
Computer Science Faculty Works Computer Science

6-2007

An Open Source Software Culture in the Undergraduate Computer An Open Source Software Culture in the Undergraduate Computer

Science Curriculum Science Curriculum

John David N. Dionisio
Loyola Marymount University, dondi@lmu.edu

Caskey L. Dickson

Stephanie E. August
Loyola Marymount University

Philip M. Dorin
Loyola Marymount University

Ray Toal
Loyola Marymount University

Follow this and additional works at: https://digitalcommons.lmu.edu/cs_fac

 Part of the Computer Sciences Commons

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation
Dionisio, John David N.; Dickson, Caskey L.; August, Stephanie E.; Dorin, Philip M.; and Toal, Ray, "An Open
Source Software Culture in the Undergraduate Computer Science Curriculum" (2007). Computer Science
Faculty Works. 6.
https://digitalcommons.lmu.edu/cs_fac/6

This Article is brought to you for free and open access by the Computer Science at Digital Commons @ Loyola
Marymount University and Loyola Law School. It has been accepted for inclusion in Computer Science Faculty
Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School.
For more information, please contact digitalcommons@lmu.edu.

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/cs_fac
https://digitalcommons.lmu.edu/cs
https://digitalcommons.lmu.edu/cs_fac?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/cs_fac/6?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu

inroads – The SIGCSE Bulletin 70 Volume 39, Number 2, 2007 June

An Open Source Software Culture in the
Undergraduate Computer Science Curriculum

John David N. Dionisio, Caskey L. Dickson,
Stephanie E. August, Philip M. Dorin, and Ray Toal

Department of Electrical Engineering & Computer Science
Loyola Marymount University

1 LMU Drive, MS 8145
Los Angeles, California 90045-2659 USA

dondi@lmu.edu caskey@technocage.com saugust@lmu.edu, pdorin@lmu.edu rtoal@lmu.edu

Abstract
Open source software has made inroads into mainstream computing where it was once the territory of
software altruists, and the open source culture of technological collegiality and accountability may benefit
education as well as industry. This paper describes the Recourse project, which seeks to transform the
computer science undergraduate curriculum through teaching methods based on open source principles,
values, ethics, and tools. Recourse differs from similar projects by bringing the open source culture into the
curriculum comprehensively, systematically, and institutionally. The current state of the project is
described, and initial results from a pilot exercise are presented.(1)

Keywords: open source software development, curriculum reform, teaching framework

1. Introduction
Open source software engineering revisits and innovates
the core principles of computer science. In the discipline’s
nascent years, software emerged as a new type of scholarly
work, akin to mathematicians’ proofs and biologists’ field
data. Computer scientists freely shared and published
source code for a growing library of programs, advancing
both knowledge and understanding. Industry took notice,
and software transitioned from a product of study to a
product of commerce. The practice of open source
retreated to the academe and the altruistic.

The paradigm of software-as-trade-secret continues
today, but is faltering. Increasing software complexity and
security risks have created a backlash against closed source
[18]. In the last decade, software engineering began to re-
embrace the open source model, which has since proven
itself in industry and research for designing, creating, and
maintaining quality software [4].

Undergraduate computer science education has taken
notice of open-source trends as well. Traditionally, most
undergraduate students produce toy programs and
algorithms from scratch, work alone, and are never placed
in a position where they have to work with someone else’s
code. Thus, they find themselves paradoxically out of
place when they enter the job market, where team
development is the norm. To resolve this mismatch,
Loyola Marymount University (LMU) has initiated a
project that seeks to make an open source culture an
integral part of computer science undergraduate education.

The project, called Recourse, adapts the open source
development culture for undergraduate computer science
education, employing a novel curriculum progression and
associated teaching methods. Ultimately, the Recourse
project’s goal is to establish the open source culture as
computer science’s educational norm, making collaborative
software development intrinsic to the curriculum. The
foundational premise is that open source concepts and
practices can be translated into improved undergraduate
computer science learning and, ultimately, a better match
between undergraduates and their subsequent endeavors.

