− δ2 or zmin =
√

1− δ2−1), and it is evidently symmet-
ric around this point of maximum expansion of the Universe.

Therefore, for each value of z, that is, for each value of
R(χ)/R(0), we have two corresponding values of the Hubble
parameter (except at the maximum, for zmin =

√
1− δ2 − 1,

where H = 0). The two related points on the curve, at the
same redshift level, will have equal and opposite expansion
rates. This yields the double sign in the previous expressions
for H , when given as a function of z. This argument applies
also to the z = 0 case, corresponding to the current time
t0, at which H(t0) = −(γ/2)c is negative, showing that the
Universe is already in a contracting phase. (This is also a
consequence of the signs of our conformal parameters, in
particular the positive value of γ. Our estimate of γ will
be given in Section 3, but we recall that Mannheim has
independently evaluated γ as a small but positive quantity
(γMann = 3.06 × 10−30 cm−1), by fitting rotational velocity
curves for several spiral galaxies, using conformal gravity
[27]. If γ was to have a negative value, we would still be in
an expanding phase of the Universe.) As discussed above,
the same z = 0 value can also refer to the time in the past
(trs) at which we start observing the cosmological redshift,
with H(trs) = +(γ/2)c, a positive quantity. This analysis does
not contradict the current astrophysical estimates of H0 as
a positive quantity. They are based on redshift observations
of light coming from galaxies at times in the past t � trs;
therefore, what is denoted by H0 in standard cosmology
should be actually indicated as H(trs) = +(γ/2)c, again
a positive quantity related to the expanding phase of the
Universe. The same analysis can be done in terms of radial
distances r. The blueshift region would extend from r = 0 up
to a distance given by

rrs = γ

|k| − γ2/4
= 4
γ

δ2

1− δ2
, (9)

where rrs is the distance at which we start observing the
cosmological redshift. In general, the slope of the red-solid
curve in Figure 1 is related to the value of the Hubble param-
eter at that point, while its curvature is connected to the
deceleration parameter, through the expressions given above.

In particular, following (8), the slope of the plot and its
curvature at current time t0 are basically connected to our
two fundamental parameters γ and δ. In the next section, we
will show that the slope of the red-solid plot at t0 is closely
related to the value of the Pioneer anomalous acceleration
aP , which can therefore be used to determine γ. Similarly, the
curvature of the plot at t0 will be related to the rate of change
of the anomalous acceleration (i.e., the “jerk” jP ≡ ȧP) and
will be used to determine the value of our other parameter δ.

We conclude this section by noting that the values of our
parameters (δ and γ) could be derived directly from standard
cosmological observations, in view of (8). Using the current
best estimate of H0 = (72 ± 3) km s−1 Mpc−1 [34] and the
positive sign in (8), we obtain

γ = 2H0

c
= (1.56± 0.06)× 10−28 cm−1. (10)

The direct determination of δ is more difficult, since the
deceleration parameter q is not known explicitly. In [29],
we based our analysis on recent luminosity data for type-Ia
Supernovae, obtaining an estimate of δ � 3.83 × 10−5, but
this analysis needs to be confirmed by further studies.

3. The Pioneer Anomaly

In the previous section, we briefly reviewed our conformal
cosmology and outlined the reasons why we consider the
k = −1 solution as a possible description of the evolution
of the Universe. This solution can explain the observed cos-
mological redshift, but it requires the existence of a blueshift
region in the immediate vicinity of our current spacetime
position in the Universe.

This could be a serious problem for our model, since
we do not observe blueshift of nearby astrophysical objects
except for the one caused by the peculiar velocities of nearby
galaxies, presumably due to standard Doppler shift. However,
as already mentioned in Section 1, experimental evidence of
a local region of blueshift might come from the analysis of
the Pioneer anomaly ([1–4, 30, 35–42]).

This is a small frequency drift (blueshift), observed ana-
lyzing the navigational data of the Pioneer 10-11 spacecraft,
received from distances between 20 and 70 AU (astronomical
units) from the Sun, while these spacecraft were exploring
the outer solar system. This anomaly is usually reported as
a positive rate of change of the signal frequency, ν̇P > 0
(blueshift), resulting in a frequency drift of about 1.5 Hz
every 8 years, or as an almost constant sunward acceleration,
aP < 0, or even as a “clock acceleration” at ≡ aP/c < 0. More
precisely ([1, 35]),

ν̇P = (5.99± 0.01)× 10−9 s−2,

aP = −(8.74± 1.33)× 10−8 cm s−2,

at ≡ aP
c
= −(2.92± 0.44)× 10−18 s−1.

