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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 223, 1976 

SUFFICIENT CONDITIONS FOR 
AN OPERATOR-VALUED FEYNMAN-KAC FORMULA 

BY 

MICHAEL DALE GRADY 

ABSTRACT. Let E be a locally compact, second countable Hausdorff 
space and let X(t) be a Markov process with state space E. Sufficient conditions 
are given for the existence of a solution to the initial value problem, au/at = Au 
+ V(x) * u, u(O) = f, where A is the infinitesimal generator of the process X on 
a certain Banach space and for each x E E, V(x) is the infinitesimal generator of 
a C0 contraction semigroup on another Banach space. 

1. Introduction. The classical Feynman-Kac formula is given by the func- 
tion space integral 

u(x, t) = Ex [exp (fo V(x(s)) ds)f(x(t)) 

where x(t) is a Markov process with a locally compact, second countable, Haus- 
dorff state space E, V is a bounded, measurable function on E and EX is the 
expectation with respect to the initial distribution Px. This function space inte- 
gral is a solution to the initial value problem 

(1) au/at = Au + V(x) u, u(O) =f, 
where A is the infinitesimal generator of the process x(t). 

The operator-valued Feynman-Kac formula is given by a path space inte- 
gral which gives a solution to (1), where for each x E E, V(x) is an operator on 
a linear subspace, D(V(x)), of a Banach space, A is the infinitesimal generator of 
a strongly continuous semigroup of operators on that Banach space and for each 
(t, x), u(t, x) E D(V(x)). 

In [9] Hersh and Papanicolaou have shown that under some conditions (1) 
has a solution and they exhibit a solution. They do not, however, set out what 
the conditions are. In [6] Griego and Hersh show (1) has a solution in the case 
E is a finite set. 

We shall give sufficient conditions on the operators V(x) and on the initial 
conditions so that a solution to (1) exists. 
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182 M. D. GRADY 

The proof will follow that of the classical case given by Dynkin [3]. We 
shall use the concept of a random evolution introduced in [6] by Griego and 
Hersh and that of a multiplicative operator functional as in [5]. 

2. Needed functional analytic results. In this section we will present sev- 
eral results from functional analysis without proof. 

Let E be a locally compact, second countable, Hausdorff space, E the Bor- 
el a-field of subsets of E, and m a a-finite measure on (E, E). Let L be a sepa- 
rable Banach space. 

We shall identify two measurable functions from E to L if they are equal 
almost everywhere with respect to m. 

THEOREM 2.1. If f: E - L is strongly measurable, then f is Bochner 
integrable with respect to m if, and only if, fEjLf(x)II dm(x) < oo. 

The proof of this result can be found in [15, p. 133]. 
Let us denote by LP(E, L, m) the space of Borel measurable functions f 

from E to L so that fEIV(x)IIP dm(x) < o. The following result is shown by 

Zaanen [16, p. 225]. 

THEOREM 2.2. If 1 < p < 0, then LP(E, L, m) is a Banach space. 

The proof of the following can be found in [15, p. 131]. 

THEOREM 2.3 (PETTIS' THEOREM). A map f: E L is strongly meas- 
urable if, and only if, it is weakly measurable and m-almost separably valued. 

PROPOSITION 2.4. Iff E LP(E, L, m), then f is strongly measurable. 

PROOF. By Theorem 2.3, it suffices to show that if f E LP and p E L* 
(the dual of L), then pf) is Borel measurable. 

But f E LP implies f is Borel measurable and p E L* implies p is continu- 
ous, hence, ip(f) is Borel measurable. This completes the proof. 

3. Preliminaries. Let X = (2, , Zt, x(t), Px, x E E) be a Markov proc- 
ess with locally compact, second countable, Hausdorff state space E. Assume 
that X has continuous paths. Let Px(x(t) E A) be the transition probabilities 
of X, i.e. P(t, x, A) = Px(x(t) E A). 

We shall suppose as in ?2 that E is the Borel a-field on E and that m is 
a a-finite measure on (E, E). Finally, suppose that L is a separable, reflexive 
Banach space. 

DEFINITION 3.1. The measure m is said to be excessive relative to the 
family P(t, , ) if 

mP(t, A) fEP(t, x, A)m(dx) < m(A) 

for every t > 0 and A E E. 
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Throughout the rest of this paper we shall assume that m is excessive rela- 
tive to P(t, , ). 

LEMMA 3.2. If p: E -+ R is measurable, then 

EfE E[p(x (t))] dm(x) = fE (x)mP(t, dx) for every t > 0. 

PROOF. It suffices to show the result when p is a simple function. To 
that end, let p = IA where IA is the indicator of the set A E E. Then 

fEEx[p x(t))] dm(x) = fEx [IA (x(t))] dm(x) = fEPX(x(t) E A) dm(x) 

= TE P(t, x, A) dm(x) = mP(t, A) = fE IA (x)mP(t, dx). 

This is the desired result. 

PROPOSITION 3.3. If f E LP(E, L, m), 1 < p < oo, then for each t > 0 the 
map f(x(t)): Q2 -+ L is strongly nzeasurable and 

llf(x(t))ll dPx < ?? a.e. m. 

PROOF. Since f is Borel measurable and x(t) is s-measurable, we have 
f(x(t)) is Borel measurable, and again by Pettis' Theorem we have f(x(t)) is 
strongly measurable. 

Now let A = {x E EIEx(jLf(x(t))IIP) = oo}, where Ex(Y) denotes fr YdPx 
and let B = {x E EIEx(ILf(x(t))II) = oo}. Since for every x E E, Px is a probabili- 
ty measure (and hence LP(92, , Px) C L1(Q2, 1, Px)), we have B C A. We are 
trying to show that m(B) = 0 and so it suffices to show m(A) = 0. 

Suppose m(A) > 0, then 

IEEx(Ijf(x(t))IIP)m(dx) = 00. 

But by Lemma 3.2 we have 

Ex(jof(x(t))mjP)m(dx) = fE IIf(x)IiPmP(t, dx). 

