

Mechanical Engineering Faculty Works

Mechanical Engineering

8-2008

## **Evaluation of Advanced Adhesives for Aerospace Structures**

| Р | Stov | /an | ιοv |
|---|------|-----|-----|
|   |      |     |     |

N. Rodriguez

T. Dickinson

D. H. Nguyen

E. Park

See next page for additional authors

Follow this and additional works at: https://digitalcommons.lmu.edu/mech\_fac



Part of the Mechanical Engineering Commons

## Digital Commons @ LMU & LLS Citation

Stoyanov, P.; Rodriguez, N.; Dickinson, T.; Nguyen, D. H.; Park, E.; Foyos, J.; Hernandez, V.; Ogren, J.; Berg, Michael; and Es-Said, Omar S., "Evaluation of Advanced Adhesives for Aerospace Structures" (2008). Mechanical Engineering Faculty Works. 4.

https://digitalcommons.lmu.edu/mech\_fac/4

This Article is brought to you for free and open access by the Mechanical Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Mechanical Engineering Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.

| <b>Authors</b><br>P. Stoyanov, N. Rodriguez, T. Dickinson, D. H. Nguyen, E. Park, J. Foyos, V. Hernandez, J. Ogren, Michael<br>Berg, and Omar S. Es-Said |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
| This putials is positable at Dimital Common and at lavels Management University and Lavels Lave Cabash                                                   |

# **Evaluation of Advanced Adhesives for Aerospace Structures**

P. Stoyanov, N. Rodriguez, T. Dickinson, D. Huy Nguyen, E. Park, J. Foyos, V. Hernandez, J. Ogren, M. Berg, and O.S. Es-Said

(Submitted June 28, 2007; in revised form July 12, 2007)

Polymer adhesives are finding increased use in panel joining applications in aircraft and aerospace structures where the applied stresses permit their use and where a uniform stress distribution is needed. One such adhesive, Hysol EA-9394<sup>TM</sup>, was compared to three other formulations in this study. The new formulations were Hysol EA-9396, Hysol EA-9396 filled with nickel nanofibers and mixed by machine (Jamesbury Blender), and Hysol EA-9396 filled with nickel nanofibers and hand mixed in the laboratory. The comparison consisted of measuring shear lap strengths of aluminum test pieces bonded together with the candidate adhesives. The mechanical tests were supplemented by a Weibull analysis of the strength data and by a visual inspection of the failure mode (adhesive/cohesive). The lap shear strengths (fracture stress values) of all three Hysol EA-9396 adhesives were greater than that of the baseline Hysol EA-9394 polymer.

**Keywords** adhesive-bonding, failure statistics, joining, shear fracture, Weibull analysis

#### 1. Introduction

The procedures available for joining aluminum panels are limited due to the reactivity of molten aluminum in ambient atmospheres. In the cases of aluminum alloys, the benefits of prior aging treatments are lost in the heat-affected zone (HAZ) because the thermal environment causes over-aging. Rivets and related fasteners are possibilities, but can produce regions of stress concentrations. Low-density adhesives have been employed to join panels of aluminum thin plates (Ref 1), and continuous effort exists to improve their performance.

The purpose of this study was to determine if three modifications of a baseline adhesive, Hysol EA-9394, showed improved properties over that baseline. This evaluation consisted of measuring the lap shear strengths at room temperature of a statistically significant number of identical test samples in order to develop failure statistics.

## 2. Experimental

One adhesive, Hysol EA-9394<sup>TM</sup> (Ref 2) was taken in this study to be the baseline standard and compared to the three variations, i.e.:

P. Stoyanov, N. Rodriguez, T. Dickinson, D. Huy Nguyen, E. Park, J. Foyos, J. Ogren, and O.S. Es-Said, Mechanical Engineering Department, Loyola Marymount University, Los Angeles, CA 90045; V. Hernandez, Northrop Grumman Space Technology, Redondo Beach, CA 90278; M. Berg, Mathematics Department, Loyola Marymount University, Los Angeles, CA 90045. Contact e-mail: oessaid@lmu.edu.

Hysol EA 9396

Hysol EA-9396 + nickel nanofibers blended with a Jamesbury Blender

Hysol EA-9396 + nickel nanofibers blended by hand

Both Hysol EA-9394 and 9396 are curable two-part polymers produced by condensation reactions. They differ in that Part A in EA-9394 is an epoxy resin while Part A in EA-9396 is an amine (Ref 3). Both cure in 2 to 4 days at ambient conditions.

