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THE GROWTH OF VALUATIONS 
ON RATIONAL FUNCTION FIELDS IN TWO VARIABLES 

EDWARD MOSTEIG AND MOSS SWEEDLER 

(Communicated by Michael Stillman) 

ABSTRACT. Given a valuation on the function field k(x, y), we examine the 
set of images of nonzero elements of the underlying polynomial ring k[x, y] 
under this valuation. For an arbitrary field k, a Noetherian power series is a 
map z : Q --+ k that has Noetherian (i.e., reverse well-ordered) support. Each 
Noetherian power series induces a natural valuation on k(x, y). Although 
the value groups corresponding to such valuations are well-understood, the 
restrictions of the valuations to underlying polynomial rings have yet to be 
characterized. Let An denote the images under the valuation v of all nonzero 
polynomials f E k[x, y] of at most degree n in the variable y. We construct a 
bound for the growth of An with respect to n for arbitrary valuations, and then 
specialize to valuations that arise from Noetherian power series. We provide a 
sufficient condition for this bound to be tight. 

1. INTRODUCTION 

Throughout this paper, we denote by N the set of natural numbers, Z the set of 
integers, Z+ the set of positive integers, and Q the set of rational numbers. Given 
r E Q, we define rN = {rn : n E N} and rZ - {rz : z E Z}. Whenever R is a ring 
or additive monoid, the set of nonzero elements of R is denoted R*. 

As demonstrated by Zariski in [13], if char k = 0 and if a valuation v on k(x, y) 
has a corresponding value group that can be embedded in Q, then v must come from 
a series expansion of the form cltel + C2te2 + C3te3 + - where ci E k, ei E Q, and 
ei > ei+l. In [6], Mac Lane and Schilling construct the value group corresponding 
to such a valuation; that is, they describe the image of the nonzero elements of 
the function field k(x, y) under a valuation that is given by a series expansion. 
The purpose of this paper is to illuminate the behavior of the image A = {v(f) : 
f E k[x, y]*} (called the value monoid) of the nonzero elements of the underlying 
polynomial ring k[x, y] under such a valuation. In this paper, we study An 
{v(f(x, y)) : f E k[x, y]* and 

degy(f) < n} and examine its growth in terms of n. 
The results in this paper grew out of a study of the relationship between valu- 

ations and Gr6bner bases. In [12], Sweedler shows how to generalize the standard 
algorithms of Grobner bases by replacing term orders with a valuation that has 
the following three properties: (i) v(k*) = {0}, (ii) the residue class field of v is 
k, and (iii) the value monoid A is a well-ordered set. The notion that valuations 
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generalize the concept of term orders is made precise in [9], in which conditions 
are given that describe when a valuation is equivalent to a term order in this con- 
text. The next natural step was to study valuations that do not arise from term 
orders, and so we began with valuations that are defined by series expansions. It 
turns out that no such valuation is directly linked to a term order, but not all such 
valuations satisfy properties (i), (ii), and (iii) described above. In particular, there 
are many such valuations whose corresponding value monoids are not well-ordered 
(or worse, are not even nonnegative). In fact, Proposition 4.2 of [11] shows that 
if the valuation v is defined by a series with bounded denominators, then v can- 
not possibly be well-ordered. Thus we must only consider series with unbounded 
denominators, a large class of which has been shown to lead to well-ordered value 
monoids in [10]. To apply the algorithms of [12] to these valuations, we need more 
information than just the fact that the value monoids are well-ordered. The main 
result of this paper, that the growth of the sets of the form An is constant, will 
provide information about the way in which reduction algorithms from [12] behave. 
In [8], we will combine results from this paper and [10] to produce a minimal set of 
generators for the value monoid. 

The theory of valuations and generalized Gr6bner bases has recently appeared 
in coding theory, both in terms of code construction and their decoding algorithms. 
One can study algebraic-geometric codes through the use of valuations in place of 
algebraic geometry, which essentially comes down to describing a basis for the value 
monoid. The construction of such codes appears in [11], in which the generators of 
the corresponding value monoid are computed for a specific example. An alternative 
description of this construction is given in [3], and we provide more commentary 
in an example at the end of this paper. Following this example, we pose an open 
question. 