So we have 

00 = fE Ex(IIf(x(t))IIP)m(dx) = fE Ijf(x)IjPmP(t, dx) 

< fIIf(x)IIPm(dx) < ?o? 

The second to last inequality is due to the fact that m is excessive relative to the 
family P(t, , ) and Ilf(x)IIP > O. 

The above gives us a contradiction and hence m(A) = 0, which is the de- 
sired result. 
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COROLLARY 3.4. If f E LP(E, L, m), 1 < p < oo, then f(x(t)) is Bochner 
integrable with respect to Px for m-almost every x in E. 

PROOF. Proposition 3.3 and Theorem 2.1. 
We now proceed to define one of the semigroups on LP(E, L, m) which we 

shall use later. 
DEFINITION 3.5. If f E LP(E, L, m), 1 < p < oo, then define (At)fXx) = 

Ex(f(x(t))), where the integral on the right is a Bochner integral for every x where 
this makes sense. 

Notice that Corollary 3.4 guarantees that this integral makes sense a.e. m. 

THEOREM 3.6. T(t) is a bounded linear operator from LP(E, L, m) to it- 
self 

PROOF. First notice that T(t)f: E -- L is defmed up to a set of m-meas- 
ure zero, hence, it makes sense to say T(t)f E LP(E, L, m). 

In order to show that T(t)f is Borel measurable we define 

JEx(f(x(t))), if Ex(I1f(x(t))IIP) < oo, 
?()= 

0, otherwise. 

Then we need to show that k is Borel measurable. Let p E L*. Then 

Ex(pf(x(t)))), if Ex(I1f(x(t))IIP) < 00w 

p(q(x)) = 

0, otherwise. 

Now if T(t) denotes the semigroup on the integrable Borel measurable functions 
from E to R associated with the Markov process X, then 

d0(KO) = 7(t)(p a f)(x). 

Since p 0 f is Borel measurable, we have p o 0 is Borel measurable. Hence, 0 is 
weakly measurable and applying Pettis' Theorem we have 0 is strongly measura- 
ble, hence 0 is Borel measurable. But ' = T(t)f 

We have already shown in the proof of Proposition 3.3 that 

SE IIT()f(x)IIP dm(x) = IE x(f(x(t)#lP dm(x) S E{Ex(If(x(t))II)}Pdm(x) 

< Ex (Ijf(x(t))IIP) dm(x) (by Holder's Inequality) 

< Ilf(x)IIP dm(x) (Proposition 3.3). 

This gives us that IIT(t)fII1 < lilf,I Hence T(t) is bounded. It is clearly linear. 
This completes the proof. 

In order to show that T(t) is a semigroup of operators on LP(E, L, m), we 
first need two lemmas. 
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LEMMA 3.7. Ex(f(x(t))) = fEf(y)P(t, x, dy), where both integrals are 
Bochner integrals. 

PROOF. This follows from the standard change of variables theorem for 
Bochner integrals [2, p. 182] and the fact that Px(x(t)-y(A)) = Px(x(t) E A) = 

P(t, x, A) for all A E E, t > 0 and x E E. 

LEMMA 3.8. Iff E LP(E, L, m), 1 < p < oo, then 

f(y)P(t + s, x, dy) = fE fEf(z)P(t, y, dz)P(s, x, dy). 

PROOF. It suffices to show the equality for simple functions. To that 
end, let f(x) = T27ci,lBiB(x) where ai E L, Bi E E and m(B,) < oo. Then 

r- n n 
jEf('y)P(t + s, s, dy) = , eP(t + s, x, Bi) = aiJEP(t, y, B,)P(s, x, dy) 

i=l 1= 

= IE aPo(t, y, B)P(s, x, dy) = fEf(z)P(t, y, dz)P(s, x, dy). 

This completes the proof. 
Before we prove the main result of this section we state a result of Griego 

[5, Theorem 1.2]. 

THEOREM 3.9. Let {M(t), t> 01 be a multiplicative operator functional 
on (X, L). If L is a reflexive Banach space, and if for fixed 6 > 0, 

C sup sup (EXQjM(t)jjq))PIq <00 

O<t<6 xEE 

where I/p + 1/q = 1 and 1 < p < oo, then the operators on LP(E, L, m) defined 
by S(t)f(x) = Ex[M(t)f(x(t))] are strongly continuous in t. 

We now state and prove the main result of this section. 

THEOREM 3.10. The family { T(t), t > 0} is a strongly continuous contrac- 
tion semigroup of operators on LP(E, L, m), 1 < p < oo. 

PROOF. The fact that T(t) is a contraction map from LP(E, L, m) into 
itself was established in Theorem 3.6. The strong continuity follows from Theo- 
rem 3.9, where our multiplicative operator functional is given by M(t, co) = I 
(the identity operator on LP(E, L, m)) for all t and co. Notice that this is the 
first time the reflexivity of L is used. It remains to show that {(Rt), t > 01 is a 
semigroup. We have 
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T(t + s)f(x) = E,[f(x(t + s))] = fEf(y)P(t + s, s, dy) 

= fELf(z)P(t, y, dz)P(s, x, dy) (by Lemma 3.8) 

= fET(t)f(y)P(s, x, dy) (by Lemma 3.7) 

= T(s)T(t)f(x) (by Lemma 3.7), 

and finally T(O)f(x) Ex f(x(O))] = f(x). Hence, { T(t), t > O} is a semigroup. 
This completes the proof. 

4. The expectation semigroup. In this section we shall build another 
strongly continuous contraction semigroup on LP(E, L, m) which will be called 
the expectation semigroup following Griego and Hersh [6]. 

We need some lemmas. 

LEMMA 4.1. If Sn and Tn are sequences of bounded linear operators on 
L so that Sn -- S strongly and Tn T strongly and if {IISn11, n > 1} is bound- 
ed, then SnTn -+ST strongly. 

The proof is clear so we omit it. 
The following result is shown by Khalili [11, p. 16]. 

LEMMA 4.2. If {fn } is a sequence of strongly measurable functions from 

a measure space to a Banach space, and if fn -- f pointwise, then f is strongly 
measurable. 