The nickel nanofiber loading was the same in both cases.

The test activity described in this article excluded detailed data on the nickel nanofibers; their characteristics and their volumetric loading fractions.

The aluminum strip sample geometry is shown in Fig. 1. In that figure:

- (i) a and c are the measured test strip thickness values.
- (ii) (a + c) is the bond thickness.
- (iii)  $d \times w$  is the bond area.

No strain was observed in the aluminum strips.

Lap shear tests were performed on an Instron 4505 universal testing machine. A load cell indicated the force at fracture. Computer software calculated the fracture stress from the load and the dimensions of the lap joint. All the tests were performed under ambient condition; ~25 °C (77 °F) and nominally 60 to 80% relative humidity. Thirty samples of each of the four formulations (baseline + three modifications) were tested.

## 3. Results

Shear lap stress results for all 120 samples are summarized in Table 1. Fracture stress values for all samples are shown in Tables 2 to 5.

<sup>&</sup>lt;sup>TM</sup>Hysol is a trademark of the Henkel Corporation.

## 4. Discussion

The data show a wide range of fracture stresses for ostensibly identical samples. The data warranted an analysis according to the method of Weibull (Ref 4, 5). In this analysis, it is assumed that a "weak link" exists where failure (fracture in this case) originates. The following equation stems from the analysis:

$$\ln\left[\ln\left(\frac{1}{P_{\rm s}}\right)\right] = {\rm constant} + m \ln \sigma_{\rm F}$$
 (Eq 1)

where  $P_s$  = probability that a sample will survive at stress of  $\sigma_F$  and m = slope of the  $\ln[\ln(1/P_s)]$  versus  $\ln \sigma_F$  curve. All the test samples had the same volume.

The Weibull plots, based on the data in Tables 2 to 5, are in Fig. 2.

All four adhesive samples exhibit linear plots. Linear regression analyses for the four adhesives yielded:

$$\ln\left[\ln\left(\frac{1}{P_{\rm s}}\right)\right] = -20.8 + 6.8 \ln \sigma_{\rm F}$$
 (Eq 2)  
Hysol EA-9394 (baseline)

$$\ln\left[\ln\left(\frac{1}{P_{\rm s}}\right)\right] = -41.5 + 12.2\ln\sigma_{\rm F}$$
 (Eq 3)  
Hysol EA-9396

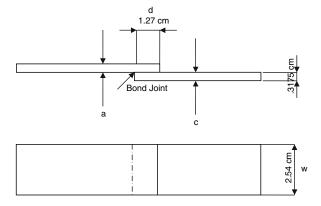



Fig. 1 Test sample configuration (dimensions in cm)

$$\ln \left[ \ln \left( \frac{1}{P_s} \right) \right] = -27.6 + 8.4 \ln \sigma_F$$
 (Eq 4)  
Hysol EA-9396 (hand mixing)

$$\ln\left[\ln\left(\frac{1}{P_{\rm s}}\right)\right] = -50.4 + 14.6\ln\sigma_{\rm F} \qquad \text{(Eq 5)}$$
Hysol EA-9396 (machine mixing)

From a design standpoint, a steep (almost vertical) curve is preferred. The data in Fig. 2 clearly indicates that the steepest curve (largest slope) was for the machine-mixed Hysol EA-9396 containing nickel nanofibers.