2. Previous and Related Work
Open source development practices have been promoted as
a potential approach toward effective software quality
control, which has been observed to be in critically short
supply [18]. While these practices are gaining momentum
in industry, they have not yet permeated the undergraduate
curriculum [4].

A number of computer science programs have
explored new methods for teaching undergraduate
computer science, with similar goals of bridging the gap
between student preparation and industry expectation [11,
13, 14, 15, 17, 19, 20, 21]. These methods are deployed,
however, on an ad-hoc, course-by-course basis, with little
institutional foundation for their use and management.
Other endeavors have adapted aspects of the open source
culture, either to an individual class within a specific
subject area [8] or as a source of tools for computer science

Reviewed Papers

mailto:dondi@lmu.edu
mailto:caskey@technocage.com
mailto:saugust@lmu.edu
mailto:pdorin@lmu.edu
mailto:rtoal@lmu.edu

inroads – The SIGCSE Bulletin 71 Volume 39, Number 2, 2007 June

program assessment [1]. Some work explores
collaboration in isolation, without expressly adopting open
source elements [3].

The Recourse project differs from these approaches by
reforming the curriculum through open source principles
systematically, comprehensively, and institutionally.
Teaching methods are explicitly adapted from current best
practices in open source software engineering [4]. With
cutting-edge development techniques and tools permeating
the program, the project hopes that these elements become
second nature to students, allowing them to focus on the
science behind the computer. Thus, while the project may
certainly produce better software developers, its ultimate
goal is to create better computer scientists who happen to
have industry-ready development skills.

3. Characteristics of an “Open Source Culture”
At this writing, the official open source definition stands at
version 1.9 [16]. While the definition ostensibly concerns
what open source software is, it ultimately reflects a set of
values — values that collectively characterize the open
source culture:
• Source code is available, modifiable, and long-lived.

Many of the open source definition’s criteria are
concerned with obtaining access to and subsequently
evolving source code. Source code exists in multiple
copies due to its free distribution. As a result, any piece
of open source code potentially has a very long life,
independent of its originator.

• Accountability implies community. The open source
definition protects both authors and users by requiring an
explicit “paper trail” for how a particular program
changes over time. Communication and answerability
are crucial to this paper trail. The net result is that a
community of developers and users of different levels
and proficiencies naturally forms around an open source
project, and this community is another key component of
the culture.

• Responsibilities accompany rights. The open source
definition attaches categorical, irrefutable importance to
the license that accompanies all open source software.
Adherence to the license relies on the honor system, and
this honor system pervades not only the specifics of open
source licenses, but also covers other junctions of rights
and responsibilities, such as: giving credit where credit is
due; appropriate access to software, documentation, and
communities; and acknowledging any security, privacy,
confidentiality, or legal issues surrounding the
development and use of open source software.

The open source definition and its underlying values form
the basis of the Recourse project.

4. Open Source Teaching Framework
The Recourse project attempts to adapt — not adopt —
open source culture and values to an undergraduate
computer science curriculum. With adaptation to a

curriculum, the final objective shifts from software
development to learning computer science. While the end
is not identical, we observe that the means may be
analogous.

4.1 Curriculum Progression
The first element of the teaching framework is an “arc” of
progression through the curriculum, from freshman to
graduating years. In terms of activities and artifacts
produced, this arc parallels the growth curve of a maturing
software developer. In terms of intellectual and academic
themes, the progression provides a computer science
equivalent to the Dewar-Bennett Mathematical Knowledge-
Expertise Grid [7, 9, 10], which was, in turn, adapted from
Shavelson’s science knowledge typology and Alexander’s
model of domain learning (MDL) [2, 12].