In defining our expectation semigroup we shall use a multiplicative opera- 
tor functional which will be given by the solution operators to a random evolu- 
tion equation. We now proceed to set up the desired evolution equations. 

Suppose that for each x E E we have a strongly continuous contraction 
semigroup of operators {TX(t), t > 01 on L. Denote by V(x) the infinitesimal 
generator of this semigroup and denote the domain of V(x) by D(V(x)). 

We shall find it necessary to make the following assumptions which we 
number for convenience. 

(A-1) (Commutativity) Tx(s)TY(t) = Ty(t)Tx(s) for every x, y E E and s, 
t>O. 

(A-2) D(V(x)) = D for all x E E. 
(A-3) The map x -+ V(x)f is continuous for every f E D. 
I would like to thank the referee for pointing out the following. In the 

original write-up, I assumed both the hypothesis and the conclusion of the next 
lemma. 

LEMMA 4.3. If the map x -+ V(x)f is continuous for every f E D then 
the map x -k Tx(t)f is continuous for every f E L and t > 0. 
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PROOF. Let f E V and suppose that x, x. Then we have Tx(t)f - f 
= foT0 (s)V(xn)fds (cf. [3, p. 33]). Writing the same formula with x instead 
of xn , we have 

TX (t)f- TX(t)f = Jt[TX(s) V(x)f - Tx(S) V(x)f I ds 

TX T ((s)[V(x,,)f- V(x)f ds 

+ I [TXn(s) 
- Tx(s)IV(x)fds. 

Now let an = 11 V(xX)f - V(x)fll. Then we have 

nIT (t)f 
- Tx(t)fII S tan + 0LI[Tx (s) - Tx(s)I V(x)fl Ids. 

If we let 

An(t) = max {IITx (t)f- TX(t)fIl, U(Tx (t) - TX(t))V(X)fIl} 

then from the above inequality we see that 

An(t) < ta,n + .fAn(s) ds 

and hence An(t) S an(et - 1). But now, by hypothesis, an -+ 0 and, hence, 

An(t) -O 0 for every t > 0. Therefore, Tx (t)f Tx(t)f for all f E D. 
Now let f E L and let e > 0. Since P is dense in L, there is a g E D so 

that Lf - gil < e. Now we have 

IITX (t)f- Tx(t)gI1 IITx (Of- Tx (t)gI1 + IITx (Og- Tx(tg 

hITx (t)x llf - g91 + hITXs(t)g - Tx()gh1 

? e + IITx (t)g - TX(t)gI1. 

Hence Lim supn IITxn(t)f - Tx(t)gll < e. 

Finally we consider the following: 

ITxn(t)f- TX(t)fII <? IT I (t)f- TX(t)g1I + IIT (t)g- T( (t)f II 

+ IITX (t)f- TX(t)gUI 

and hence 

Lim sup IITx (t)f - Tx(t)f 1 ll e + Lim sup IlTxn(t)f - Tx(t)gI I 2e. 
ni n 

Since e > 0 was chosen arbitrarily we have LimnllTxn (t)f - Tx(t)fjI = 0 which 

is the desired result. 
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Goldstein [4] has studied the following initial value problem: 

(2) dy/dt = A(t)y, s S t, y(s) = f, 

where the initial value f is in some Banach space and for each t > s, A(t) is the 
generator of a strongly continuous semigroup of operators on that Banach space. 
He has shown that under sufficient conditions on the operators A(t) there are 
solution operators M(s, t) which satisfy the following: 

at (3) aa-M(s, t)f = M(s, t)A(t)f = A(t)M(s, t)f, 

(4) a.S M(s, t)f = -M(s, t)A(s)f = -A(s)M(s, t)f, M(s, s) = I, 

where f is an element of a certain subspace of the original Banach space. Using 
these solution operators we then get solutions to the equations: 

(5) dyldt = A(t)y, s 6 t, y(s) = 

(6) dylds = -A(s)y, s < t, y(t) = 

when the initial condition f is in the right subspace. Equation (5) is referred to 
as the forward equation and (6) is referred to as the backward equation. 

Notice that for each co E 2 we can consider an evolution equation of the 
same form as (2) by letting A(t) = V(x(t, c)). This brings us to our next propo- 
sition. 

PROPOSITION 4.4. If (A-1)-(A-3) hold, then for each co E 2 there is a 
unique family of solution operators M(s, t, c), 0 < s S t, so that y(s, )- 
M(s, t, c)at satisfies 

(7) dylds = -V(x(s, co))y(s, co), y(t, co) = a, 

for each a E V. Moreover, if p: Q2 -- V C L is strongly measurable, then the 
map co -- M(s, t, C)4p(co) is strongly measurable. 

PROOF. The hypotheses (A-1)-(A-3) and Lemma 4.3 guarantee that for 
each co E Q2 the operators V(x(t, co)) satisfy Goldstein's conditions. Here we use 
the continuity of paths of the process X along with (A4) to obtain the map t 

- A(t)cv = V(x(t, co))t for a E V is continuous, which is one of the conditions 
required by Goldstein. So for each co E Q2 Goldstein [4, Theorem. 1.1] guaran- 
tees the existence and uniqueness of a family of solution operators {M(s, t, co), 
O S s S t} which satisfy equations (3) and (4). Then from (4) we obtain (7). 

We give a brief outline of Goldstein's construction of the operators 
M(s, t, co) because it is useful in proving the last statement of the proposition. 

Let a < b. The construction of M(a, b, co) is as follows: 
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Let A = {a = to < t1 < * * * < tn = b} be a partition of the interval [a, b] 
and, for 1 <j < n, let Tj E [tj-., tj]. Define 

Ri,(00)= Tx(rj ,)(t1 - a)Tx(T2,,)(t2 - tl) T**Tx(rn,w)(b tn-,) 

Goldstein has shown that if we define JAI = max { Itj - tj_1. I: 1 S j < n}, then 

RA<(co) converges strongly to the solution operator M(a, b, co) as IAI 0. 
We now prove the last statement in the proposition. 