Table 2 Fracture data of Hysol EA-9394

| Sample EA 1 | Fracture stress, psi/MPa |    | Bondline thickness, in./cm |       |
|-------------|--------------------------|----|----------------------------|-------|
|             | 3309                     | 23 | 0.014                      | 0.036 |
| EA 2        | 3007                     | 21 | 0.011                      | 0.028 |
| EA 3        | 3553                     | 25 | 0.013                      | 0.033 |
| EA 4        | 3521                     | 24 | 0.009                      | 0.023 |
| EA 5        | 3036                     | 21 | 0.012                      | 0.030 |
| EA 6        | 2354                     | 16 | 0.015                      | 0.038 |
| EA 7        | 2002                     | 14 | 0.011                      | 0.028 |
| EA 8        | 2090                     | 14 | 0.017                      | 0.043 |
| EA 9        | 3274                     | 23 | 0.011                      | 0.028 |
| EA 10       | 2715                     | 19 | 0.011                      | 0.028 |
| EA 11       | 3396                     | 23 | 0.012                      | 0.030 |
| EA 12       | 3370                     | 23 | 0.013                      | 0.033 |
| EA 13       | 2218                     | 15 | 0.012                      | 0.030 |
| EA 14       | 3244                     | 22 | 0.013                      | 0.033 |
| EA 15       | 3441                     | 24 | 0.010                      | 0.025 |
| EA 16       | 2816                     | 19 | 0.012                      | 0.030 |
| EA 17       | 2160                     | 15 | 0.014                      | 0.036 |
| EA 18       | 3076                     | 21 | 0.009                      | 0.023 |
| EA 19       | 2607                     | 18 | 0.010                      | 0.025 |
| EA 20       | 2984                     | 21 | 0.012                      | 0.030 |
| EA 21       | 2409                     | 17 | 0.009                      | 0.023 |
| EA 22       | 3256                     | 23 | 0.014                      | 0.036 |
| EA 23       | 2721                     | 19 | 0.013                      | 0.033 |
| EA 24       | 3129                     | 22 | 0.006                      | 0.015 |
| EA 25       | 3108                     | 21 | 0.010                      | 0.025 |
| EA 26       | 2935                     | 20 | 0.009                      | 0.023 |
| EA 27       | 2609                     | 18 | 0.007                      | 0.018 |
| EA 28       | 2852                     | 20 | 0.013                      | 0.033 |
| EA 29       | 2763                     | 19 | 0.012                      | 0.030 |
| EA 30       | 2784                     | 19 | 0.008                      | 0.020 |

1 Ksi = 6.89 MPa

Table 1 Shear lap stress results

|                                                                  | Minimum fracture shear stress |              | Maximum fracture shear stress |              | Average fracture shear stress |              |
|------------------------------------------------------------------|-------------------------------|--------------|-------------------------------|--------------|-------------------------------|--------------|
| Adhesive/Polymer                                                 | psi                           | MPa          | psi                           | MPa          | psi                           | MPa          |
| Hysol EA-9394                                                    | 2000                          | 13.8         | 3560                          | 24.5         | 2890                          | 19.2         |
| Hysol EA-9396 Hysol EA-9396 plus machine-mixed nickel nanofibers | 3290<br>3750                  | 22.7<br>25.8 | 4800<br>5070                  | 33.1<br>34.9 | 4190<br>4390                  | 28.8<br>30.2 |
| Hysol EA-9396 plus hand-mixed nickel nanofibers                  | 1530                          | 10.6         | 460                           | 31.3         | 3660                          | 25.2         |

Table 3 Fracture data for Hysol-EA 9396

| Sample       | Fracture stress, psi/MPa |    | Bondline thickness, in./cm |       |
|--------------|--------------------------|----|----------------------------|-------|
| EB 1         | 4201                     | 29 | 0.004                      | 0.010 |
| EB 2         | 4662                     | 32 | 0.011                      | 0.028 |
| EB 3         | 3819                     | 26 | 0.007                      | 0.018 |
| EB 4         | 4527                     | 31 | 0.006                      | 0.015 |
| EB 5         | 4800                     | 33 | 0.004                      | 0.010 |
| EB 6         | 4153                     | 29 | 0.012                      | 0.030 |
| EB 7         | 4383                     | 30 | 0.013                      | 0.033 |
| EB 8         | 3812                     | 26 | 0.013                      | 0.033 |
| EB 9         | 4191                     | 29 | 0.012                      | 0.030 |
| EB 10        | 4392                     | 30 | 0.010                      | 0.025 |
| EB 11        | 3976                     | 27 | 0.008                      | 0.020 |
| EB 12        | 4322                     | 30 | 0.008                      | 0.020 |
| EB 13        | 3887                     | 27 | 0.011                      | 0.028 |
| EB 14        | 4358                     | 30 | 0.004                      | 0.010 |
| EB 15        | 4440                     | 31 | 0.010                      | 0.025 |
| EB 16        | 4000                     | 28 | 0.003                      | 0.008 |
| EB 17        | 4450                     | 31 | 0.007                      | 0.018 |
| EB 18        | 3515                     | 24 | 0.011                      | 0.028 |
| EB 19        | 4195                     | 29 | 0.007                      | 0.018 |
| EB 20        | 4350                     | 30 | 0.006                      | 0.015 |
| EB 21        | 4428                     | 31 | 0.006                      | 0.015 |
| EB 22        | 4379                     | 30 | 0.008                      | 0.020 |
| EB 23        | 3291                     | 23 | 0.012                      | 0.030 |
| EB 24        | 4386                     | 30 | 0.007                      | 0.018 |
| EB 25        | 3716                     | 26 | 0.007                      | 0.018 |
| EB 26        | 4526                     | 31 | 0.005                      | 0.013 |
| EB 27        | 4228                     | 29 | 0.010                      | 0.025 |
| EB 28        | 3593                     | 25 | 0.012                      | 0.030 |
| EB 29        | 4504                     | 31 | 0.009                      | 0.023 |
| EB 30        | 4085                     | 28 | 0.007                      | 0.018 |
| 1 Ksi = 6.89 | 9 MPa                    |    |                            |       |