(11)

An attempt was made to detect such anomaly also in
the radiometric data from other spacecraft traveling at the
outskirts of the solar system, such as the Galileo and Ulysses
missions [35]. In the case of Galileo, the effects of solar
radiation made such detection impossible, while for Ulysses
a possible anomalous acceleration aUlysses = −(12 ± 3) ×
10−8 cm/s2 was seen in the data. Other spacecraft, such
as the New Horizons mission to Pluto, launched in 2006,
might provide new data in the near future. These discov-
eries prompted a complete reanalysis of all the historical
navigational data of these space missions, which is currently
underway ([1, 31, 37–39, 42, 43]) and will be completed in
the near future [44]. This new analysis will try to determine
additional characteristics of the anomaly, such as its precise
direction, the possible temporal and spatial variations, and
its dependence on heliocentric or geocentric distance. A
future dedicated mission is also being proposed ([45–48]) to
test directly this puzzling phenomenon.

Currently, the origin and nature of this anomaly remains
unexplained; all possible sources of systematic errors have
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been considered ([1, 4, 35, 36, 39, 43, 49]), but they cannot
fully account for the observed effect. The current focus of
conventional explanations of the anomaly seems to be the
thermal recoil force, that is, anisotropically emitted thermal
radiation, originating from the spacecraft four radioisotope
thermoelectric generators (RTGs), which can contribute
significantly to the measured acceleration. The natural decay
of the radioactive material in the RTGs, the aging of the
thermocouples in the system, and other effects all contribute
to the decrease of the total thermal power during the
spacecraft life. This might explain the decrease overtime of
the measured Pioneer acceleration (in absolute value), that
is, the negative “jerk” d|aP|/dt < 0, already seen in the early
Pioneer data ([1, 30, 44]).

Several other papers ([50–56]) recently appeared in the
literature, dealing with plausible explanations of the Pioneer
Anomaly, in terms of mundane, nongravitational forces.

Although the anomaly can be caused by these standard
physical effects, we will try in the following to explain its
origin by using the cosmological model outlined in the pre-
vious section. The phenomenology of the Pioneer anomaly
is related to a complex exchange of radiometric signals
between the tracking stations on Earth (of the deep space
network (DSN)) and the spacecraft, using S-band Doppler
frequencies (1.55–5.20 GHz). Typically, an uplink signal is
sent from the DSN to the spacecraft at a frequency of
2.11 GHz, based on a very stable hydrogen maser system,
then an S-band transponder on board the spacecraft applies
an exact and fixed turn-around ratio of 240/221 to the uplink
signal, so that the Pioneer returns a downlink signal at
a slightly different frequency of about 2.29 GHz, to avoid
interference with the uplink one.

This procedure is known as a two-way Doppler coherent
mode and allows for very precise tracking of the spacecraft,
since the returning signal is directly compared to the original
one. On the contrary, a one-way Doppler signal (with a
fixed signal source on the spacecraft, whose frequency cannot
be monitored for accuracy) is less effective. This type of
tracking system added to the propulsion and navigational
characteristics of the Pioneer spaceship (especially the pres-
ence of a spin-stabilization system) resulted in a very good
acceleration sensitivity of about 10−8 cm/s2, once the influ-
ence of solar radiation pressure can be neglected (for
distances � 20 AU from the Sun).

The DSN station acquires the downlink signal after a time
delay ranging from a few minutes to some hours, depending
on the distance involved, and compares it to the reference
frequency to determine the Doppler shift due to the actual
motion of the spacecraft. The navigational software can also
model with great precision the expected frequency of the
signal returned from the Pioneer, which should coincide
with the one observed on Earth. As already mentioned, a
discrepancy was found, corresponding to the values in (11),
whose origin cannot be traced to any systematic effect due
to either the performance of the spacecraft or the theoretical
modeling of its navigation.