Since x(t): Q2 -+ E is s-measurable for each t > 0, there are simple func- 
tions yn(t) mapping Q2 into E so that yn(t, co) - x(t, co) for each co E Q2. The 
map co -, Ty (ri, )(t, - til) is a simple function from Q2 to B(L, L), the 
bounded linear operators on L, and, hence, so is the map Ym: Q2 - 3 B(L, L) 
defined by 

Ym(co) = Tym(Tl,w)(tl -a) ... Tym(Tn, w)(b -tn_d) 

Notice that by Lemmas 4.1, 4.3 and hypothesis (A-3), we obtain y m(c) 

R&(co) strongly for each co E Q2. Now since up: Q2 -- L is strongly measurable, 
there are simple functions spn: Q2 -- L so that un(co) -- sp(co) for each co E Q 

[I1, p. 8]. 
Consider the map Zm: 92 -Q L defined by Zm(o) = Ym(co)YPm(co). For 

each m, Zm is a simple function and Zm(co) --+ R,(co)p(co) for each co E Q2. 
Hence, the map co -? R,(c)cp(co) is strongly measurable. 

To complete the proof, choose a sequence of partitions {An} so that 

n I--* O. Then 

M(a, b, c@)4(c) = Lim R, (Cop(c4). 
n nl 

So by Lemma 4.2, the map co --+ M(a, b, co(Aco) is strongly measurable. This 

completes the proof. 
It should be noted that assumption (A-2) can be weakened, but it is con- 

venient to make the assumption later on and it will hold for the example we 
wish to consider. 

Observe that we have shown that the map co --+ M(a, b, c) p(co) is strongly 
measurable relative to the a-field , but we have the following corollary. 

COROLLARY 4.5. If p: Q2 -- L is strongly measurable relative to Ibl then 
the map c -+ M(a, b, c),p(c) is strongly measurable relative to Ib. 

PROOF. Each R, was the limit of simple functions which were Ib' n 
measurable since they depended only on x(t) for t S b. 

COROLLARY 4.6. The strong conditional expectation of M(a, b, c)(p(co) 
exists and 
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(8) E (M(a, b>pISb) = M(a, b)EX(fp Ib) 

PROOF. The proof of the existence is due to Scalora [14]. The proof of 
(8) follows exactly the proof of the real valued case and can be found in Griego 
and Hersh [6, Lemma 2]. 

There are several properties of the solution operators M(s, t, w) which are 
shown in [4]. Since we shall use them later we list them here. 

C,ROLLARY 4.7. (a) UM(s, t, co)JI < 1 for every co E Q2, and 0 6 s < t. 
(b) M(s, t, co)V(x(t, co)) = V(x(t, co))M(s, t, co). 

(c) M(s, r, )M(t, s, c) =M(t, r, co) for each co E Q and 0 S t 6 s < r. 

PROQF. The only thing not shown by Goldstein is (a), but it is obvious 
because each operator TX(t) is a contraction map. 

We shall use the solution operators to define what we call a random evolu- 
tion, which we will then use to define the expectation semigroup. 

DEFINITION 4.8. If M(s, t, co), 0 S s 6 t, is the family of solution opera- 
tors for equation (7), define M(t, w) = M(O, t, co) for each co E Q2, t > 0. The 

family {M(t), t > 01 is called a random evolution. 

LEMMA 49. If 0 S t 6 s S r, and if a E L, then 

M(s, r, CO)M(t, s, C.o) = M(t, s, W)M(s, r, t)a 

for every X E Q2. 

PROOF. By Corollary 4.7(c) we have for each co, and a E D, M(t, r, w)a 
= M(s, r, )M(t, s, co)a. Fix s so that t 6 s 6 r and define U(t, r, w) by 

U(t, r, to) = M(t, s, coM(s, r, to) for each X E Q2, and t 6 s. 

Let y(t, co) = U(t, r, t)o). Differentiating y with respect to t, we obtain 

dy =a rt)a=0 
dt= a U(t, r, c)a = 

57t M(t, s, CW)MS, r, C00 

=-V(x(t, W))M(t, s, cOW)M(s, r, to)a 

=-V(x(t, co))y, y(r, to) = a. 

But we know yI(t, co) = M(t, r, to)a is the unique solution to (7). Hence, y1 = 

y, which is the desired result for a E D. Now since M(s, r, to) and M(t, s, t) 

are bounded operators and D is dense in L, the result holds for all a E L 

PROPOSITION 4.10. If s, t > 0, and if a E 7D, then M(t + s, t)o) = M(s, to) 

M(t, 03.)o for each to E Q, where 0. is the shift operator for the process X. 
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PROOF. Recall that by Definition 4.8, we have 

(9) M(t + s, c)t = M(O, t + s, c)a, 

(10) M(s, co)t = M(0, s, c)a, 

(11) M(t, Ocso)a = M(0, t, Osc)t. 

Now observe that y1 (t, co) = M(s, t + s, c) is the unique solution of 

(12) dy/dt = V(x(t, OC))y = V(x(t + s, CO)y, y(O) = a. 

But, Y2(t, co) = M(0, t, O3c)t also satisfies (12). Hence, y1 = Y2, or 
M(s, t + s, c)at M(0, t, O3oW)t. 

So, we now have 

M(0, s, CWM(O, t, 0s3)a = M(O, s, C)(s, t + S, c.)a, 

and, hence, equations (9), (10) and (11), along with Lemma 4.9 and Corollary 
4.7, give us 

M(s, W)M(t, Osc)at = M(0 s, sW)(s, t + s, Co)a 

=M(, t + s, C)a = M(t + s, W)a. 

This is the desired result. 

LEMMA 4.1 1. If x, y E E, s > O and a E D then 

V(x)Ty(s)O = Ty(s)V(x)a. 

PROOF. Let x, y E E, s > O and a E D; then, 

Tx(t)TY(s) - Ty(s)ct TY(s)TX(t)t - TY(s)t 
V(x)TY(s)a = lim = 1im 

Tx(t)a - a 
= TY(s) lim Tx= Ty(s)V(x)a. 

t-+O 

COROLLARY 4.12. If x e E, t, h > 0, o E Q and a E D, then 

V(x)M(t, t + h, of)a = M(t, t + h, co)V(x)a. 