All fractures for this formulation were above 26 MPa (3750 psi), whereas virtually all the samples using Hysol EA- $9394^{TM}$  fractured at values below that value of shear stress.

The fractures were virtually always cohesive in nature with both fracture surfaces covered with adhesive. A few anomalous samples were found in which the fractures were mixed mode, i.e., portions of the fracture surfaces were bare. The anomalous surfaces are in Fig. 3 along with a normal surface. The anomalous surfaces shown in Fig. 3 correspond to the four anomalous low fracture stress values in Fig. 2.

The anomalous low fractures occurred with the adhesive that contained nickel nanofibers that had been hand mixed into the liquid adhesive.

This fact leads to the hypothesis that the hand mixing operation, per say, did not result in a uniform adhesive. The surface preparation of the aluminum surfaces certainly was satisfactory because all of the other fractures occurred within the adhesive.

Further analysis of the data in Tables 2 to 5 indicates that the fracture stress did not depend on adhesive thickness, within the range of measured thickness values, Fig. 4 to 7.

The data generated in this study can be compared with data obtained in previous studies.

The data sheets for EA 9394 for tensile lap shear strength at 77 °F (25 °C) give 28.9 MPa as the value for bonds involving 2024-T3 aluminum alloy treated with phosphoric acid as a surface preparation procedure (Ref 2). The comparable number for EA 9396 is 27.6 MPa (Ref 3).

Both values are for the adhesive without re-enforcing nickel nanofibers.

Table 4 Fracture data for Hysol EA-9396 containing hand-mixed nickel nanofibers

| Sample  | Fracture s<br>psi/MI |    | Bondline thickness, in./cm |       |
|---------|----------------------|----|----------------------------|-------|
| EBXM 1  | 3031(a)              | 21 | 0.006                      | 0.015 |
| EBXM 2  | 4028                 | 28 | 0.008                      | 0.020 |
| EBXM 3  | 3381                 | 23 | 0.008                      | 0.020 |
| EBXM 4  | 3372                 | 23 | 0.007                      | 0.018 |
| EBXM 5  | 2702(a)              | 19 | 0.006                      | 0.015 |
| EBXM 6  | 3700                 | 26 | 0.010                      | 0.025 |
| EBXM 7  | 3439                 | 24 | 0.011                      | 0.028 |
| EBXM 8  | 3666                 | 25 | 0.012                      | 0.030 |
| EBXM 9  | 4067                 | 28 | 0.009                      | 0.023 |
| EBXM 10 | 4546                 | 31 | 0.010                      | 0.025 |
| EBXM 11 | 3874                 | 27 | 0.009                      | 0.023 |
| EBXM 12 | 3698                 | 26 | 0.012                      | 0.030 |
| EBXM 13 | 3540                 | 24 | 0.010                      | 0.025 |
| EBXM 14 | 4085                 | 28 | 0.012                      | 0.030 |
| EBXM 15 | 3968                 | 27 | 0.010                      | 0.025 |
| EBXM 16 | 4340                 | 30 | 0.010                      | 0.025 |
| EBXM 17 | 4082                 | 28 | 0.008                      | 0.020 |
| EBXM 18 | 4186                 | 29 | 0.011                      | 0.028 |
| EBXM 19 | 4419                 | 31 | 0.007                      | 0.018 |
| EBXM 20 | 4127                 | 29 | 0.010                      | 0.025 |
| EBXM 21 | 2159(a)              | 15 | 0.009                      | 0.023 |
| EBXM 22 | 3840                 | 27 | 0.013                      | 0.033 |
| EBXM 23 | 3439                 | 24 | 0.010                      | 0.025 |
| EBXM 24 | 3013                 | 21 | 0.010                      | 0.025 |
| EBXM 25 | 1534(a)              | 11 | 0.010                      | 0.025 |
| EBXM 26 | 3759                 | 26 | 0.009                      | 0.023 |
| EBXM 27 | 3770                 | 26 | 0.008                      | 0.020 |
| EBXM 28 | 3400                 | 23 | 0.010                      | 0.025 |
| EBXM 29 | 4174                 | 29 | 0.010                      | 0.025 |
| EBXM 30 | 4354                 | 30 | 0.009                      | 0.023 |