2. POWER SERIES AND VALUATIONS 

To construct the valuations described by Zariski in [13], we begin by discussing 
generalized power series. Given a field k, we define the support of a function z : 
Q - k as Supp(z) = {e c Q : z(e) 5 0}. So that we may interpret such functions 
as generalized power series, we use the following formal notation: 

(2.1) z = z(e)te 
eESupp(z) 

We adopt the convention that t is shorthand for the series t1. 

Definition 2.1. A subset T C Q is called Noetherian (or reverse well-ordered) 
if every subset of T has a largest element. We say that a function f : Q -* R 
is a Noetherian power series if Supp(f) is Noetherian. We denote the set of all 
Noetherian power series by k((tQ)). 

According to [4], k ((tQ)) forms a field where addition is defined pointwise and 
multiplication is defined via convolution: 

(f + g)(q) = f(q) + g(q), (f g)(q) = S f(u)g(v). 
uvEQ 
u+v-q 

Definition 2.2. A nonzero series z E k((tQ)) is simple if it can be written as 
z = •• 1 cite, where ci E k*, n E Z+ U {oo} and ei > ei+l. A series written in this 
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form is implicitly assumed to have nonzero coefficients with descending exponents. 
Write each exponent as ei = n,/di where gcd(ni, di) = 1. For i E Z+, we define 

ri = Icm(dl, ... , di) and call r = (ro, rl, r2,... ) the ramification sequence of z. 

The field of Laurent series k((t)) consists of all functions from Z to k with well- 
ordered support, whereas the field of reverse Laurent series k((t-1)) is defined as 
the set of all functions from Z to k with Noetherian support. Note that we can 
naturally embed the rational function field in one variable, k(t), into both k((t)) 
and k((t-1)). The collection Urz+ k((tll/)) is called the field of Puiseux series 
whereas the collection UrCE+ k((t-1/r)) is called the field of reverse Puiseux series. 
Given a Puiseux series (resp., reverse Puiseux series) w, the smallest positive integer 
r such that w E k((tl/l)) (resp., w E k((t-1/r))) is called the ramification index of 
w. 

Puiseux's Theorem states that if k is an algebraically closed field of characteristic 
zero, then the field of (reverse) Puiseux series is an algebraic closure of the field of 
(reverse) Laurent series. If k has positive characteristic, then the field of (reverse) 
Puiseux series is strictly contained in the algebraic closure of the field of (reverse) 
Laurent series. Kedlaya in [5] produced a characterization of the generalized power 
series that are algebraic over the Laurent power series field when k has positive 
characteristic. The result below follows from this characterization. 

Theorem 2.3. Let k be a field, and let z E k((tQ)) be a simple series. If k has 
positive characteristic, assume that no term of the ramification sequence of z is 
divisible by char k. Then z is algebraic over k((t-1)) iff z is a reverse Puiseux 
series. 

Note that the collection of Puiseux series with finite support coincides with the 
collection of reverse Puiseux series with finite support. The result below follows 
directly from techniques found in [1] and [2]. 

Proposition 2.4. Let k be a field, and let w = citml/ + ... + cstms/n be a finite 
Puiseux expansion with ramification index n where mi E Z*n, n E Z+, and ci E k*. 

If k has positive characteristic, then assume that n is not divisible by char k. Then 
the minimal polynomial of w over k(t) is p(y) = l'-' ( - wi) c k(t)[y], where I iO\i-- /i L\/ LY 

i = Cl((itl/n)ml + .. + C (itl/n)m,, 
and ( is a primitive nth root of unity. 

We now provide background information about valuations and demonstrate how 
to use Noetherian power series to construct a special class of valuations on k(x, y). 
Let K be a field, (G, <) be an ordered additive abelian group (i.e., < is a total order 
with 9g1 92 =# g + h < 92+ h Vg,g2, h G), and let v : K* - G be a group 
homomorphism where we think of K* as the multiplicative subgroup of invertible 
elements of K. We say v is a valuation if it satisfies the strong triangle inequality 

v(a + b) < max(v(a), v(b)) for a, b E K* with a + b : 0, 

which easily implies v(a + b) = max(v(a), v(b)) for a, b E K* with v(a) 4 v(b). 
We chose an order for the triangle inequality in the definition of a valuation 

above that is the opposite of the conventional order given for Krull valuations. In 
addition, we use power series with Noetherian support rather than the traditional 
generalized power series with well-ordered support. Both of these choices were 
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dictated by the fact that this work grew out of a study of the relationship between 
valuations, term orders, and filtrations. For more details, see [9]. 

