

Module 10: Garden Ecology

Urban EcoLab

May 2021

NGSS Standards Alignment Chart

Center for Urban Resilience

Follow this and additional works at: https://digitalcommons.lmu.edu/urbanecolab-module10 Part of the Ecology and Evolutionary Biology Commons, Environmental Education Commons, Sustainability Commons, and the Urban Studies and Planning Commons

Repository Citation

Center for Urban Resilience, "NGSS Standards Alignment Chart" (2021). *Module 10: Garden Ecology*. 83. https://digitalcommons.lmu.edu/urbanecolab-module10/83

This Curriculum Support Materials is brought to you for free and open access by the Urban EcoLab at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Module 10: Garden Ecology by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.

<u>Grade</u>	CA-NGSS Science Standard	Content Connections	<u>L1</u>	L2	L3	L4	<u>L5</u>	L6	<u>L7</u>	L8	L9	L10
Level												
4	4-LS1-1.A): Structure and Function: Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.	plant parts and characteristics, plant growth and reproduction, pollination	x	X	Х	x	x	X	Х	Х	Х	Х
4	4-ESS3-1.A: Natural Resources: Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	human impact on the environment (trash, pollution)	X				X	X		X		
5	5-LS1-1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water.	resources needed for plant growth	x	x	x	x	X	X	Х	X	x	х
5	5-LS2-1.A: Interdependent Relationships in Ecosystems The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as "decomposers." Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a	role of plants in food webs, energy transfer, ecosystems, needs of organisms for survival	X	X	x	X	X	X	X	X	X	x

	relatively stable web of life. Newly introduced species can damage the balance of an ecosystem.											
5	5-LS2-1.B: Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.	cycles of matter, energy transfer	Х	Х	X	X	x	Х	X	Х	X	X
5	5-ESS3-1.C: Human Impacts on Earth Systems: Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments. (5-ESS3-1)	human impact on the environment (trash, pollution)	Х				X	X		X		
5	5-PS3-1 (PS3.D): Energy in Chemical Processes and Everyday Life: The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water).	energy transfer, photosynthesis, plant growth	Х	Х	x	x	Х	x	х	X	х	x
3-5	Technology & Engineering StandardsETS1.A: Defining and Delimiting Engineering ProblemsPossible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for	identifying materials and resources needed to create a solution, researching possible solutions, designing solutions, communicating proposed solutions with peers, testing and refining solutions			x	X	X	X	X			

	solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3–5-ETS1-1) ETS1.B: Developing Possible Solutions											
	 Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3–5-ETS1-2) At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3–5-ETS1-2) 											
	 Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3–5-ETS1-3) 											
	ETS1.C: Optimizing the Design Solution Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3–5-ETS1-3)											
6	6-LS1-4.B: Growth and Development of Organisms Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.	resources needed for plant growth	X	x	Х	Х	Х	x	X	x	x	X

_			1								1	
6	6-LS1-5.B: Growth and Development of Organisms Genetic factors as well as local conditions affect the growth of the adult plant.	effect of growing conditions on plant growth	X	Х	Х	Х	Х	х	Х	Х	х	х
6	6-MS-ESS3.C: Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things.	positive impacts of gardens on the environment / biosphere	x	Х	X	X	X	x	X	x	x	x
7	7-MS-LS1-6 (PS3.D): Energy in Chemical Processes and Everyday Life: The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. Cellular respiration in plants and animals involves chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials.	energy transfer, photosynthesis, cellular respiration	X	X	x	x	X	x	X	x	x	x

7	7-LS2-1.D: Interdependent Relationship in	availability of resources on	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Ecosystems	growth of plants										
	Organisms, and populations of organisms,											
	are dependent on their environmental											
	interactions both with other living things and											
	with nonliving factors.											
	In any ecosystem, organisms and											
	populations with similar requirements for											
	food, water, oxygen, or other resources may											
	compete with each other for limited											
	resources, access to which consequently											
	constrains their growth and reproduction.											
	Growth of organisms and population											
	increases are limited by access to resources.											
8	8-LS3-1.B: Variation of Traits	genetic variation in plants	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	In addition to variations that arise from sexual											
	reproduction, genetic information can be											
	altered because of mutations. Though rare,											
	mutations may result in changes to the											
	structure and function of proteins. Some											
	changes are beneficial, others harmful, and											
	some neutral to the organism.											
8	8-LS4-5.B: Natural Selection	genetically modified	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	In artificial selection, humans have the capacity	organisms (GMO's)										
	to influence certain characteristics of organisms											
	by selective breeding. One can choose desired											
	parental traits determined by genes, which are											
	then passed on to offspring.											
8	8-LS4-4.B: Natural Selection	genetic traits, natural	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Natural selection leads to the predominance of	selection										
	certain traits in a population, and the											
	suppression of others.											