PROOF. This follows immediately from Lemma 4.11 and the construction 
of M(t, t + h, w). 

We are now ready to define the expectation semigroup. 
DEFINITION 4.13. Let f E LP(E, L, m), 1 < p < oo; then define (T(t)f)(x) 

= Ex(M(t)f(x(t))) for each x E E, where the integral on the right exists as a 
Bochner integral. 
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Notice that since IIM(t)II < 1, by the results in ?3 the integral will make 
sense for m-almost every x. 

THEOREM 4.14. The operator T(t) is a bounded linear operator from 
LP(E, L, m) to itself for 1 <p < . 

PROOF. The proof that T(t)f is measurable is exactly the same as in the 
proof of Theorem 3.6. Clearly, T(t) is linear. 

We now show IIT(t)fIIP < oo, if f E LP(E, L, m). We have 

II(t)fP = j IIJjf(t) I)IP dm(x) = IIEx(M(t)f(x(t)))IIP dm(x) 

t{Ex(11M(t)&t(t))11)T dm(x) S g{Ex(jjf(x(t))jj))P dm(x) 

< Ex(ILf(x(t))IIP) dm(x) = fE I1f(x)IjPmP(t, dx) 

< ljf(x)IIP dm(x) = llpP < oo. 

Hence, T(t)f E LP(E, L, m). This completes the proof. 
The above shows IIT(t)II 6 1. This proof is given for completeness. It can 

be found in more generality in Griego [5]. 
We now prove the main theorem of this section. 

THEOREM 4.15. The family {7Xt), t > O} is a strongly continuous contrac- 
tion semigroup of operators on LP(E, L, m), 1 < p < oo. 

PROOF. The strong continuity follows from Theorem 3.9. We have al- 
ready shown that T(t) is a contraction map for each t > 0. It remains to show 
the semigroup property. 

We have 

iT(t + s)f(x) = Ex(M(t + s)f(x(t + s))) 

=Ex(M(s)M(t) o0f(x(t) o ES)) (by Proposition 4.9) 

- Ex(Ex(M(s)M(t) ? O3f(x(t) ? os)IMs)) 

- Ex(M(s)Ex(M(t) o Osf(x(t) o Os)I,s)) (by Corollary 4.4) 

- EX(M(s)Ex(s)(M(t)f(x(t)))) 

- Ex(M(s)T(t)f(x(s))) = T(s)T(t)f(x). 

Further, T(O)f (x) = Ex(M(O)f(x(O))) = f(x). Hence, {T(t), t > 01 is a semi- 

group, which is the desired result. 
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5. The operator-valued Feynman-Kac formula. In this section we shall 
use the semigroups defined in ? ?3 and 4 to get the operator-valued Feynman- 
Kac formula for a certain subspace of initial conditions contained in LP(E, L, m), 
where 1 < p < oo. Since the results of ? ?3 and 4 are going to be used, we shall 
assume everything we need to apply them, e.g. the excessivity of m relative to 
the family P(t, , -), the fact that L is separable and reflexive, and assumptions 

(A-1) through (A-3). 
Before we proceed to the derivation of the Feynman-Kac formula we need 

to define one more operator on a subspace of LP(E, L, m). 
DEFINITION 5.1. Recall that D2 is the common domain of all the operators 

V(x) on L. Define the operator B by 

D(B) = {f E LP(E, L, m)tf(x) E D a.e.m, 

and if F(x) = V(x)f(x), then F E LP(E, L, m)} 

and 

B: 1D(B) -f LP(E, L, m) by Bf(x) = V(x)f(x). 

LEMMA 5.2. The operator B is closed and linear. 

PROOF. Clearly, B is a linear operator, so it suffices to show B is closed. 
To that end, assume f, -+ f in LP(E, L, m), where fn E D(B) for each n. 
Assume further that Bfn -- g in LP(E, L, m). We need to show that f E D(B) 
and that Bf = g. 

Since f, -+ f in LP(E, L, m), there is a subsequence {fnkI C {fn} so that 

fnk(x) -* f(x) in L for m-almost every x. Since Bfn -+ g in L (E, L, m), we 

must have Bf k-+ g in LP(E, L, m) and, hence, there is a further subsequence 

{nk } C Unk} so that: 

(a) fn k(x) f(x) ae.m, and (b) BfnX) -(+ g(x) a.e.m. 
? I 

But since each V(x) is a closed operator we have f(x) E D2(V(x)) a.e. m and 
Bf(x) = g(x) a.e. m. 

We are now ready to define the space to which we shall restrict ourselves. 
DEFINITION 53. Define the space 1' as follows: 

D = LE D(B)IEx(II V(x(s))f(x(t))II) S F(s, t, f, x), 

where 

(*) ffJ eXtlF(s, t,f, x)dsdt<00 for all X >O 

and 
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(**) r fEjF(s,t, f, x)IP dm(x) < o for O < s < t < 00. 

Let 

BC(E, L) = {f: E -L LI lfil = sup jf(x)ij <oo and f is continuous 

Finally, define 

D" = D' n BC(E, L). 

Before we proceed to deriving the Feynman-Kac formula, we make the 
following assumptions. Throughout the rest of this section assume: 

(A4) The map x -Px is weakly co itinuous, i.e. if Y: Q2 -+L is norm 
bounded and continuous and if xn -+ x, then Ex (Y) Ex(Y). 

(A-5) The map (x, y) -- V(x)f(v) is jointly measurable for each f E 12. 
The approach we shall take is to restrict the semigroups of ? ?3 and 4 to 

the Banach space V7 C LP(E, L, m). This will enable us to obtain a relationship 
between the resolvent operators of the semigroups, which will in turn allow us 
to derive the Feynman-Kac formula. To do this we must first show that under 
certain conditions T(h) and T(h) leave D" invariant for all h > 0. 

PROPOSITION 5.4. Iff E 1" and h > 0, then T(h)f E D0". 

