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ON FUNCTIONS THAT ARE TRIVIAL COCYCLES 
FOR A SET OF IRRATIONALS. II 

LAWRENCE W. BAGGETT, HERBERT A. MEDINA, AND KATHY D. MERRILL 

(Communicated by J. Marshall Ash) 

ABSTRACT. Two results are obtained about the topological size of the set of 
irrationals for which a given function is a trivial cocycle. An example of a 
continuous function which is a coboundary with non-L1 cobounding function 
is constructed. 

A function v: R/Z - R is called an (additive) coboundary for an irrational a if 
there is a measurable function w: R/Z - R such that v(x) = w(x) - w(x + a) a.e. 
(where we parameterize R/Z by the interval [0,1) with addition mod 1). It is called 
trivial if v(x) - c is a coboundary for some c E R. In either case the function w, 
which is unique up to an additive constant, is called the cobounding function. The 
question of whether particular functions or classes of functions are coboundaries 
for a given a has applications in ergodic theory and the representation theory of 
non-Type I groups (see, for example, [BM1],[ILR]). Recent research has revealed 
an interesting interplay between classes of functions and the types of irrationals for 
which they can be coboundaries (e.g., [BM2], [M]). Thus it is natural to look at the 
coboundary question from an opposite point of view, fixing a function v, and asking 
for exactly which irrationals v is a coboundary. A simple Fourier series argument 
shows that a trigonometric polynomial must be a coboundary for every irrational 
a. For other types of functions, this question is much harder to answer. 

In a 1988 paper in this journal [B], L. Baggett presented a proof that the set of 
irrationals for which a given continuous function is a coboundary must be of the 
first category, unless the function is a trigonometric polynomial. Shortly after this 
paper appeared, P. Liardet, A. Iwanik, and P. Hellekalek pointed out a gap in the 
proof. This gap remains unfilled. In this paper, we present an altered version of 
that proof in the case that the original function is real-analytic. We also present 
a parallel result for L1 functions in which the cobounding function is also required 
to be L1. Finally, we display a counterexample which shows that the requirement 
of an L1 cobounding function can be a genuine restriction. 

Theorem 1. Let v be an integrable, real-analytic function on the open interval 
(0,1), which is not a trigonometric polynomial. Then the set S of all irrationals 
for which v is a trivial cocycle is of the first category. 
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Proof. Suppose S is not of the first category. Let f(x) = e2"W(x). For each integer 
k and each positive integer j, let Ak,j be the set of numbers (rational or irrational) 
a for which there exists a constant A and a measurable function g such that 

(1) 119112 < 1. 

(2) 1AI = 1. 
(3) f f0 g(x)e2ikx dxl >? 

(4) f(x)g(x + a) = Ag(x) for almost all x E [0, 1). 
We claim that each set Ak,j is a closed set. Let {Oan} be a sequence in Ak,j 

converging to a. For each an, there exists a constant An and a measurable function 
gn satisfying (1)-(4) above. By passing to a subsequence twice, we may assume 
that An -> A and gn -> g weakly in L2. A and g satisfy conditions (1)-(3) above, 
and a computation shows that f (x)g(x + a) = Ag(x) for almost all x E [0, 1). Thus 

E E Ak,j. 

Clearly S C Uk,j Ak,j. By the Baire Theorem, some set Akojo must contain an 
open interval. Therefore, there exists a positive integer Q such that for every q > Q 
there is a rational number p/q E Akojo, and thus a constant Aq and a function gq 
satisfying 

(1) II9qII2 < 1. 

(2) IAqI = 1. 

(3) 1 g(x)e27ikox dxl > 1. 
(4) f(x)gq(x + A) =qgq(x) for almost all x E [0,1). 

We also may assume that p is relatively prime to q. It follows by condition (4) that 
for each q > Q there exists a p relatively prime to q such that 

(*) ~~ ~~~p 2p f +(q - I)p~ Aq 
(*) ~ ~~~ f(XV(x + :-)f(x +-)..fx( qP= 

q q q 

for every x for which gq(x) $ 0, and, by condition (3), this is certainly a set of 
positive measure. 

Now the function 
p (q -Ip 

f(x)f(x + -) ... f(x+ )P) 
q q 

has discontinuities at most at the multiples of 2, and on each subinterval (, () 

it is real-analytic. By the identity theorem for real-analytic functions, it follows 
that 

f (x)f(x + p f p(x + p(q - ) 
q q 

is identically Aq on some one of these subintervals. By the invariance of (*) under 
translation by P, it follows that 

q~ ~ ~~~( 
(xfx+p-.. f (x + p(q ) - Aq f (V ( +q qq 

for all x not of the form Pi. q 
Now f(x) = e27iv(x), so we have that 

(**) v(x) + v(x+ -)+ ... + v(x + p( ) 
- 

cq + Nq(x) 
q q 
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where cq is a constant and Nq is an integer-valued function. Because v is continuous, 
we have that Nq is constant on the subintervals (2, ()+)) 

Using (**), we compute the nqth Fourier coefficient of v, cInq(v), and obtain 

qCnq(v) = 0 

for every nonzero integer n. Since this computation holds for every q > Q, it follows 
immediately that v is a trigonometric polynomial. D 

Remark. Michael Herman [H, Theorem 4.11] proved a similar result under the 
additional hypothesis that for all n + 0, cn(v) ? 0. 

By requiring the cobounding functions to be integrable, we obtain the following 
stronger result. 

Theorem 2. Let v be a real-valued L1 function on R/2, which is not a trigono- 
metric polynomial. Then the set of all irrationals for which v is a trivial cocycle 
with L1 cobounding function is of the first category. 