	1					1			· · · · · ·	
6-8	ETS1.A: Defining and Delimiting Engineering Problems	identifying materials and resources needed to create a		Х	X	X	X	X		
	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS-ETS1-1)	solution, researching possible solutions, designing solutions, communicating proposed solutions with peers, testing and refining solutions								
	ETS1.B: Developing Possible Solutions									
	A solution needs to be tested, and then									
	modified on the basis of the test results, in									
	order to improve it. (MS-ETS1-4)									
	There are systematic processes for									
	evaluating solutions with respect to how well									
	they meet the criteria and constraints of a									
	problem. (MS-ETS1-2), (MS-ETS1-3)									
	Sometimes parts of different solutions can									
	be combined to create a solution that is									
	ETC1_2)									
	 Models of all kinds are important for testing 									
	solutions. (MS-ETS1-4)									
	ETS1.C: Optimizing the Design Solution									
	 Although one design may not perform the 									
	best across all tests, identifying the									
	characteristics of the design that performed									
	the best in each test can provide useful									
	information for the redesign process—that									
	is, some of those characteristics may be									

	 incorporated into the new design. (MS-ETS1-3) The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-ETS1-4) 											
9-12	HS-LS1-5.C: Organization for Matter and Energy Flow in Organisms: The process of photosynthesis converts light energy to store chemical energy by converting carbon dioxide plus water into sugars plus released oxygen.	energy transfer, photosynthesis	X	X	X	X	X	X	X	X	X	x
9-12	HS-LS2-1,2.C: Interdependent Relationships in Ecosystems: Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem.	carrying capacity, resource availability, competition for resources	X	X	X	Х	X	X	X	X	X	X
9-12	HS-LS2-3.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.	photosynthesis, cellular respiration, cycles of matter, energy transfer	X	X	Х	Х	Х	X	Х	Х	х	X

			1					1				
	HS-LS2-4.B: Cycles of Matter and Energy Transfer in Ecosystems: Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved.											
9-12	HS-LS2-2, 6.C: Ecosystem Dynamics, Functioning, and Resilience: A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population,	Ecosystem dynamics, effects of human activity (pollution, habitat destruction, etc.) on plants	X	X	X	X	X	x	X	x	x	X

	 however, can challenge the functioning of ecosystems in terms of resources and habitat availability. HS-LS2-7.C: Ecosystem Dynamics, Functioning, and Resilience: Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. 											
9-12	 HS-ESS3-3.C: Human Impacts on Earth Systems: The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. HS-ESS3-4.C: Human Impacts on Earth Systems: Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. 	natural resource management, human impacts on Earth	Х	x	x	x	X	x	X	x	X	x
9-12	 ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1) 	identifying materials and resources needed to create a solution, researching possible solutions, mitigating risk associated with the solution, designing solutions that meet a local or global need, being realistic about constraints of the solution, using			Х	X	X	X	X			

 Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1) ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design solution. ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) 							
today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1) solution, communicating proposed solutions with persections of the source of the source of the source of the source also may have manifestations in local communities. (HS-ETS1-1) ETS1.B: Developing Possible Solutions • • When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • • Both physical models and computers can be used in various ways to aid in the engineering design process, computers are useful for a variety of purposes, such as rrunning simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) • ETS1.C: Optimizing the Design Solution Critteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) •	 Humanity faces major global challenges 	technology in designing a					
water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1)proposed solutionsETS1.B: Developing Possible Solutionssolutions• When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3)• Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	today, such as the need for supplies of clean	solution, communicating					
 minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1) ETS1.8: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in varieus y purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) 	water and food or for energy sources that	proposed solutions with					
through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1) solutions ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	minimize pollution, which can be addressed	peers, testing and refining					
also may have manifestations in local communities. (HS-ETS1-1) ETS1.B: Developing Possible Solutions • When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	through engineering. These global challenges	solutions					
communities. (HS-ETS1-1) ETS1.B: Developing Possible Solutions • When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	also may have manifestations in local						
ETS1.B: Developing Possible Solutions • When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	communities. (HS-ETS1-1)						
 When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as rrunning simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) 	ETS1.B: Developing Possible Solutions						
take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	When evaluating solutions, it is important to						
 including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) 	take into account a range of constraints,						
aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) • Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	including cost, safety, reliability, and						
and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	aesthetics, and to consider social, cultural,						
 Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) 	and environmental impacts. (HS-ETS1-3)						
used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	Both physical models and computers can be						
engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	used in various ways to aid in the						
useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	engineering design process. Computers are						
running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	useful for a variety of purposes, such as						
solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	running simulations to test different ways of						
most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	solving a problem or to see which one is						
a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	most efficient or economical; and in making						
how a given design will meet his or her needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	a persuasive presentation to a client about						
needs. (HS-ETS1-4) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	how a given design will meet his or her						
ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	needs. (HS-ETS1-4)						
Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	ETS1.C: Optimizing the Design Solution						
simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	Criteria may need to be broken down into						
systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	simpler ones that can be approached						
of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)	systematically, and decisions about the priority						
be needed. (HS-ETS1-2)	of certain criteria over others (trade-offs) may						
	be needed. (HS-ETS1-2)						