PROOF. We first show T(h)f E BC(E, L). Since f E BC(E, L), we know 

f(x(h)): Q- L is bounded and it is clearly continuous. So, if xn -+ x in E, 
then by (A4) EX (f(x(h))) -- Ex(f(x(h))), which gives us the continuity of 
T(h) It is clearly bounded by JlfIj,.. 

We must now show that T(h)f E l(B). To that end, let x E E. Then we 
have 

Ex(JI V(x)f(x(h))Il) = Ex(II V(x(O))f(x(h))Il) S F(O, h, f, x) < oo a.e.m. 

The reason for the second to last inequality is that f E D'. Now, since V(x) is 
a closed operator, we get 

l(h)f(x) = Ex(f(x(h))) E f)(V(x)) 

and further: 

(13) V(x)T(h)f(x) = Ex(V(x)f(x(h))). 

The fact that x -+ V(x)T(h)f(x) is in LP(E, L, m) now follows from the fact 

that F(O, h, f, -) E LP(E, L, m). 
Finally we need to show that there is a function F(s, t, T(h)f, x) satisfying 

(*) and (**). Notice that by an argument similar to the one which gave us (13) 
we obtain 
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V(x(s))T(h)f(x(t)) = Ex(t)( V(x(s))f(x(h))) 

and hence, 

II V(x(s))T(h)f(x(t))II < EX(t(I V(x(s))f(x(h))II) 

= EX(II V(x(s))f(x(t + h))II I Et). 

Now taking expectations we get 

EX(II V(x(s))T(h)f(x(t))II) < Ex(II V(x(s))f(x(t + h))II) < F(s, t + h, f, x). 

Letting F(s, t, 1(h)f, x) = F(s, t + h, f, x), we obtain the desired result. This 

completes the proof. 

PROPOSITION 5.5. If f E 0" and h > 0, then T(h)f E DV. 

PROOF. That T(h)f E BC(E, L) follows exactly as in the proof that T(h)f E 

BC(E, L) (Proposition 5.4) and the fact that IIM(h)jj < 1. 
We now show T(h)f E D(B). Using the same argument as in Proposition 5.4, 

it suffices to show: 
(a) Ex(lI V(x)M(h)f(x(h))II) < oo a.e. m and 
(b) fEIIEx(V(x)M(h)f(x(h)))II dm(x) < c0. 

But Ex(II V(x)M(h)f(x(h))II) < Ex(II V(x)f(x(h))II) by Corollary 4.12, and since 

Ex(II V(x)f(x(h))II) < F(O, h, f, x), both (a) and (b) follow. 
We now need to show that T(h)f satisfies the defining inequality for 0'. 

Using Corollary 4.12 we obtain 

EX (I I V(x (s)) T(h)f ((t)) ) ) = Ex (I I V(x (s))EX (t) (M(h)X (h))) I I) 

= Ex(IIEx(t)(V(X(S))M(h)f(x(h)))Il) 6 Ex (Ex (t) ( s I ( )X (S))x (h)) I I)) 

= EX(EX(II V(x(s))f(x(t + h))Ij I Et)) = EX(II V(x(s))f(x(t + h))Ij) 

< F(s, t + h, f, x). 

Letting F(s, t, T(h)f, x) = F(s, t + h, f, x) we obtain the desired result. 

COROLLARY 5.6. The operators T(h), T(h) leave 0" invariant for all h > 0. 

We now assume that the hypotheses of Proposition 5.5 hold throughout the 

rest of this section. Since T(h) and T(h) leave 0" invariant for every h > 0, we 
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can consider { T(h), h > O} and {T(h), h > O} as strongly continuous contraction 
semigroups on the Banach space D". Let A and A, respectively, denote their 
infinitesimal generators, and let RA and R. denote their respective resolvents. We 
now proceed to show u(t, x) = T(t)f(x), which is the operator-valued Feynman-Kac 
formula, satisfies (1) when f is in a certain subspace of . 

LEMMA 5.7. If f E 0", then 

1z o E.(#-?'tJJM(s) V(x(s))f(x(t))Il) ds dt < oo 

for every X >0. 

PROOF. This follows from the fact that f E D' and that F(s, t, f, x) satis- 
fies (*) and IIM(s)II S 1 for all s. 

COROLLARY 5.8. If f E 1', then the order of integration in 

o Jo E.,(e-'XtM(S) V(x(s))f(x(t)))dsdt 

is immateial. 

PROOF. Apply the Fubini-Tonelli Theorem. Notice here we use (A-5) to 
get joint measurability of M(s) V(x(s))f(x(t)). 

LEMMA 5.9. Iff E D", then 

(14) A]RJ R =RXBRxf for all X >0. 

PROOF. We have 

Rxf(x) -Rxf(x) = fe-Xt(Y(t)f - T(t)f)(x)dt 

- fo7e- tEx((M(t) - I)f(x(t))) dt. 

But recall that Proposition 4.4 gives us 

-(d/dsWl(s, t)f(x(t)) = V(x(s))M(s, t)f(x(t)). 

So upon integration, we obtain 

f V(x(s))M(s, t)f(x(t)) ds = -M(s, t)f(x(t)) I_ to = (M(t) - I)f(x(t)) . 

Returning to our original equation, we get 
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i%f(x) - R^f(x) - fo extEx(J0 V(x(s))M(s, t)f(x(t)) ds) dt 

= fjftO Ex(eXtV(x(s))(s, t)f(x(t)))dsdt (by Corollary 5.8) 

= Jo7fs Ex(e-XtV(x(s))M(s, t)f(x(t)))dtds (by Corollary 5.8) 

= fo f Ex(C (t+s)V(x(s))M(s, t + s)f(x(t + s))) dt ds 

= fOe-sj eXtEx(Ex( V(x(s))M(s, t + s)f(x(t + s))I Zs))dtds 

= eO e j'"OeXtEx(V(x(s))Ex(M(s, t + s)f(x(t + s))IE,))dtds 

=J e J0 extEx(V(x(s)) EX(s)(M(t)f(x(t)))) dt ds 

= j7 e~-fsfOe-tEx(V(x(s))T(t)f(x(s)))dtds 

e fe7-sj ex?tEx(BT(t)f(x(s))) dtds 

- fJo e7jx extT(s)B7(t)f(x)dtds 

= fj e-AT(s)B(f0 e-tT(t)fdt) (x)ds 

(by Theorem 3.6 and Lemma 5.2) 

= 10 eXAT(s)BRxf(x)ds = RXBRxf(x). 