 $<sup>1 \</sup>text{ Ksi} = 6.89 \text{ MPa}$ 

None of the simple EA 9394 samples reached such fracture stress values.

Several EA 9396 samples reached such values. However, using the linear regression analysis of the experimental data, it is seen that a survival rate of approximately 30% might be expected at 27.6 MPa.

It is speculative to compare the properties of the simple (nonnickel nanofiber) polymer with those that had been reenforced with nickel fibers. Suffice it to state that the machine-mixed EA 9396 might be expected to have a survival rate of 85% if exposed to a stress of 27.6 MPa.

Previous work had shown that the butt strength depended on bond thickness (Ref 6). However, all the bonds in the Guess-Reedy-Stavig study were much thicker than those used in the present study. Also, the dependence found in that study was weak at best.

## 5. Conclusions

One adhesive formulation, Hysol EA-9396 containing machine-mixed nickel nanofibers, required the largest stress to cause fracture. Furthermore, from an engineering failure control standpoint, this formulation was superior to the others because fracture (failure) occurred over the smallest range of stress values; hence it provided the smallest margin of uncertainty in failure control.

<sup>(</sup>a) Samples failed in an adhesive mode

The test results show that the Hysol EA-9396 warrants further examination; in particular, the effect of test temperature on fracture shear stress.

Table 5 Fracture data for Hysol EA-9396 containing machine-mixed nickel nanofibers

| Sample       | Fracture stress, psi/MPa |    | Bondline thickness, in./cm |       |
|--------------|--------------------------|----|----------------------------|-------|
| EBX 1        | 4376                     | 30 | 0.011                      | 0.028 |
| EBX 2        | 4564                     | 32 | 0.011                      | 0.028 |
| EBX 3        | 4260                     | 29 | 0.012                      | 0.030 |
| EBX 4        | 4593                     | 32 | 0.012                      | 0.030 |
| EBX 5        | 4429                     | 31 | 0.012                      | 0.030 |
| EBX 6        | 4863                     | 34 | 0.013                      | 0.033 |
| EBX 7        | 3750                     | 26 | 0.013                      | 0.033 |
| EBX 8        | 4493                     | 31 | 0.014                      | 0.036 |
| EBX 9        | 4778                     | 33 | 0.014                      | 0.036 |
| EBX 10       | 4276                     | 30 | 0.013                      | 0.033 |
| EBX 11       | 4573                     | 32 | 0.009                      | 0.023 |
| EBX 12       | 4268                     | 29 | 0.011                      | 0.028 |
| EBX 13       | 4169                     | 29 | 0.012                      | 0.030 |
| EBX 14       | 4252                     | 29 | 0.013                      | 0.033 |
| EBX 15       | 5066                     | 35 | 0.009                      | 0.023 |
| EBX 16       | 4413                     | 30 | 0.009                      | 0.023 |
| EBX 17       | 4171                     | 29 | 0.010                      | 0.025 |
| EBX 18       | 4329                     | 30 | 0.011                      | 0.028 |
| EBX 19       | 3931                     | 27 | 0.011                      | 0.028 |
| EBX 20       | 4752                     | 33 | 0.007                      | 0.018 |
| EBX 21       | 4541                     | 31 | 0.008                      | 0.020 |
| EBX 22       | 4752                     | 33 | 0.009                      | 0.023 |
| EBX 23       | 4639                     | 32 | 0.012                      | 0.030 |
| EBX 24       | 4819                     | 33 | 0.012                      | 0.030 |
| EBX 25       | 4281                     | 30 | 0.007                      | 0.018 |
| EBX 26       | 3990                     | 28 | 0.009                      | 0.023 |
| EBX 27       | 4169                     | 29 | 0.009                      | 0.023 |
| EBX 28       | 4126                     | 29 | 0.013                      | 0.033 |
| EBX 29       | 3953                     | 27 | 0.010                      | 0.025 |
| EBX 30       | 4072                     | 28 | 0.008                      | 0.020 |
| 1 Ksi = 6.89 | MPa                      |    |                            |       |