Definition 2.5. Let v be a valuation on K, and let R be a subring of K. The 
image v(K*) is called the value group corresponding to v, and the submonoid v(R*) 
of v(K*) is called the value monoid corresponding to R. 

Definition 2.6. We define LE : k((tQ))* - Q by ?E(z) = maxs s s Supp(z)}. 
We call LE(z) the leading exponent of z. 

Note that LE(ziz2) - LE(z) + LE(z2). Moreover, we have LE(zi + z2) < 
max(LE(zl), LE(z2)), with equality holding in case LE(zi) ?E(z2). Thus LE is 
a valuation on k((tQ)), and so it induces a valuation on any embedding k(x, y) --+ 
k((tQ)). We only consider embeddings of the form z : k(x, y) - k((tQ)) that map 
x - t, y - z, where t and z are algebraically independent over k. It follows that 
the composite map LE o pz : k(x, y) -+ Q is a valuation on k(x, y). 

According to Zariski [13], every series z E k((tQ)) can be written in the form 
z = z, + z' where z, is simple, and every element of Supp(z') is strictly less than 
every element of Supp(z,). Moreover, Mac Lane and Schilling show in [6] that if 
f(x, y) e k(x, y)*, then LE(f(t, z)) -= E(f(t, z,)) whenever k has characteristic 
zero. Mac Lane and Schilling also prove that if k has characteristic zero, then 
the value group {LE(f(t, z)) : f(x, y) E k(x, y)*} is precisely the subgroup of Q 
generated by the elements of Supp(z) U {1}. As previously stated, our goal is 
to describe the behavior of the value monoid corresponding to k[x, y] under the 
valuation LE o az when k is of arbitrary characteristic. 

3. DECOMPOSING SIMPLE SERIES 

Simple series z E k((tQ)) may be decomposed into a (possibly infinite) sum of 
reverse Puiseux series z0, 

Zl, z2,.... 
Given z E k((tQ)), we define z0o to consist of all 

terms of z with integral exponents, and we define z1, z2,... inductively. Roughly, if 

LE(z-(zo+.. - -+zi)) - ni/di for relatively prime ni, di, then collect the terms of z- 

(zo + - - - + zi) in k((t-1/ri)), where ri = 
lcm(dl,..., di), to form Zi+l. This process, 

which is described more precisely in Algorithm 3.1, insures that if zo, ... , Zn are the 
first n + 1 summands in the decomposition of z, then 

Zj=o zj includes all terms of 
z whose ramification indices divide the lcm of the ramification indices of zo,..., Zn. 
As an example, if we begin with the series z = t35/2 + t37/3 + t12 + t21/5 + t4 + t1/6 
it decomposes as the sum of zo = t12 + t4, zl = t35/2, z2 - t37/3 + t1/6, z3 - t21/5 

We now describe arbitrary countable sums of series. Let 1, Z2, z 3,... be a (pos- 
sibly infinite) sequence of elements of k((tQ)) whose supports are pairwise disjoint. 
Define the sum of z1, z2, Z3,... to be the function S : Q - k given by 

S(A) 

- 

zi(A) if A E 
Supp(zi); 

0 otherwise. 

In case z, Z2, Z3,... is an infinite sequence, we denote the corresponding sum by 
z1 + z2 + 3 + --., and in case z1, z2,..., 2n is a finite sequence with n terms, we 
denote the sum by z1 + z2 ? 

.. + n-. 
Note that the sum of an infinite sequence of elements of k((tQ)) need not be an 

element of k((tQ)). Indeed, if z, = tn, then the support of z1 + z2 + z3 + - 
" 
- is not 

Noetherian. However, beginning with a simple series z E k((tQ)), our technique 
decomposes z as z = Zl + z2 + Z3 + -., where each zn is a reverse Puiseux series. 
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Algorithm 3.1. Let k be a field, and let z E k((tQ)) be a nonzero simple se- 
ries E citei that is written according to Definition 2.2. We define Ro = 1, zo = 

ZeEznSupp(z) z(e)te , and uo = z - z0o. We now recursively define z1, z2, .. If 
u, = 0, then set zi = 0 for all i > n. Otherwise, if un - 0, we write 

LE(un) = an+l/bn+i, 

where a+l E Z*, b+1 E Z+, gcd(an+l, bn+l) = 1. Then we define 

Rn+l := lcm(b, ..7., bn+l), 
En+i := Supp(un)n(1/Rn+1)Z, 

zn+l : E z(e)te E ck((t-1/Rn+1)), 
eE En+1 

Un+l := Un - 
Zn+l. 