This completes the proof. 

THEOREM 5.10. The operator RA mapS 1 into D2(X). Further, iff e 
R(V"), then A;f[ = ;If + Bf 

PROOF. If f E 1', then by Lemma 5.9 we have R^f = RX(BRX - )f E 

Kx(D) = range of RA = D(G). This establishes the first statement. 

Now if f E RA(V'"), then there is a g E 1' so that f = R'g. Then by Lemma 
5.9, we have 

RAg - RAg = RXBR g, 

which implies 

RAg = RAg + R Bf, 
hence, 

f = RA(g + B!). 

Now apply X - A to both sides of the above to obtain 

-Af = g +.Bf = (X - A)f + Bf = - Af + Bf 
Rearranging terms, we obtain 
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Af =Af +Bf 

This completes the proof. 
We are now ready to state and prove our main result. 

THEOREM 5.1 1. If Do = {f E D n rD(A)jAf E V1}, and if f E D2o, then 
the initial value problem au/at = Au + Bu, u(O) = f, has a solution given by 
u(t) = T(t)f 

PROOF. It is a standard result in the theory of semigroups [15, p. 239] 
that if f E D(Z), then u(t) as defined above satisfies au/at = Au. Hence, by 
Theorem 5.10 it suffices to show that u(t) E RA(D") for every t > 0. 

Recall that f E Do C D(A); hence, u(t) = T(t)f E D(A) [15, p. 239]. Let 
v(t) = (X - A)u(t). Then v(t) = (X - A)T(t)f= T(t)(X- A)f But, since f E 

120, we have that bothf and Af belong to 12". Therefore, (X - A)fE 12", and by 
Corollary 5.6, we have v(t) = T(t)(X - A)fE 1". Furthermore, Rkv(t) = u(t), 
hence u(t) E R~(D") for each t > 0. This completes the proof. 

We now proceed to show that 12o is nonempty and, in fact, under the 
proper conditions is dense in 12". 

LEMMA 5.12. If f E D' and if we define the function g by g(K) = 

f(t)f dt, and if foK F(s, t + h, f, x) dh satisfi es (*) and (**), then g(K) E 1'. 

PROOF. Observe that g(K): E -+ L is bounded by KIfll,. We now show 
that it is continuous. Let xn -- x in E. Then 

g(K)(xn) = Ex (M(t)f(x(t))) dt = Ex( fo M(t)f(x(t)) dt). 

But, 

Ex (J)K(t)f(x(t))dt) Ex (fK M(t)f(x(t)) dt) 

because of (A4) and the fact that fO M(t)f(x(t)) dt is a bounded function from 
Q2 to L. But notice that 

Ex (fM(t)f(x(t))dt)= gK)(x). 

Hence, g(K)(xn) -+ g(K)(x), and g(K) is continuous. Therefore, g(K) E 
BC(E, L). 

That g(K) E 12' follows directly from the fact that fjK F(s, t + h, f, x) dh 
satisfies (*) and (**). 

THEOREM 5.13. If the hypotheses of Lemma 5.12 are satisfied for K = 

1/n for every n, and if D" # {0}, then Do0 # {0}. 
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PROOF. Let f O be in D" and define fn = nf lfl T(t)fdt. 

Then by Lemma 5.12, f E D". But, f, E D2(A) and Afn = nT(1 /n)- nf E 0". 
Hence, fn E Do for every n. Now, if Do = {O}, then fn = 0 for every n. But, 

fn -* f and so if Do = {O}, then f = 0 which is a contradiction. Hence, Do 0 
{O} and the proof is complete. 

COROLLARY 5.14. If M is a linear subspace of V' which is dense in D", 
and if the hypotheses of Theorem 5.13 are satisfied by each f E M, then D0 is 
dense in D". 

PROOF. Let f E D" and let e > 0. Choose g E M so that lIf - gil < e/2. 
Let gn = nfoln T(t)g dt. Then for n sufficiently large lign - gll < e/2 and hence, 
lf -gnii < lif -gil + lign -gil < e. But Theorem 5.13 guarantees that gn E Do 
for all n. This completes the proof. 

Finally we give necessary and sufficient conditions on the operators A and 
B so that A + B is actually an extension of the operator A. 

DEFINITION 5.15. We define G to be the space of functions on which A 
=A+ B, i.e. 

G = {f E D(A) n D(B) n D2(A): Af = Af + Bf}. 

THEOREM 5.16. If 0(A) = G, then (A + B)IG is a closed operator and, 
conversely, if (A + B)IG is closed, then D(A) = G. 

PROOF. To show the first implication let fn -- f where fn E D(A + B) n 
G and assume (A + B)fn -+ g. Since each fn E G we have first each fn E D(A) 
and second that Afn = (A + B)fn - g. Since A is a closed operator f E 12(A) 
and Af = g. But f E D2(A) implies f E G and hence Af = (A + B)f = g. Hence 
(A + B)IG is a closed operator. 

To show the converse we notice that by Theorem 5.10, RX(V") C G and 
clearly G C D(A) = RX(V") We need therefore only show that if (A + B)IG is 
closed then R,(D") C G. In view of the above observation, this amounts to 
showing that if f E RX(D) - RG(!') then f E G. 

To that end let f E RX(DV") - RA(DV"). There is some element g E1 D" - D" so 
that R^g = fg Since g E D" there is a sequence {gn } C D" so that gn g. De- 
fine fn = RXg. Now each fn is in RX(DV") and further, 

(15) fn 
= 

RAgn RAg = f 

because gn -+ g and R is a bounded operator. We shall show that {(A + B)fn} 
converges. Note that by Theorem 5.10, (A + B)fn = Afn,, Now {(X - A)f, n 
{(X - A)RXgn}= {gn}, which is a convergent sequence, and since the sequence 

{Vn} converges by (15) we must have that the sequence {Afn } converges so by the 
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above note the sequence {(A + B)f } converges to some element h, namely h = 

)f-g. 