The Pioneer anomaly was first reported ([2–4]) as an
almost constant value of the anomalous acceleration, with
temporal and space variation of aP within 10%, over a range

of heliocentric distances ∼20–70 AU, and possibly at even
closer distances � 10 AU, so that we will concentrate first
on the average value of aP and later on its variation with
time and distance. In our view, the Pioneer phenomenology
represents the most basic experiment we could perform in
order to check if the cosmic evolution is really affecting the
frequency of electromagnetic radiation emitted and observed
at different spacetime locations, following (4) and (5).

In the standard analysis of the Pioneer anomaly, the
signal coming back to Earth is affected by the relativistic
Doppler effect. Following this model, ν mod will be the
frequency of the expected signal and will be related to the
signal reference frequency νref = 2.11 GHz (for the uplink
signal in a two-way system) by the standard relativistic
Doppler formula (see equation 2.2.2 in [57]):

ν mod

νref
=
√

1− v2/c2

1 + vr/c
� 1− vr

c
, (12)

where vr is the spacecraft radial velocity and the approxima-
tion on the right-hand side holds to first order in vr/c.

Since we have a two-way system, the Doppler shift in-
volved is actually double, so we can use the previous equation
but with vr = 2v mod (t′), where v mod (t′) is the expected
velocity of the spacecraft, according to the theoretical
navigation model, at time t′, when the spaceship receives
and immediately retransmits the signal. We use here a time
variable t′ which can be simply considered the elapsed time
since the spacecraft launch (t′ = 0 at r = 0), and then later we
will simply identify t′ with our cosmological look-back time
(t0 − t) in (6). With this radial velocity, (12) to first order in
vr/c becomes

ν mod (t′) � νref

[
1− 2v mod (t′)

c

]
, (13)

and this frequency is expected to be observed with high pre-
cision, due to the reported excellent navigational control of
the spacecraft.

On the contrary, a different frequency is observed,
νobs(t′) > ν mod (t′), involving an additional unexplained
blueshift: this is the Pioneer anomaly. Following (11), the
frequency difference is reported as

Δν(t′) = νobs(t′)− ν mod (t′) � 2t′ν̇P ,

ν̇P = 5.99 × 10−9 s−2 (
one-way

)
,

(14)

where the factor of two in the first line of the previous
equation is due to the two-way system. We also remark here
that several of the cited references adopt a rather confusing
“DSN sign convention” for the frequency difference in (14)
(see [1, 4, 38] and (38) of [2]), resulting in a change of sign in
most of their equations. We prefer to use here our definition
of Δν as given in the previous equation.

The anomalous acceleration aP is introduced as an alter-
native way of describing the effect, although, in our view, it
does not correspond to a real spacecraft acceleration. As in
(13), we can write the observed frequency to first order in
vr/c as

νobs(t′) � νref

[
1− 2vobs(t′)

c

]
, (15)
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where the “observed” velocity of the spacecraft refers to
the time of interest t′. Combining together the last three
equations, we can write the frequency difference as

Δν(t′) = −2
νref

c
[vobs(t′)− v mod (t′)] = −2

νref

c
Δv(t′). (16)

These frequency differences Δν (also called frequency
residuals in the literature cited) are therefore equivalent to
the corresponding velocity residuals (Δv = vobs − v mod ),
and they are usually plotted as a function of the elapsed
time t′, showing an almost linear increase with time of these
residuals, which is the essence of the Pioneer anomaly (see,
e.g., Figure 5.2 in [1]). The Pioneer anomalous acceleration
can be defined as the rate of change of the velocity residuals,
related to the corresponding rate of change of the frequency
residuals, in view of (16). Therefore, if we define aP ≡
d(Δv)/dt′, the Pioneer acceleration can be related to the
frequency differences

aP = d(Δv)
dt′

= − c

2νref

d(Δν)
dt′

, (17)

which are more significant quantities in our analysis. We will
assume that these frequency differences are intrinsically due
to the different locations of the spacecraft (at position r) and
of the Earth’s observer (at r = 0). Therefore, we identify
the reference frequency νref in (13) with ν(0) and the similar
quantity νref in (15) with ν(r). Then, we subtract (13) from
(15):

Δν(t′) = 2[ν(r)− ν(0)]
[

1− 2v(t′)
c

]
� 2[ν(r)− ν(0)]

= 2ν(0)
[

ν(r)
ν(0)

− 1
]
= 2νref

[
R(r)
R(0)

− 1
]

= 2νref

[
R(t′)
R(0)