In a Recourse curriculum, freshman courses focus on
the study, testing, and fixing of existing code —
corresponding to the initial phases of participation by a
software developer in an open source community (or any
other team development effort, for that matter). Pre-
existing is a key component of this stage: conventional
teaching at this level usually involves writing “toy”
programs from scratch. By teaching basic programming
techniques in the context of pre-existing code, a student
may be exposed to big-picture ideas sooner and as a result
may realize the value of cleanly written, well-documented
code from the outset — a concept which is traditionally
very difficult to teach.

Sophomore courses, which typically introduce data
structures, algorithms, and computer system organization,
provide an appropriate foundation for coding specific
functions and modules from scratch, accompanied by unit
tests. Again, this activity corresponds to the software
development stage where a programmer begins to
implement new but well-bounded functionality. Unit tests
serve as an unambiguous (and easily automated)
mechanism for validating the correctness of submitted
work.

Junior-level courses (and beyond) introduce subfields
within computer science, expecting sufficient programming
proficiency as the general concepts of sophomore courses
find specific applications in operating systems,
programming language design and implementation (i.e.,
compiler construction), networking, interaction design,
databases, computer graphics, artificial intelligence, and
others. Activities for these courses take the form of term-
length projects: students now design and implement
software from scratch. An open source software developer
finds an analogous milestone when starting his or her own
open source projects. At this point, students come full
circle, as the long life of code becomes apparent: software
written at the junior level finds its way back to the
freshmen, as pre-existing code that must be examined,
fixed, and completed.

Reviewed Papers

inroads – The SIGCSE Bulletin 72 Volume 39, Number 2, 2007 June

Finally, the senior year expects students to demonstrate
proficiency in computer science, through capstone projects
that synthesize prior material based on individual interests.
LMU has implemented such projects since the 1980s, and
in the context of an open source culture, they gain renewed
meaning as they correspond to an open source developer’s
growth into a mature, confident, and self-motivated creator
with the skills and experience to take on and even initiate
formidable software projects.

At the end of the four phases and themes of this
curriculum “arc,” a student will have acquired the
knowledge and skills of a computer science bachelor’s
degree not only through conventional texts, lectures, and
exercises, but also through collaborative programming,
shared code, and accountability for one’s work. Graduates
of such a program would be both better computer scientists
and competent software developers who can hit the ground
running immediately, whether in industry or research.

4.2 Instructional Techniques
Alongside the curriculum arc, individual teaching
techniques have been derived from the open source culture.
As they are based mainly on coding practices, note that
they do not comprise an entire educational approach, and
are instead meant to be applied in the context of overall
exercises for teaching computer science, system design and
documentation, and programming.

4.2.1 “Sample Code Bazaar”
Sample Code Bazaar refers to the creation and maintenance
of live, organized, searchable, student-accessible sample
code libraries. Students access the sample code using the
same tools and processes that they would encounter
elsewhere — they must learn to interact with a source code
repository or they are unable to look at examples nor do
their work.

The primary student activity surrounding the Sample
Code Bazaar, in addition to viewing, downloading, and
trying examples presented in class, is the creation of
“derived works” from the sample code. Assignments
consist of downloading a sample program, making a
specified change to it, then submitting the new version.

4.2.2 “Test Infection”
The Test Infection technique adapts the workflow of test-
driven development approaches to classroom assignments
[5]. The technique’s name derives from Erich Gamma’s
observation that, once a programmer adopts test-driven
development, he or she “never goes back” and
subsequently advocates this change to fellow software
developers [6]. It may be combined with the Sample Code
Bazaar, or applied to code written from scratch. With Test
Infection, both the instructor and the students validate
submitted code by preparing test fixtures for detecting as
wide a variety of errors as possible.

A particularly engaging approach to Test Infection is to
build the test suite vs. implementation matrix in class. As
tests fail or incorrectly pass wrong implementations, we
can display and discuss the code that is in question. The
code can then be modified on the fly, until the correct
behavior is achieved (“going green,” to borrow a phrase
from the test-driven development arena). This way,
students are exposed to yet another recommended
development practice in the context of learning the material
at hand.