Note that if we begin with a series z E k((tQ)) and produce zo, zl, z2,... as 
calculated in the above algorithm, then 

Z = 
z- 

+ 2 Z3 ' 

We call this the natural decomposition of z, and we call zo, zl, z2,... the components 
of the natural decomposition. If this decomposition only has finitely many nonzero 
components, then we say that the natural decomposition is finite. Otherwise, we 
say that the natural decomposition is infinite. 

Note that in the natural decomposition of z, the components are reverse Puiseux 
series since the denominators of elements of the support of Zn are bounded above 
by Rn. Moreover, if Zn is nonzero and n > 0, then 1E(zn) > ,E(zn+I). 

Lemma 3.2. Let k be a field, and let z E k((tQ)) be a simple series with natural 
decomposition z = zo + zl + z2 + .... Given n e N, if z, O0, then the ramification 
index of zo + zl + . + z- is Rn, where Rn is given in Algorithm 3.1. 

Proof. Define ai and bi as in Algorithm 3.1. If z, ? 0, then CE(zi) = ai/bi for 
1 < i < n, and lcm(bl,..., bn) = Rn. Thus the ramification index of zo + - - + Zn is 
at least Rn. However, every exponent of every term of this sum has a denominator 
that divides Rn, and so the ramification index is exactly Rn. - 

Lemma 3.3. Let k be a field, and let z E k((tQ)) be a simple series. If k has 
positive characteristic, assume that no term of the ramification sequence of z is 
divisible by char k. The following conditions are equivalent. 

(1) z is transcendental over k((t-1)). 
(2) z is not a reverse Puiseux series. 
(3) lim Rn = 0o. 

(4) z has an infinite natural decomposition. 

Proof. The equivalence of (i) and (ii) is an immediate consequence of Theorem 
2.3. The equivalence of (ii) and (iii) follows from the fact that the denominators 
of the exponents of elements of Supp(z) are unbounded if and only if lim Rn = 0o. 
Whenever Rn and Rn+I are defined, we have Rn+i > Rn, and so the equivalence 
of (iii) and (iv) follows immediately. O 
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4. GROWTH OF THE VALUE MONOID 

Given a submonoid M of a commutative monoid N, we define an equivalence 
relation on N by setting nl ~nM n2 if and only if there exist mi, m2 E M such 
that mi + ni = m2 + n2. Denote by N/M the collection of all equivalence classes 
under this relation, and for n E N, let n denote the equivalence class containing n. 
We define a quotient map from N to N/M that sends n to n. The set N/M has 
an additive monoid structure, called the quotient monoid of N with respect to M, 
where we define nj + n2 = n1 + n2. 

At this point, we concentrate on the case where the quotient monoid N/M is 
constructed from a valuation. In particular, given a subring A of a field C, we set 
N to be the value group v(C*) and the submonoid M will be v(A*). 

Lemma 4.1. Let A be a subring of a field C, and let v be a valuation on C. Given 
c E C, n E Z+, there is at most one element in 

v((Ac" + Ac"-1 + - - - + Ac + A)*)/v(A*) 
that does not lie in 

v((Acn-1 + ... + Ac + A)*)/v(A*). 

Proof. Suppose p, q E (Ac + ... 
- - + A)* such that 

(4.1) v(p), v(q) V v((Acn-1 + ... + A)*)/v(A*). 
We must prove that v(p) = v(q). Write p and q in the form p = acn +P, q = bcn + Q 
witha, bA andP, Q Acn- + --...+Ac+A. If a -0, then p = PEAcn-+ 

?.. 
+ Ac + A, contradicting (4.1). Similarly, b $ 0. 
If v(bp) = v(aq), then v(b) + v(p) = v(a) + v(q). Thus v(p) ~v(A*) v(q), and so 

v(p) v(q). 
If v(bp) 4 v(aq), then define w by w = bp-aq = bP-aQ E Acn"-+ .. +A. By the 

strong triangle inequality, v(w) = max(v(bp), v(aq)). Suppose that v(w) = v(bp). 
Since v(1) - 0, we have v(w) + v(1) = v(b) + v(p). Thus v(w) ~v(A*) v(p), and 
so v(w) = v(p). However, v(w) E v(Acn + ...---+ A)*/v(A*), which contradicts our 
assumption in (4.1) that v(p) V v((Acn-1 +...--- + A)*)/v(A*). [O 

Since v(A*)/v(A*) is a singleton set, repeated applications of Lemma 4.1 yield 
the following. 