− 1
]
� 2νref

[
γ

2
ct′
]

,

(18)

where the common factor of two in all the parts of the
previous equation was added again because of the two-way
effect, which has to be included also in our gravitational
blueshift model. The velocities v mod (t′) and vobs(t′) from
(13) and (15) are assumed to be the same, so that the
common factor [1 − 2v(t′)/c] � 1 is close to unity and
can be neglected, since the average Pioneer speed is vP �
12.8 km/s � c [58]. We also identified ν(0) with the Earth
reference frequency νref and used our fundamental equation
(4) and (5), k < 0 case, to first order in χ = √|k|ct′.
(The elapsed time t′ for the Pioneer spacecraft missions is
of the order of a few years (1 yr = 3.156 × 107 s); we can
assume

√|k| ∼ γ ∼ 10−28–10−30 cm−1; therefore,
√|k|ct′ ∼

10−10–10−12 � 1.) Using these results, (17) simplifies as
follows:

aP = aP(t0) = −γ
2
c2 = cH(t0), (19)

in view also of our evaluation of H(t0) = −(γ/2)c (a negative
quantity) from (8).

This result immediately explains the often cited “numer-
ical coincidence,” that is, the simple relation |aP| � cH0

between the Pioneer acceleration and the standard (positive)
Hubble constant, with the correct negative sign for both
quantities in (19), in view of our previous discussion of
the sign of H(t0) < 0. Equation (19) can also be used
to determine γ and H0 (as a positive quantity), using the
reported value of aP from (11):

γ = γ(t0) = − 2
c2
aP = (1.94± 0.30)× 10−28 cm−1,

H0 = (90.0± 13.7) km s−1 Mpc−1.

(20)

The value of γ (considered measured at the current time
t0, even if the Pioneer data are a few years old) is close
to our first direct estimate in (10), and the corresponding
value of the Hubble constant is close to the value of standard
cosmology. We remark here again that our model fully
explains the reason of this “numerical coincidence” and
provides also the correct signs for all the quantities involved.
(The numerical “coincidence” between the Hubble constant
and the value of the Pioneer acceleration aP divided by c was
noticed immediately after the discovery of the Pioneer effect
and prompted many speculations and different explanations.
This coincidence is even more striking if one uses the
value cited in [4] as the experimental value for Pioneer
10 data before systematics, aP = −7.84 × 10−8 cm s−2,
thus obtaining H0 = 80.7 km s−1 Mpc−1 and γ0 = 1.74 ×
10−28 cm−1.)

Following (17)–(19) and the related discussion, we can
generalize our expression of the Pioneer acceleration, as a
function of time t′:

aP = −c d[R(t′)/R(0)]
dt′

= c2 γ

2δ

[
sinh χ − δ cosh χ

]

[
cosh χ − δ sinh χ

]2 , (21)

with χ = √|k|ct′ = (γ/2δ)ct′. (Although t′ is the elapsed time
since the spacecraft launch, it is treated here as equivalent to a
look-back time (t0− t) because the Pioneer is moving toward
increasing distances r, therefore corresponding to increased
look-back times in our original redshift interpretation.) In
particular, by using the previous equation and taking another
time derivative, it is easy to derive the “jerk” jP ≡ daP/dt′ and
its value in the limit for t′ → 0:

jP = jP(t0) = c3
(
γ

2δ

)2(
1− 2δ2), (22)

expressed in terms of our fundamental parameters γ and δ.
The current value of jP in the last equation is positive (for
small values of δ), but the Pioneer acceleration, as in (11) or
(19), is considered negative in this paper so that a positive
jerk means that the absolute value of aP will decrease for
increasing times or radial distances, which is indeed shown
in the early Pioneer data, as it was already mentioned at the
beginning of this section.

In Figure 2, we illustrate the early Pioneer 10/11 data,
as originally reported in [30], where the absolute value of
the Pioneer acceleration |aP| is plotted as a function of the
radial heliocentric distance in AU. The red-dashed horizon-
tal line and the green-dotted lines represent, respectively,
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Figure 2: Early data for Pioneer 10/11 acceleration as a function of
heliocentric distance. The average value of the anomalous accelera-
tion is indicated in red-dashed, together with its error range (green-
dotted). We also show linear fits of the data, which allow for the
determination of our cosmological parameters γ and δ.

the value of |aP| and the related 1-sigma error range quoted
in (11). The first three data points for Pioneer 11, at smaller
distances, lie outside the considered error range probably
because the anomalous acceleration was masked by solar
radiation or other effects. We will not include these first
three data points in our subsequent discussion. We will
concentrate our analysis on either just the Pioneer 10 data
points or the combination of data points for both spacecraft,
but within the 1-sigma error range (“error range data” in the
following).