4.2.3 “The Cyclic Life of Code”
The Cyclic Life of Code technique reflects the longevity of
code in the open source world. Any student-submitted
code, from isolated exercises to term-length projects,
becomes a permanent part of the computer science
program’s repository. This code feeds back into the
Sample Code Bazaar or Test Infection techniques as sample
programs, implementations against which unit tests can be
run, or ongoing projects for incremental improvement or
refactoring.

Since all student submissions are stored permanently,
code that a student wrote in freshman year may be revisited
in later years. Revisiting their own old code may give
students a greater appreciation for proper documentation
and structure — after all, if they have issues with re-
assimilating their own code a year later, what more if the
code is inherited by someone else?

4.2.4 “Release Early, Often, & Open”
The benefits of iterative and incremental development over
“waterfall”-based development have been known for
decades. Undergraduate student projects under Recourse
follow this development model, facilitating early, frequent,
and unrestricted dialog among students, instructors, and
fellow students on current progress.

The Release Early, Often, and Open approach for
managing software projects applies to both student
coursework and faculty research. Open source in research
is already common today; the Recourse project’s teaching
techniques serve primarily to make this model an explicit
norm that students can use as examples for their own work.

5. Initial Results
We are currently in the process of gathering results for
several case studies. One such case study, involving the
Test Infection technique, is reported here.

5.1 Procedure and Findings
The instructor provided six students with a plain English
description for a simple programming language; the
description was written to be as precise as possible without
actually expressing a formal grammar. The students were
to specify a grammar for the language and implement a
parser for it, with an accompanying test suite to determine
whether the parser recognizes or rejects strings correctly.

Reviewed Papers

inroads – The SIGCSE Bulletin 73 Volume 39, Number 2, 2007 June

Table 1 lists the results of the initial phase, in which
the student test suites (Suites 1 to 6) were run against the
instructor’s implementation. Because only a single correct
implementation was prepared beforehand, test suites with
errors of omission could not be detected; this situation must
be accounted for in the final version of Test Infection.
Overall, four errors in the test suites were detected, labeled
with the glyphs a to d. Suite 1 had two errors (a and b),
Suite 2 had three errors (a, c, and d), and Suite 3 had one
error (b).

Table 1: First-phase results for Test Infection
Suite 1 Suite 2 Suite 3 Suite 4 Suite 5 Suite 6
ab acd b

From Table 1 each student’s test suite was run
against the instructor’s single correct implementation.
Test cases that wrongly failed something that the
implementation actually handled correctly were
detected and fixed. Four distinct errors were found,
indicated by the glyphs a, b, c, and d.

Once the test suite errors were corrected, each test
suite (S1 to S6) was then run against each student’s
implementation (Parser 1 to Parser 6). The instructor’s test
suite (S0) and parser (Parser 0) were included in this matrix
as well; the results are shown in Table 2. As in Table 1,
each glyph represents an error detected by a test. Since the
test suites’ cases are all correct at this point, the errors now
represent errors in the implementation and not the test.
Thus, errors of omission can be detected — note how
Parsers 1, 5, and 6 had errors that were not caught by all
test suites (including the instructor’s!).

In the final version of the Test Infection teaching
technique, many of these errors of omission would be
caught in the initial testing-the-testers run, as long as the
instructor had an incorrect implementation that is known to
have this problem. Errors of omission caught in the second
phase would represent errors for which the instructor did
not have a prepared incorrect implementation. In a fully-
realized Recourse curriculum, such errors can then be
folded into the library, and over time, more and more errors
of omission can be caught right away.

Table 2: Second-phase results for Test Infection
Suites fi S0 S1 S2 S3 S4 S5 S6
Parser 0
Parser 1 u
Parser 2 vvw vx v vvvw vv vvy v
Parser 3
Parser 4
Parser 5 w uw w
Parser 6 z z

From Table 2, each test suite (including the
instructor’s) was run against every implementation.