Corollary 4.2. The set v((Ac +... + Ac + A)*)/v(A*) has cardinality at most 
n+ 1. 

Given a polynomial f(x, y) E k[x, y], define 
degy(f(x, y)) to be the smallest 

n > 0 such that f(x, y) E k[x]yn + k[x]y-1? +... + k[x]y + k[x]. Define 

An(z) = {CE(f(t, z)) : f k[x, y]* and 
degy(f(x, y)) < n}. 

We now provide a bound on the growth of the value monoid with respect to 

deg, (f(x, y)) of the polynomials in k[x, y]. 

Proposition 4.3. Let k be a field, and let z be a simple series EZ=1 citei E k((tQ)) 
that is transcendental over k(t). 

(i) For n > 1, there is at most one element in An(z)/Ao(z) that is not in 
A I (z)/Ao(z). 

(ii) The set An(z)/Ao(z) has cardinality at most n + 1. 
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Proof. Set A = k[t], C = k(t, z), c = z and note that Ao(z) = LE(A*) and An (z) = 

LE((Acn + ... + Ac + A)*). Then part (i) follows directly from Lemma 4.1, and 
part (ii) follows directly from Corollary 4.2. O 

We will see that this result can be improved if we impose extra conditions on 
z. In particular, we will show in Theorem 4.10 that if no term of the ramification 
index of z is divisible by char k and if the equivalent conditions of Lemma 3.3 hold, 
then the bound given by Proposition 4.3 is tight. To this end, we first exploit the 
structure of the natural decomposition of z to produce some preliminary results. 

Proposition 4.4. Let k be a field, and let z E k((tQ)) be a simple series. If 
k has positive characteristic, assume that no term of the ramification sequence 
of z is divisible by char k. Suppose z has an infinite natural decomposition z = 

zo + z + z2 + z3 +- .... Define ai, bi, and Ri as in Algorithm 3.1. Then for each 
n E N such that zn 0, there exists f(x, y) E k[x, y] such that degy(f(x, y)) = Rn 
and 

LE(f(t, z)) = LE(zn+l) + q/Rn, 
for some q E Z. 

Proof. Choose n so that z, , 0. We begin by computing the minimal polynomial 
of 

wo :-- z(e)te 
eESupp(z) 

e>L E(zn+l) 

over k(t). Since w0o precisely consists of the terms of z whose support is greater 
than CE(z,+l), 

(4.2) LE(z - wo) = IE(zn+l). 
The ramification index of z0o + - - - + z, is Rn by Lemma 3.2, and so 

U Supp(zi) C Spp(zo + zi + 
... 

+ Zn) C (1/Rn). 
i=O 

However, Supp(wo) C U'=o Supp(zi), and so 

(4.3) Supp(wo) C (1/R,)Z. 
It is not difficult to see that the ramification index of wo is also Rn since its 

support contains 
CE(zi),...., E(z,). Let ( be a primitive Rfth root of unity. 

According to Proposition 2.4, wo has minimal polynomial 

(4.4) h(t, y) = (y - wo) .. (Y - wRn-1) E k(t)[y] 
over k(t), where wo,..., 

,WRn-1 

are distinct reverse Puiseux series. By choosing an 
appropriate g(t) E k[t], we find that g(t)h(t, y) E k[t, y]. Define f(x, y) E k[x, y] to 
be the polynomial such that 

(4.5) f(t, y) = g(t)h(t, y). 

By (4.4) it is clear that deg,(f(x, y)) = Rn, and so we only have left to show that 
LE(f(t, z)) = IE(z,n+) + (q/Rn) for some q E Z. 