These two sets of data clearly show a possible decrease
of the Pioneer anomaly (in the absolute value |aP|) with
increasing heliocentric distance. The black (dash-dotted) line
and the blue-solid line in the same figure represent linear fits
for the Pioneer 10 and the error range data, respectively, both
of them indicating a decrease of |aP|.

If our conformal cosmology is the origin of the Pioneer
anomaly, and not the thermal recoil force mentioned at
the beginning of this section, our “jerk” equation (22) will
explain the decrease of |aP| and can also be used to determine
our second parameter δ.

We computed the slopes of our two linear fits in Figure 2
and used them as (positive) values of jP in (22), together
with the γ value from (20). (The radial distances r of the
data plotted in Figure 2 were converted into elapsed times
t′, by using a simple approximation: r � vPt′, where vP is the
average Pioneer speed. From the original data (available from
the NASA website at: http://cohoweb.gsfc.nasa.gov/helios/),

we estimated vP10 � 12.96 km/s, vP11 � 11.42 km/s, and used
an average vP � 12.19 km/s when combining data for both
spacecraft.) Solving (22) for δ, we obtain

jP = (3.85± 1.88)× 10−17 cm s−3 (Pioneer 10 data),

δ = (8.12± 2.35)× 10−5,

jP = (1.37± 0.95)× 10−17 cm s−3 (
error range data

)
,

δ = (1.36± 0.52)× 10−4,
(23)

and these values for δ are very close to the one we obtained
in [29] (δ0 = 3.83 × 10−5), which was based solely on the
analysis of type-Ia Supernovae data.

Another type of analysis is illustrated in Figure 3. The
Pioneer 10/11 data, the standard value of |aP|, and the related
error range are the same as in the previous figure, but this
time we used the generalized expression of aP in (21) to fit
the data within the error range. We allowed both quantities
γ and δ to be free parameters in our fitting procedure, and
we converted the elapsed time t′ in (21) into the radial
distance r by using the approximation r � vPt′, where vP
is the average Pioneer speed, as it was done also for the
data in the previous figure. The radial distance r should be
more properly identified with the geocentric distance of the
spacecraft, rather than the heliocentric one, since r should
be the distance from the Earth observer. We also performed
fits using the geocentric distance, but the results were very
similar to those obtained by using heliocentric distances, so
we will not include them in the following analysis.

Again, in Figure 3, we used the expression in (21) to
fit the data, although the fitting curves appear almost as
straight lines in this figure. The first conformal cosmology
fit, illustrated by the black (dash-dotted) curve, was obtained
by using only the Pioneer 10 data and yielded the following
values of the parameters:

δ = (9.19± 1.53)× 10−5 (Pioneer 10 data),

γ = (2.20± 0.18)× 10−28 cm−1.
(24)

The second fit (blue-solid curve) was obtained by using all
the data within the error range (again omitting the first three
Pioneer 11 data points) and produced the following results:

δ = (1.38± 0.43)× 10−4 (
error range data

)
,

γ = (1.97± 0.08)× 10−28 cm−1.
(25)

Comparing the results in the last two equations with
those for δ in (23), obtained with a fixed γ = 1.94 ×
10−28 cm−1 as in (20), we can see that all the values of our
parameters are in agreement. In particular, from the different
analyses, we consistently obtain γ � 1.9–2.2 × 10−28 cm−1

and δ ∼ 10−4–10−5, where the different values depend on
the Pioneer data being used. As already remarked, the values
for δ quoted above are also close to the one we obtained in
[29] (δ0 = 3.83 × 10−5), based on type-Ia Supernovae data.
In the next section, we will discuss our results and compare
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Figure 3: Early data for Pioneer 10/11 acceleration as a function
of heliocentric distance. The average value of the anomalous accel-
eration is indicated in red-dashed, together with its error range
(green-dotted). We also show full conformal cosmology fits of the
data, which allow for a better determination of our cosmological
parameters γ and δ.

them to the current limits of standard gravity in the solar
system.