We now have first fn -k f and each f, E G and second (A + B)fn -+ h. 
Since we are assuming that (A + B)IG is a closed operator we can conclude that 
f E G and (A + B)f = h. In particular, f E G which is the desired result. 

COROLLARY 5.17 . The operator A + B is an extension of A if and only 
if W, + B)IG is a closed operator. 

PROOF. This follows directly from Theorem 5.16. 

6. Example. In this section we shall apply the above results to a specific 
example. 

Let X =(Q2, , St, x(t), P'Y x E R1) be a Brownian motion on the real 
line, and suppose L = L2(R). Recall the transition probabilities of Brownian 
motion are given by 

2t P(t, x, A) = 2 A |A exp v 3tdy. 

The measure m in this case will be Lebesgue measure on R1. It is easily seen 
that m is excessive relative to the family P(t, ;, -). Now for every x E R defime 

TX(t): L * L by Tx(t)Mo(O) = po(O + g(x)t), where g is continuous, bounded and 
g(x) # 0 for every x E R and further, for every t > 0, 

f- Nro,2w g(y)I Iexp [(t )] dY} d <cc 

Then it can be shown [1, p. 43] that TX(t) is a strongly continuous contraction 
semigroup of operators on L and the infinitesimal generator of TX(t) is given by 

D(V(x)) = {up E L2(R)IV, E ACiOC(R) and ao/aO E L2(R)}, 

where ACiOC(R) denotes the set of all locally absolutely continuous functions 
from R to R and 

V(x)< = g(x)Ap/a. 

It is clear that (A-1) through (A-5) are satisfied by the above. 

THEOREM 6.1. Under the conditions set out above, the initial value 
problem: 

au/at = ?a2U/ax2 + g(x)aulaG, u(O) =f, 

has a solution if f E Do. 

PROOF. Theorem 5.11. 
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We should note here that Do # {O}. We shall show this by exhibiting an 
element f E D" - {O} which satisfies the hypotheses of Lemma 5.12 and Theorem 
5.13. From this f we can construct elements of DO. 

THEOREM 6.2. Let f: R -- L2(R) be defined by f(x, 0) = exp [-(x - 0)2]. 
Then f E '. 

PROOF. The function f is clearly in D2(B) and is clearly bounded. We show 
that f is continuous by observing that if xn -> x, since IIf(xJ)II2 = IIf(x)1I2 for 
every n and since f(xn, 0) -?f(x, 0) for every 0, then Ilf(xn) -f(x)112 -+ 0 
[13, p. 73]. 

Now we need to show that f satisfies the defining inequality for P'. 

Notice 
V( _~=8ep[(X(t) - 0)2] 

V(x(s))f(x(t), 0) g(x(s)) exp[ao 

= 2g(x(s))(x(t) - 0)exp [-(x(t) - 0)21. 

So we can compute II V(x(s))f(x(t))II by 

IIV(x(s))(x(t))II2 - f 4gx(s))12 IX(t) - 0 12exp [-2(x(t) - 0)21 dO 

= 4kg(x(s))12 J U2exp (- 2u2) du. 

Now let F(s, t, f, x) =KE.(Ig(x(s))l), where 

K2-f 4U2 exp(-2U2)du <Co. 

We need to check that F satisfies (*) and (**). We have 

rO rO 
e-x Fs, t, f, x) ds dt 6 OKIIgIIoote-"t dt < 00; 

hence, F satisfies (*). To check (**) note that 

fI IF(s, t, f, x)I2 d = f ooK2(E((x(s))I))2 d 

=fI X\2XTs{f r (y)Iexp [dy2 ] Y} < 

by the restrictions placed on g. Hence, F satisfies (**). This completes the 
proof. 

Now in order to show that Do 0 0, by Theorem 5.13 we need only show 
f satisfies the hypotheses of Lemma 5.12 for K = 1/n, for all n. 

THEOREM 63. If f is defined as in Theorem 6.2 and if F(s, t, f, x) is the 
function obtained in Theorem 6.2, then f I'mF(s, t + h, f, x) dh satisfies (*) 
and (**). 
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PROOF. Notice that F(s, t + h, f, x) =KEx(g(x(s))), where K is defined 
in the proof of Theorem 6.2 so we have 

/M 
F(s, t + h, f, x)dh = KEx(g(x(s))). 

This clearly satisfies (*) and (**) and the proof is complete. 

COROLLARY 6.4. The subspace Do is nontrivial, i.e. Do # {O}. 

PROOF. Theorems 5.13, 6.2 and 6.3. 

COROLLARY 6.5. The subspace M is contained in Do, where 

M = {Z E g1(x)hi(0)9gi, hi E CC(R), n E N, h E D(V(x)) 

PROOF. It is an easy computation to show that if f(x, 0) = r(x)h(O), 
then the function F is given by F(s, t, f, x) = KIIhILjEx(Ig(x(s))I). The corollary 
then follows as did Corollary 6.4. 

7. Remarks. As was noted in the introduction, a number of people have 
considered the Feynman-Kac formula in studying probabilistic phenomena. 

In [8] Helms constructs a stochastic process which corresponds to the 
classical Feynman-Kac formula. In that case the measure that Helms obtains is 
not necessarily a probability measure. The most one can say is that it is a- 
finite. A question remains as to what type of stochastic process can be associa- 
ted with the operator-valued Feynman-Kac formula, and of course what type of 
measure is associated with it. In [7] Griego and Moncayo construct the process 
in the discrete case. 

Finally, the assumption that the semigroups Tx(t) are mutually commuta- 
tive is undesirable. The results of Hersh and Papanicolaou [9] do not depend on 
this commutativity. In attacking the problem from the point of view of resolvents, 
difficulties are encountered in showing the measurability of the multiplicative 
operator functional andin the computation of the resolvent equation obtained in 
Lemma 5.9. So the question remains open on sufficient conditions in the non- 
commutative case. 
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