| Normal<br>Failure | Anomalous Failure |           |  |  |  |
|-------------------|-------------------|-----------|--|--|--|
| Sample 24         | Sample 1          | Sample 25 |  |  |  |
|                   |                   |           |  |  |  |

**Fig. 3** Post-test fracture surfaces: Sample 24 is the sample identified in Table 5 as EBX-24. Samples 1, 5, 21, and 25 are the starred samples in Table 4 and all exhibited low fracture shear stresses

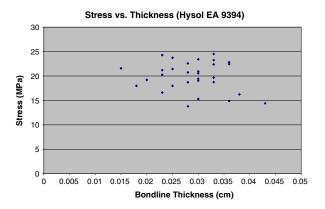



Fig. 4 Fracture stress versus adhesive bondline thickness for Hysol EA-9394

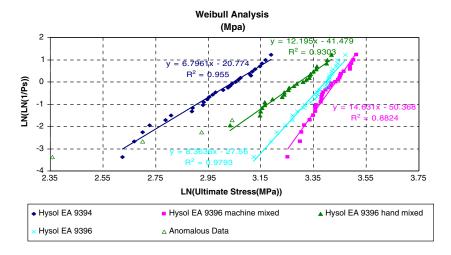



Fig. 2 Weibull curves for all four groups of adhesively bonded joints. The hand-mixed samples contain four anomalous data points discussed elsewhere in this article

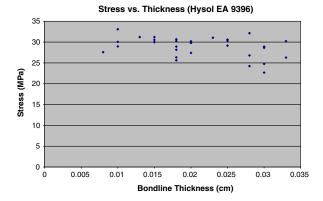



Fig. 5 Fracture stress versus adhesive bondline thickness for Hysol EA-9396

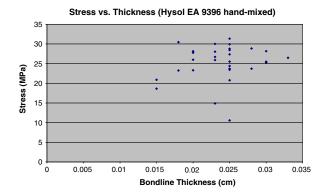



Fig. 6 Fracture stress versus adhesive bondline thickness for Hysol EA-9396 containing hand-mixed nickel nanofibers

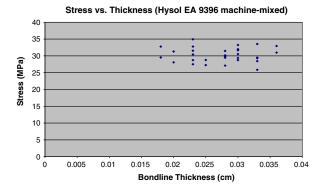



Fig. 7 Fracture stress versus adhesive bondline thickness for Hysol EA-9396 containing machine-mixed nickel nanofibers

### **Acknowledgments**

The authors wish to thank the National Science Foundation (NSF) Grant Research No. EEC0353668 Experience for Undergraduates (REU) program. Ms. Esther Bolding is the manager of this program.

#### References

- T. Gaston, Building a Better Adhesive Bond, Machine Design, 2003, http://www.machinedesign.com/asp
- Anon, Hysol EA 9394, Retrieved from Henkel Corporation in Aerospace Group, 2002, http://www.loctiteaero.comp/Images/Data sheet\_PDF/Hysol\_EA\_9394.pdf
- Anon, Hysol EA 9396, Retrieved from Henkel Corporation Aerospace Group, 2002, http://www.loctiteaero.com/Images/Datasheet\_PDF/ Hysol\_EA 9396.pdf
- W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mechanics, 1951, 18, p 293–297
- D. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd edition, Cambridge University Press (1996)
- T.R. Guess, E.D. Reedy, and M.E. Stavig, Mechanical Properties of Hysol EA-9394 Structural Adhesive, SAND 0229, Feb 1995