Errors in the parsers are indicated by the glyphs u
through z.

5.2 Student Reaction
This trial run was conducted openly — that is, the test
suites were run in class, for both phases. Thus, the students
participated in interpreting and fixing the erroneous test
cases in the first phase, and again participated in fixing the
parser errors detected in the second phase.

Subjectively, the excitement and attention level in the
classroom was genuinely positive. To the students’ credit,
identification and repair of errors (in both phases) were
performed in a constructive manner, resulting in a strong
sense of teamwork and community involvement.

Students rated the exercise as more enjoyable than a
conventional programming assignment, where they would
have turned in a program to be corrected by the instructor
one-on-one. The openness of the exercise provided
increased motivation to turn in a correct implementation —
the desire not to be “embarrassed” was an incentive,
although the “embarrassment” itself was ultimately good-
natured, resulting in students helping each other. It must be
noted that while this mirrors the “blame log's” and the
pressure not to submit bad code in collaborative software
development, great care must be taken during in-class
reviews, as not all students may handle this type of critique
constructively. It may have helped that the instructor’s
own test suite missed some cases — after all, if the
instructor made some oversights, acknowledged them, and
fixed them openly, then there should be no serious stigma
when students’ work encounters similar issues.

6. Next Steps
We are working on specifying, designing, and
implementing a support platform for automating
appropriate elements of a Recourse-based curriculum, such
as the management of student work and the instructor’s
preparation and assessment of this work. Much of the
required functionality (revision control, test frameworks,
communication, issue tracking) already exists in real-world
open source software development, so some adaptation and
wiring together of existing tools and services is expected.

Some questions regarding the adaptation of the open
source culture to an undergraduate computer science
curriculum remain:
• How should student work under the Recourse teaching

techniques be graded?
• What intellectual property rules govern student-authored

software projects under this paradigm?
• The accompanying hardware/software support platform

may require significantly more resources than are
currently available for a computer science undergraduate
program. Can a shared infrastructure be established, so
that multiple institutions may utilize a single system?

These issues will be tackled as the project progresses.

Reviewed Papers

inroads – The SIGCSE Bulletin 74 Volume 39, Number 2, 2007 June

7. Conclusion
This paper has introduced the Recourse project, describing
its goals, objectives, curriculum arc, and teaching
strategies. An initial case study of one of the project’s
teaching techniques was also presented and discussed.

The ultimate, albeit ambitious, goal of Recourse would
be for its methodology to become the norm for

undergraduate computer science education. The project’s
desired outcomes are not only worth pursuing but must be
pursued, if universities are to produce better bachelors-
level computer scientists.

References
[1] A. Abunawass, W. Lloyd, and E. Rudolph. COMPASS: A CS program assessment project. In Proceedings of the 9th Annual

Conference on Innovation and Technology in Computer Science Education, pages 127–131, Leeds, United Kingdom, June 2004.
[2] P. A. Alexander. The development of expertise: the journey from acclimation to proficiency. Educational Researcher, 32(8):10–14,

2003.
[3] S. Azadegan and C. Lu. An international common project: implementation phase. In Proceedings of the 6th Annual Conference on

Innovation and Technology in Computer Science Education, pages 125–128, Canterbury, United Kingdom, June 2001.
[4] L. Barnett and C. E. Schwaber. Applying open source processes in corporate development organizations. Technical report, Forrester

Research, Inc., Cambridge, MA, May 2004. http://vasoftware.com/sourceforge/request_info-dl.php?paper=9.
[5] K. Beck. Test Driven Development: By Example. Addison-Wesley Professional, 2002.
[6] K. Beck, E. Gamma, and D. Saff. JUnit test infected: Programmers love writing tests. http://junit.sourceforge.net/doc/testinfected