We now demonstrate that CE(z - wj) E (1/R,)Z for 1 < j < R, - 1. Each 
element of Supp(wj) is greater than 1E(zn+), and so 

(4.6) LE(z - wj) > /CE(zn+i). 
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Suppose, for contradiction, that equality holds in (4.6). Then the terms of z whose 
exponents lie above ?E(z,+1) must identically agree with the terms of wj. More- 
over, w0 consists precisely of the terms of z whose exponents lie above CE(z,+l), 
and so wj = wo. However, this is only possible if j = 0, a contradiction. Therefore, 
the inequality (4.6) is strict, and so by (4.3), 

LE(z - wj) E Supp(wj) = Supp(wo) C (1/Rn)Z. 

Substituting z for y in (4.4) and (4.5), we obtain h(t, z) = (z - wo) ... 

(z - 
wR,-1) and f(t, z) = g(t)h(t, z). Using these equations in conjunction with 

(4.2), we compute 
Rn-1 

LE(f(t, z)) = LE(g(t)h(t, z)) = LE(g(t)) + ?E(z - wo) + L IE(z - wj) 
i=1 

Rn-1 

= LE(g(t)) + LE(zn+l) + E LE(z - wj). 
i= 1 

Since LE(g(t)) E Z and ?E(z - wj) E (1/R,)Z for all 1 < <j < R, - 1 by (4), we 
have LE(g(t)) + 2E ' 1LE(z - Wj) = q/Rn for some q E Z, and so ?E(f(t, z)) = 

LE(zn+l) + q/Rn. O 

Definition 4.5. The set of integers {ao,... , 
am-l} 

forms a complete set of residues 
modulo m if for any integer a, there exists 0 < j < m- 1 such that m divides a - aj . 

We quote the following simple result of number theory without proof. 

Lemma 4.6. Suppose {ao,... , am-} forms a complete set of residues modulo m. 
Given two relatively prime nonzero integers r, s, the set 

{ir+ajs 0 i <s-1, 0<jm-1} 
forms a complete set of residues modulo ms. 

Lemma 4.7. Let k be a field, and let fo,... , fm-1 k[x, y] such that 
degy(fi) 

= i. 
Suppose v : k(x, y) -+ Q is a valuation such that {mv(fo),..., mv(fm-1)} forms a 
complete set of residues modulo m. Suppose fm e k[x, y] such that degy(fm) = m 
and v(fm) = a/b where a and b are relative prime integers with b positive. Let 
L = lcm(m,b). If L > m, then there exist fm+l,. .,fL-1 E k[x,y] such that 

degy(fi) 
= i and 

{Lv(fo),... , Lv(fL_1)} 

forms a complete set of residues modulo L. 

Proof. To simplify the notation in this proof, given a, b E Z+, we denote their least 
comon multiple and greatest common divisor by [a, b] and (a, b), respectively. Using 
the identity (m/(b, m), b/(b, m)) = 1 in conjunction with the assumption (a, b) = 1, 
it follows that (ma/(b, m), b/(b, m)) = 1, and so 

LaL ([b,m]a [b, m] ma b =1 
b m b ' m (b,m)' (b,'m) 1b 

By Lemma 4.6 with aj = mv(fj), r = La/b, s = L/m, we see that 

SLa (L L/m)-m-1 b 
m- forms a complete set of residues modulo L. 
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For 0 < i < (L/m) - 1, 0 < j < m - 1, we define fmi+j 
= (fm)ifj. It follows 

that degy(fmi+j) = mi + j and 

(f+j) = L((f) v(f)) 
La 

Lmv(f Lv(fmi+j) = L(iv(fm) + v(f3)) - -+my(fL) . 

b m 

Thus, {Lv(fo),..., Lv(fL-1)} 
forms a complete set of residues modulo L. O 

Here we state another simple result of elementary number theory without proof. 

Lemma 4.8. Suppose nl/di and n2/d2 are rational numbers written in reduced 
form and nl/dl - n2/d2 = q/r where q/r is not assumed to be written in reduced 
form. Then lcm(dl, r) = lcm(d2, r). 

For each n E N, we generate a polynomial fn(x, y) such that 
degy(fn(x, y)) = n, 

and LE(fn(t, z)) is not equivalent to the images of any of the other polynomials 
mod N. 

Lemma 4.9. Let k be a field, and let z C k((tQ)) be a simple series. If k has positive 
characteristic, assume that no term of the ramification sequence of z is divisible by 
char k. Suppose z has an infinite natural decomposition z = zo + zl + z2 +. 
Define Ri as in Algorithm 3.1. Then there exist polynomials fo, ... , fR-1 E k[x, y] 
such that 

degy(fi(x, y)) = i and 

{RnLE(fi(t,z)) : 0 < i <Rn - 1} 

is a complete set of residues modulo Rn. 