As already mentioned at the beginning of this paper, a
new analysis of extended Pioneer data has recently appeared
[31], and these new results will also be discussed in the
next section. However, complete new data points from this
extended analysis are not yet available but will be published
in the future [31]. Due to this reason, we have based our
analysis in this section only on the early Pioneer data which
were available at the time of our study.

4. Discussion of Our Results and Conclusions

In the previous sections, we discussed how conformal cos-
mology provides a natural explanation for the Pioneer
anomalous acceleration, in both magnitude and direction
(i.e., the negative sign of the radial acceleration). We also
explained the “numerical coincidence,” connecting aP with
the Hubble constant, and the observed decrease with helio-
centric distance of |aP|, related to the Pioneer jerk jP .
Although the Pioneer data are still not very accurate, our
analysis consistently indicated that our conformal parame-
ters are approximately given by γ ∼ 10−28 cm−1 and δ ∼
10−4–10−5 (see (10), (20), and (23)–(25)). In this final
section, we will discuss the implications of the values of our
parameters in relation to other studies in the field.

We first remark that a new analysis of rotational velocity
data for spiral galaxies, based on conformal gravity, has
recently appeared ([59, 60]) improving the original work
on the subject ([32, 33]). This new study uses the full line
element of conformal gravity in (1)-(2), including the effects
of the quadratic term−κr2, which were previously neglected,
thus obtaining a global gravitational potential Vglobal(r) =
(γ/2)c2r − (κ/2)c2r2 of cosmological origin. In addition to
this, a local gravitational potential Vlocal(r) is obtained by
integrating over the visible galactic mass distribution a grav-
itational potential per unit solar mass of the form V∗(r) =
−G(M
/r) + (γ∗/2)c2r. The two potentials, global and local,
are then combined together to model the rotational motion
of galaxies. The fits to galactic rotation data ([59, 60]),
performed without any dark matter contribution, show a
remarkable success of conformal gravity, even at the largest
distances from the galactic centers, where the quadratic
term− κr2 becomes important and comparable to the linear
term γr. Mannheim and collaborators ([59, 60]) were then
able to determine the values of the global universal param-
eters as γMann = 3.06 × 10−30 cm−1 and κMann = 9.54 ×
10−54 cm−2. The related terms of the global gravitational
potential were associated respectively to the cosmological
background and to cosmological inhomogeneities. The local
parameter γ∗ was also evaluated as γ∗ = 5.42 × 10−41 cm−1.

The values of the dimensionful parameters γ and κ
obtained through this analysis of galactic rotation curves are
somewhat different from our values, reported in this paper
or in our previous work [29] (γ0 = 1.94 × 10−28 cm−1 and
κ0 = 6.42 × 10−48 cm−2). This difference could be due, as we
explained in [29], to a possible redefinition of the luminosity
distance and other distance indicators, which might affect
even the radial distances (from the galactic centers) which
are employed in the galactic rotation analysis.

However, it is instructive to compute the dimensionless
δ parameter, using Mannheim’s values γMann and κMann,
because this dimensionless constant should not be affected
by a revision of the cosmological distances. As explained at
the beginning of Section 2, the parameters k, γ, κ, and δ are
related through k = −γ2/4−κ and also δ = (γ/2

√|k|) so that
we obtain

kMann � −κMann = −9.54 × 10−54 cm−2,

δMann = 4.95 × 10−4.
(26)

Therefore, the conformal gravity analysis by Mannheim and
collaborators suggests a k ≡ k/|k| = −1 Universe, consistent
with our cosmological model and also a value of δMann =
4.95 × 10−4, close to our quoted values of δ ∼ 10−4–10−5.