/testing.htm, 2006.
[7] C. Bennett and J. Dewar. Taxonomy of mathematical knowledge expertise. In Mary Huber and Pat Hutchings, editors, The

advancement of learning: Building the teaching commons, pages 40–41. Jossey Bass, San Francisco, CA, 2005.
[8] M. Claypool, D. Finkel, and C. Willis. An open source laboratory for operating systems projects. In Proceedings of the 6th Annual

Conference on Innovation and Technology in Computer Science Education, pages 145–148, Canterbury, United Kingdom, June 2001.
[9] J. Dewar and C. Bennett. 8-dimensional mathematical knowledge-expertise grid. http://myweb.lmu.edu/carnegie/webport

/Knowgrid.htm, 2004. Loyola Marymount University.
[10] J. Dewar and C. Bennett. Teaching students to talk and think about mathematics. http://kml2.carnegiefoundation.org/html

/poster.php?id=504, June 2004. Loyola Marymount University.
[11] A. Feldman. Homework 1 for computer science 117: Submitting programs. http://math.boisestate.edu/<alex/courses/cs117

/f04/hw2.html, 2004. Boise State University.
[12] E. Fox and P. A. Alexander. Reading, interest, and the model of domain learning: A developmental model of interest, knowledge,

and strategy in text comprehension. In American Educational Research Association, San Diego, California, April 2004.
[13] P. Hanrahan. Computer graphics homework 2. http://graphics.stanford.edu/courses/cs348b-02/homework/hw2.html, 2002. Stanford

University.
[14] J. Houlahan. How to submit homework electronically. http://www.cs.jhu.edu/<houlahan/cs107/esub.html, 2004. Johns Hopkins

University.
[15] Laboratory in Software Engineering. Homework validation and turnin. http://6170.lcs.mit.edu/www-archive/Old-2000-

Fall/handouts/turnin.html, 2000. Massachusetts Institute of Technology.
[16] Open Source Initiative. The open source definition. http://opensource.org/docs/definition.php, 2005.
[17] J. Katz. Programming resources: Homework FAQ. http://www.wam.umd.edu/<taowei/414web/pages/FAQ00.htm, 2003. University

of Maryland.
[18] C. C. Mann. Why software is so bad. Technology Review, June 2002.
[19] Mathematical Sciences. Electronically submitting coursework. http://www.divms.uiowa.edu/help/msstart/submit.html, 2004.

University of Iowa.
[20] Z. Shao and Y. R. Yang. How to submit assignments. http://flint.cs.yale.edu/cs112/help/submit.html, 2004. Yale University.
[21] C. Wyman. Submitting homework for computer graphics. http://www.cs.uiowa.edu/<cwyman/classes/fall04-22C151/howto/hw-

submit.html, 2004. University of Iowa.

Endnote
(1) Partial support for this work was provided by the National Science Foundation’s Course, Curriculum, and Laboratory
Improvement Program, Award No. 0511732.

Reviewed Papers

http://vasoftware.com/sourceforge/request_info-dl.php?paper=9.
http://junit.sourceforge.net/doc/testinfected
http://myweb.lmu.edu/carnegie/webport
http://kml2.carnegiefoundation.org/html
http://math.boisestate.edu/alex/courses/cs117
http://graphics.stanford.edu/courses/cs348b-02/homework/hw2.html,
http://www.cs.jhu.edu/houlahan/cs107/esub.html,
http://6170.lcs.mit.edu/www-archive/Old-2000-
http://opensource.org/docs/definition.php,
http://www.wam.umd.edu/taowei/414web/pages/FAQ00.htm,
http://www.divms.uiowa.edu/help/msstart/submit.html,
http://flint.cs.yale.edu/cs112/help/submit.html,
http://www.cs.uiowa.edu/cwyman/classes/fall04-22C151/howto/hw-

	An Open Source Software Culture in the Undergraduate Computer Science Curriculum
	Digital Commons @ LMU & LLS Citation

	tmp.1439849557.pdf.CvcpJ