Proof. We prove the result by induction on n. When n = 0, set fo(x, y) = x, and 
the result follows. 

The least common multiple of the denominators of the LE(fi(t, z))'s (when writ- 
ten as fractions in reduced form) is Rn since Rn?LE(fi(t, z)) is congruent to 1 modulo 
R, for some choice of i. According to Proposition 4.4 there exists f(x, y) E k(x, y) 
such that 

degy(f(x, y)) = Rn and LE(f(t, z)) = LE(z,+l) + q/Rn, where q E Z. 
Let a/b be the reduced form of LE(f(t, z)) and an+l/bn+l be the reduced form of 

LE(z,n+). If we set ni = a, n2= an+l, di = b, d2 = b+l, q = q, r = Rn, then by 
Lemma 4.8, we have lcm(b, R) = lcm(bn+l, Rn) = Rn+1. 

Thus, by setting v = LE, m = Rn, fm = f in Lemma 4.7, we get polynomials 
fo, ... , 

fRn+-1 E k(x, y) such that deg,(fi(x, y)) = i and {R,+iLE(fi(t, z)) : 0 < 
i < Rn+1 - 1} is a complete set of residues modulo R n+1. 

O 

We conclude by showing that the bound given by Proposition 4.3 is tight when 
we impose extra conditions on the series z E k((tQ)). 

Theorem 4.10. Let k be a field, and let z E k((tQ)) be a simple series. If k has 
positive characteristic, assume that no term of the ramification sequence of z is 
divisible by char k. Suppose furthermore that z is not a reverse Puiseux series. 
Then for 1 < n E Z, the quotient A,/Ao has cardinality one greater than that of 

An,-1/Ao, 
or equivalently, A,/Ao has cardinality n + 1. 

Proof. Define Rn as in Algorithm 3.1. By Proposition 3.3, the natural decompo- 
sition is infinite. Therefore, the result holds for r = R,- 1 because by Lemma 
4.9, the cardinality of ARn-1/Ao is Rn. Note that by Proposition 3.3, Rn - 1 gets 
arbitrarily large. According to Proposition 4.3, Ar/A0 has cardinality at most r+ 1. 
Suppose for some s E N that As/A0 has cardinality less than or equal to s. By 
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Proposition 4.3 and induction it follows that for any t E N the set As+t/Ao has 
cardinality less than or equal to s + t. But there exists an n such that Rn - 1 > s 
and the cardinality of AR,-1/Ao is Rn. This contradiction shows that there is no 
s E N such that As/A0 has cardinality less than or equal to s. O 

Example 4.11. In Example 5.2 of [11], O'Sullivan generates a valuation on k(x, y) 
by a series of blow-ups. The valuation in this example alternatively can be described 
in terms of power series by selecting 

00 

(4.7) z = t2+ 2('-j)t(1+2-j) - 
t2+t3/2+(1/2)t5/4+(1/4)t9/8-+(1/8)17/16+. 

j=1 

and sending x - t, y -* z. O'Sullivan determines that 1, 3 11 43 and 171 are 
among the generators of the value monoid, further claiming that the value monoid 
is infinitely generated, though he states that the proof is fairly long and thus omit- 
ted. Now, according to Theorem 4.10, this claim holds true not only for the series 
given in (4.7), but rather for any series z E k((tQ)) satisfying the conditions re- 
quired by Theorem 4.10. In fact, Theorem 4.10 (in conjunction with the proof of 
Proposition 4.4) provides a method for constructing infinitely many generators of 
the value monoid that cannot be generated by a finite set. Moreover, as stated in 
the introduction, by utilizing Theorem 4.10 and results from [10], it is possible to 
create an algorithm that produces a minimal set of generators for the value monoid 
generated by an arbitrary series z E k((tQ)). This is useful both for purposes of 
code construction and decoding algorithms. 

One should naturally question the necessity of the extra condition imposed on 
z E k((tQ)) in Theorem 4.10 in case k has positive characteristic. In contrast, 
Proposition 4.3 provides a characteristic-free upper bound on the growth of valua- 
tions, and so we leave it as an open question to determine the extent of the necessity 
of the condition required by Theorem 4.10. 
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