Conformal gravity considers local gravitational effects
as being due to the local potential Vlocal or simply to the
potential V∗(r) = −G(M
/r) + (γ∗/2)c2r, where r is the
radial distance from the center of our solar system. Since
the value of the local constant γ∗ ∼ 10−41 cm−1 is very
small, the modifications to standard dynamics of the solar
system are negligible. (For example, the ratio between the
conformal gravitational potential (γ∗/2)c2r and the standard
Newtonian term G(M
/r) at a heliocentric distance of 1 AU
is∼10−20, while, at a distance of 100 AU (outer solar system),
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the same ratio is ∼10−16. The galactic potential, related to
another conformal gravity term of the form (γMann/2)c2r′

(r′ distance from galactic center) would generate only a very
small tidal force effect on the solar system. This correction
would behave as the ratio of the distance of a planet or
satellite from the sun divided by the distance from the
solar system to the center of the galaxy [61]. Therefore,
the “conformal gravity force” is negligible, compared to
the standard Newtonian one, over the whole solar system
region.) Therefore, conformal gravity is not in any way in
contradiction with the very stringent limits on alternative
gravity theories imposed by studies of planetary ephemerides
or other solar system observations ([62, 63]).

In particular, more recent studies have focused their
attention on the critical issue of the influence that a grav-
itational Pioneer anomaly acceleration would have on the
motion of bodies in the solar system, such as inner and
outer planets, comets, and asteroids ([64–75]). These studies
indicate that an anomalous acceleration of gravitational
origin would have a significant effect on the motion of these
solar system objects, but the resulting orbital anomalies were
not detected in the latest observations, therefore ruling out
the gravitational origin of the Pioneer anomaly. As already
mentioned above, we also believe that the dynamical correc-
tions due to conformal gravity are in fact negligible at the
solar system level. Therefore, no significant changes in the
orbits of bodies in the solar system should be detected, in
agreement with the cited references.

To further clarify the issue, in our analysis of the Pioneer
anomaly, we used the reported values of the anomalous
acceleration aP to determine the cosmological parameters,
simply because such was the way these data were reported
in the literature cited. However, it should be clear from
the discussion in Section 3 that we explain the Pioneer
anomaly in terms of our cosmological-gravitational blueshift,
based on the global values of the parameters γ, κ, and δ.
In this view, there is no real dynamic acceleration of the
Pioneer spacecraft (or of any other object in the solar system)
oriented toward the Sun, due to some new gravitational
force or modification of existing gravity, except for the tiny
corrections coming from local conformal gravity mentioned
above. In fact, in our analysis, we assume that there is no
difference between the two velocities v mod (t′) and vobs(t′) in
(13) and (15); therefore, the anomalous acceleration defined
as aP ≡ d(Δv)/dt′ � [Δv(t′ + Δt′) − Δv(t′)]/Δt′ with Δv =
vobs − v mod is actually zero.

In this way, we also overcome the original objection,
reported in [4], that “the anomalous acceleration is too large
to have gone undetected in planetary orbits, particularly for
Earth and Mars,” since “NASA’s Viking mission provided
radio-ranging measurements [76] to an accuracy of about
12 m,” which should have shown the effect of the anomalous
acceleration on the orbits of these two planets.

In our view, precision ranging measurements with radio
signals or lasers, based on the round-trip travel time from
Earth to other bodies in the solar system, would not show any
anomalous effect because the speed of light is not affected by
our cosmological model and the corrections to the dynamics
of the solar system due to conformal gravity are negligible.

On the contrary, we would observe an effect similar to
the anomalous acceleration for a spacecraft, a planet, or any
other object in the solar system, if we were to study its motion
through Doppler frequency ranging, because of the intrin-
sic differences in frequency or wavelength for light emitted
at different spacetime positions, due to our cosmological
model.

A similar discussion can be done regarding possible ex-
planations of the Pioneer anomaly of cosmological origin.
Recent studies based on the standard Friedmann-Lemaitre
metric ([77, 78]) have shown that cosmological effects fail
to account for the anomaly by several orders of magnitude.
Again, our study does not propose dynamical corrections to
the orbits, due to conformal gravity or to a conformal cos-
mological model, since these corrections would be negligible
in the solar system, as are those due to standard cosmology.
Our model simply assumes the existence of a local blueshift
region, which is able to affect the frequencies of the signals
exchanged between the spacecraft and Earth.

The size of the local blueshift region, which in our model
is responsible for the frequency differences, can be easily
estimated by using (9) and the values of our parameters. For
example, using the values from our conformal cosmology fits
in (24) and (25), we obtain rrs � 50–126 pc, corresponding
to a distance comparable to the one between Earth and the
nearest bright stars (which is about 15–30 pc). This blueshift
region would extend well beyond the solar system but would
cover a small portion of our galaxy, since rMilkyWay � 14.6 kpc.

