Module 04: Hazardous Waste

Student Pages - Garbage and Scale

Center for Urban Resilience

Follow this and additional works at: https://digitalcommons.lmu.edu/urbanecolab-module04

Part of the Ecology and Evolutionary Biology Commons, Environmental Education Commons,
Sustainability Commons, and the Urban Studies and Planning Commons

Repository Citation
https://digitalcommons.lmu.edu/urbanecolab-module04/30

This Lesson 1: Garbage and the Impact of Scale is brought to you for free and open access by the Urban EcoLab at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Module 04: Hazardous Waste by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.
ACTIVITY 1.2: GARBAGE AND SCALE

When thinking about garbage, it is important to consider scale. The amount of garbage you produce as an individual may seem small, but when you look at it from a city or national perspective the amount of garbage produced by humans is not so small. The following exercise will help you visualize how garbage can pile up quickly at greater spatial scales. A spatial scale is the size of area at which different ecological processes occur. It is important to look at ecological processes from different scales because the impact of different factors can vary depending on the scale.

For example, if you were looking at some plant cells under a microscope, it would look different than looking at the leaf that the cells came from. In turn, looking at the leaves on the entire tree would give you yet a different perspective.

In order to understand the tree, it is important to study it from different perspectives. The same is true when studying ecosystems. Investigating ecosystems at different spatial scales allows scientists to examine environmental issues from different perspectives enabling a more complete picture of the ecosystem.

In urban ecosystems, the most fundamental scale is that of the individual, while the most encompassing is the global level. Many scales exist between these two levels:

Individuals → Households → Communities → Cities/Urban Areas → National → Global

How much garbage do I really produce?

In your classroom there is a plastic container with a volume of 0.1892 m³. Let us suppose that each of you produces enough garbage to fill this container everyday.
Garbage and the Impact of Scale

1. After 1 week, you would produce $0.1892 \text{ m}^3 \times 7 \text{ days} = \underline{\underline{}} \text{ m}^3$ of garbage.

2. After 1 year, you would produce $0.1892 \text{ m}^3 \times 365 \text{ days} = \underline{\underline{}} \text{ m}^3$ of garbage.

The amount you calculated in #2 above is about the volume of a school bus. Does this seem like a lot to you? (The volume of a school bus is approximately 71 m$^3$)

**Looking at garbage at different scales**

**Group**

3. How much garbage would you as a group produce in a year? \underline{\underline{}}

4. How many school buses would that fill? \underline{\underline{}}

**City**

5. The city of Boston has a population of approximately 620,000 people. Using the results above, that would equal 1652 school bus loads of trash a day? How many bus loads of trash would this be a year?

**State**

6. The State of Massachusetts has a population of approximately 6,437,193 people. That would equal 17,150 school bus loads of garbage a day. How many bus loads of trash would this be in a year?

**National**

7. The United States of America has a population of approximately 300,000,000 people. How much garbage (in m$^3$) is produced in a day? A year?

**Reflection Questions**

1. Do these numbers surprise you? Why or Why not?
2. How would the national scale change if everyone at the individual scale produced less garbage?

3. List 3 things you could easily do to reduce the amount of waste you produce in a day.