Proof. By the Riemann-Lebesgue Lemma, if v is a coboundary for a with L1 
cobounding function w, then ICn(w)l = Icn(v)1/11 - e27-in I 0 as In I- oc. 
Thus it will suffice to find a dense Gb set E of irrationals such that for a C E, 
Cn(v) 1/11 - e27ina 74 0. Since v is not a trigonometric polynomial, 3 {mk} 1, 

mk -> oo, such that ICmk(V)I 
= 6k 0.- Choose ak so that ak > 1 Let 

mk-1 

ink- 1 j 2__ 

A =1 (k akmk mk akMk 

If a C Ak, then 3j such that ?--Sk < L whichimplies Imk-j l<a and 
ink akinkkn 

hence 11-e27iMkOx I < 1 Thus we see that for a E Ak, ICMk(V) 1/ 11-e 
2ik > 1. 

akMik 

Let En = U"i=n Ak. En is open and dense for each n, and by the above we have that 
if a E En, 3mk, k > n, such that iCMk(v)/1le2iink' >1. SetnE=f=l En.D 

The apparent advantage of the second theorem over the first raises the natural 
question of whether an L1 coboundary, or even an analytic coboundary, must have 
an L1 cobounding function. 

Theorem 3. Given any irrational a, there exists a continuous coboundary v for 
a, whose cobounding function is not L1. 

Proof. Choose a sequence of rationals {E P-} satisfying 

qn 
IA 

Pn < 
I nI 322n+1q 

(This can be done by choosing a subsequence of the convergents to a so that each 
element, pn of this subsequence has the property that qn > n322n+l.) For each 
n > 1, we define the function Un by 

) 2n+1 + n22n+1qnx if x E (0 2nqn ')' 
11. (x) = 

nq 
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and then define 
q,-l 

Wn (X) = zUn(x -) 

p=o qn 

(The function wn is triangular on (P - + n2q) with Wn(P) - 2n+1 for 
p = 0,1, ... , qn- 1, and 0 everywhere else.) Finally, let 

00 

W(X) = EWn(X). 
n=N 

To show that w is finite a.e., we show that SN N Wn is Cauchy in measure. 
Indeed, for any N > M, SN - SM = En-M? Wn is supported on a set of measure 

ZN=M+1(qn)(r2q ), which goes to zero as N and M go to infinity. We see that w 
is not in L1 by noting that f lwn(x)l dx = 2 so that by the monotone convergence 
theorem we have 

Xw(xI dx =E:X lwn(x)l dx 1 -nc. w(x) 
dxnZJ n=1n 

Now we define 

00 

V(X) = W(X) -W(X + a) Z Wn(X) -Wn(X + a). 

n=1 

Since the wn (x) - Wn (X + a) are continuous, it will follow from the M-test that v 
is continuous, if we can show that lwn(x) - wn (x + a) < 1 . By the periodicity of 
wn i we have that 

|Wn(X) - wn(x + a)| = |wn(X + ) -wn(x + a)| < n22n+ lqnla - Pn I < 
qni qnri 

2 

since n22 2n+1qn is the maximum slope of a secant line of wn. O 

Remark. For certain a, we can modify the above construction to give Cr cobound- 
aries with non-L1 cobounding functions. In particular, if there is a sequence of 
rational approximations to a, {Pqn}, such that la- PnI < -p, we can replace 
the continuous, piecewise linear functions wn with cr, piecewise (r + I)st de- 
gree polynomials, with the same integral as before, and with the property that 

Z wr) (x) - wr) (x + a) converges uniformly, thus giving v a continuous rth deriva- 
tive. Y. Meyer [H, p. 187] has a related result in the r = 1 case, which implies that 
if a has bounded partial quotients in its continued fraction expansion, then there 
exists a Cl function which is a coboundary for a with noncontinuous cobounding 
function. The question of whether there are analytic coboundaries with non-L' 
cobounding functions remains unanswered. 



ON FUNCTIONS THAT ARE TRIVIAL COCYCLES 93 

REFERENCES 

[B] L. Baggett, On functions that are trivial for a set of irrationals, Proc. Amer. Math. Soc. 
104 (1988), 1212-1215. MR 89h:28022a 

[BM1] L. Baggett and K. Merrill, Representations of the Mautner group and cocycles of an irra- 
tional rotation, Michigan Math. J. 33 (1986), 221-229. MR 87h:22011 

[BM2] , Smooth cocycles for an irrational rotation, Israel J. Math. 79 (1992), 281-288. 
MR 95e:28017 

[H] M. Herman, Sur la conjugaison diffe'rentiable des diffe'omorphismes du cercle a des rota- 
tions, Inst. Hautes Etudes Sci. Publ. Math. 49 (1979), 5-234. MR 81h:58039 

[ILR] A. Iwanik, M. Lemaniczyk, and D. Rudolph, Absolutely continuous cocycles over irrational 
rotations, Israel J. Math. 83 (1993), 73-95. MR 94i:58108 

[M] H. Medina, Spectral types of unitary operators arising from irrational rotations on the 
circle group, Michigan Math. J. 41 (1994), 39-49. MR 95a:28014 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309 
E-mail address: baggettOeuclid. colorado. edu 

DEPARTMENT OF MATHEMATICS, LOYOLA MARYMOUNT UNIVERSITY, LOS ANGELES, CALIFORNIA 
90045 

E-mail address: hmedinaDlmumail.lmu.edu 

DEPARTMENT OF MATHEMATICS, THE COLORADO COLLEGE, COLORADO SPRINGS, COLORADO 
80903 

E-mail address: kmerrill@cc.colorado.edu 


	On Functions That Are Trivial Cocycles for a Set of Irrationals. II
	Digital Commons @ LMU & LLS Citation