The maximum blueshift effect would be seen at r =
(1/2)rrs � 25–63 pc and would correspond to a zmin =√

1− δ2 − 1 ∼ −10−8, a very small value. Therefore, the
blueshift region and the related effects are so small that they
cannot be practically observed in the radiation spectrum of
stars or other radiation-emitting objects within this region.
These effects are only small corrections to the Doppler signals
coming from the Pioneer or other similar spacecraft.

We also want to compare our estimates of the rate of
change of the anomalous acceleration (i.e., the jerk jP) with
those presented by independent verifications of the Pioneer
anomaly (see review in [1]). The first of these studies was
performed by Markwardt [58], who reviewed data for
Pioneer 10 and reported aP10 = −(7.70± 0.02)× 10−8 cm/s2,
with jP10 < 0.18 × 10−8 cm/s2/year = 5.70 × 10−17 cm/s3.
(We prefer to report here, as also done in the rest of the paper,
the anomalous acceleration aP as a negative quantity and
the related jerk jP as a positive quantity. Some of the papers
in the literature adopt the opposite sign convention, which
might generate some confusion.) Using Markwardt values in
(19) and (22), we obtain γMark = 1.71 × 10−28 cm−1 and
δMark = 5.89 × 10−5, consistent with our values in (20) and
(23)-(24) for Pioneer 10.

The second independent study was done by Toth [79]
and reported results separately for the two spacecraft. From
Toth’s results for Pioneer 10 (aP10 = −(10.96 ± 0.89) ×
10−8 cm/s2, jP10 = (0.21± 0.04)× 10−8 cm/s2/year = 6.65 ×
10−17 cm/s3), we compute γTothP10 = 2.44 × 10−28 cm−1 and
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δTothP10 = 7.76 × 10−5. Using instead Toth’s results for
Pioneer 11 (aP11 = −(9.40±1.12)×10−8 cm/s2, jP11 = (0.34±
0.12) × 10−8 cm/s2/year = 1.08 × 10−16 cm/s3), we obtain
γTothP11 = 2.09 × 10−28 cm−1 and δTothP11 = 5.23 × 10−5,
and all these results are also consistent with those discussed
in Section 3.

Finally, we wish to comment briefly on the recent analysis
of extended Pioneer data by Turyshev and collaborators [31].
This new study confirmed the anomalous acceleration and
its temporal decrease in absolute value (d|aP|/dt � −0.17 ×
10−8 cm/s2/year � −5.4 × 10−17 cm/s3) using data spans
more than twice as long as those used in previous studies. To
analyze the temporal behavior, different models were used
including a linear fit similar to the one which was employed
in our analysis. Their results were reported separately for the
two spacecrafts as follows (using our sign conventions).

Pioneer 10: aP10 = −(11.06 ± 0.08) × 10−8 cm/s2, jP10 =
(0.17± 0.01)× 10−8 cm/s2/year = 5.39 × 10−17 cm/s3, from
which we compute γTuryshevP10 = 2.46 × 10−28 cm−1 and
δTuryshevP10 = 8.70 × 10−5. Pioneer 11: aP11 = −(11.65 ±
0.42)× 10−8 cm/s2, jP11 = (0.18± 0.03)× 10−8 cm/s2/year =
5.70 × 10−17 cm/s3, from which we obtain γTuryshevP11 =
2.59 × 10−28 cm−1 and δTuryshevP11 = 8.90 × 10−5. Therefore,
these results are also in agreement with those discussed in
Section 3. A more detailed comparison of the latest Pioneer
results [31] with those obtained using conformal cosmology
will be presented in a future study on the subject.

In conclusion, the detailed analysis of the Pioneer anom-
aly presented in this work has indicated that our conformal
cosmology might be the origin of this effect, while conformal
gravity alone cannot account for the anomalous acceleration
of the spacecraft. If our analysis is correct, it explains natural-
ly the numerical coincidence between the Pioneer accelera-
tion and the Hubble constant, including the signs of these
quantities. In addition, we confirm our previous evaluations
of the cosmological parameters, γ0 = (1.94 ± 0.30) ×
10−28 cm−1 and δ0 = 3.83 × 10−5, also in agreement with
independent evaluations. Further studies will be needed
when the reanalysis of all the historical navigational data for
the Pioneer spacecraft will be completed by Turyshev and
collaborators, and new data will be publicly available.
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