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Eight Minutes and a Half 
 
Gabriele U. Varieschi, Loyola Marymount University, Los Angeles, CA 
 

 
“It takes about eight minutes and a half for the light from the Sun to reach us, 

therefore when we look at a beautiful sunset and we see the Sun at the horizon… the Sun 
is actually not there anymore, it’s already below the horizon! The real sunset happened 
eight and a half minutes earlier! Similarly, at sunrise, the Sun seems to be at the horizon, 
but is already up in the sky, due to the same time delay.” 

I first heard this statement from a friend, a former colleague in physics teaching who 
found it in different publications, ranging from physics textbooks, general science books 
and astronomical magazines.1

At first, the quoted statement seems perfectly reasonable. After all if something 
happens on the Sun, for example if new sunspots were to develop on its surface or if for 
some strange reason the Sun suddenly were to turn green or purple, we would actually 
observe these events with a time delay of approximately eight and a half minutes. 

Or one can think of apparently similar situations, such as observing the lights of a 
moving car at night, with the car suddenly turning around a corner and disappearing from 
sight. The time delay for the light to reach us would be practically minimal, but the car is 
effectively already around the corner when its last light reaches us. 

A quick informal poll of some of my students revealed that most of them tend to 
agree with the statement, for reasons similar to those I just mentioned. However, a closer 
inspection of the statement reveals the real hidden issue: a problem of rotating vs. inertial 
reference systems. In this paper I will analyze this problem and describe a simple 
experimental activity which can also be used as a demonstration of the peculiar 
kinematical effects of rotating systems. 
 
 

The description of the problem 
 

To simplify the problem, we can avoid unnecessary complications by taking the Sun 
to be a point-like source of radiation, so that there is no ambiguity in the meaning of 
sunrise2 or sunset: these events happen when we observe the point-like Sun exactly at the 
horizon, i.e., along a geometrical tangent line to the Earth’s surface, at our point of 
observation. 

Let’s remove also any optical effect from the problem: no light refraction in the 
atmosphere (let’s remove the atmosphere altogether, if we prefer), no other light bending 
of any sort due to gravitational fields. We can simply assume that the radiation from the 
Sun travels in perfectly straight lines at the speed of light in vacuum. 

Sunset and sunrise are essentially due to the daily rotation of the Earth around its axis, 
with a period we can take to be exactly 24 hours. Let’s assume that the time delay for the 
light to reach us from the Sun is exactly 8 minutes (we don’t need the extra few seconds).  

An elementary calculation shows that in 8 minutes the Earth rotates an angle of 2 
degrees, equivalent to an apparent rotation of the Sun by the same amount in the opposite 
direction. If the statement quoted at the beginning is correct, we would conclude that at 
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sunset the Sun is already below the horizon by an angle of two degrees, a quite 
significant change in position. 

The orbital revolution of the Earth around the Sun will also affect the angle of 
rotation, but its effect is minimal compared to the one just discussed and will be 
neglected here. After all, if the Earth did not rotate around its axis, our “day” would last 
one full year and the apparent rotation of the Sun in eight minutes would amount to less 
than 20 seconds of a degree, a very minimal correction compared to the 2 degrees 
calculated above. 

Therefore, we can simply assume a fixed Sun, behaving like a point-like source of 
radiation, with the emitted light traveling in straight lines and consider the Earth as a 
rotating sphere, with a period of 24 hours, receiving light from the Sun, with the photons 
taking about 8 minutes to complete their trip. 

At this point every physics student should know how to interpret the problem. The 
“fixed” Sun reference frame can be assumed to be an inertial one; the Sun is not moving 
and is emitting “projectiles” (photons) which travel radially outward at constant speed. 
The Earth represents a rotating, non-inertial system; therefore we should be careful when 
observing and interpreting phenomena in such non-inertial systems. 

The situation as seen from the inertial system of the Sun is extremely simple and is 
illustrated in Figs. 1a and 1b. In this reference system (x-y-z axis), the position of the Sun 
(S) is fixed, while the Earth observer (point T) is rotating together with the local direction 
of the horizon, indicated in the figures by the blue dashed line, tangent to the Earth’s 
surface at point T. We choose to place the terrestrial observer T on the equator for 
simplicity, but any other latitude would give the same results, just with a radius R smaller 
than the equatorial radius (of course at latitudes beyond the Arctic or Antarctic Circles we 
might have to wait a little longer than usual to observe a new sunrise or sunset). These 
figures show the view from the North Pole, i.e., with the Earth rotating counter-clockwise 
around the z axis (perpendicular to the plane of the figures). We also indicate with x’-y’-
z’ the rotating system, where the z and z’ axis (coming out of the page) coincide with the 
axis of rotation. 

Fig. 1a shows the situation eight minutes before “sunset”: at this time the last rays to 
be observed on Earth depart from the Sun, but the Sun is still well above the horizon. In 
fact, the angle between the horizon direction at point T and the direction of arrival of 
sunlight (dashed red line) corresponds to the 2 degrees angle calculated above (and 
greatly exaggerated in Fig. 1a). 

In Fig. 1b we illustrate the “sunset” situation. The light rays emitted eight minutes 
earlier finally arrive to the observer at position T and their direction of arrival is aligned 
perfectly with the horizon direction: at sunset the Sun position is precisely “at the 
horizon” and not below it! Similar reasoning would obviously apply for sunrise events, 
but we prefer to continue doing all our examples just with sunsets. 

Although the original statement already appears to be incorrect, one might argue that 
it was referring to an observer on Earth, so we should analyze the problem in the rotating 
reference system instead and illustrate the situation also from this point of view. 

Fig. 2 shows the path of the “last” light from the Sun as seen from the observer 
rotating with the Earth. From this perspective the apparent rotational motion of the Sun 
(with a 24 hour period) is a clockwise motion, when viewed from the North Pole. 
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For the non-inertial observer at position T, the path followed by the light is not 
straight anymore, but is a spiral-like curve starting from the original position of the Sun 
(point A), eight minutes before we observe sunset, and ending with light reaching point T 
eight minutes later, with a direction of motion (given by the tangent to the path at point 
T) coinciding with the “horizon” direction, so that in our rotating system we perceive the 
light at sunset as coming straight towards us from the horizon.  

And where is the Sun at sunset, from our rotating perspective? In those eight minutes 
it took the light to reach us at sunset, the Sun “moved” clockwise from position A to 
position B, as seen in Fig. 2, so it is exactly at the horizon when we receive the last light. 
Any light emitted from the Sun at position B (or from any intermediate position between 
A and B) would not reach the observer at position T any more. It would have to follow a 
similar curved path reaching the Earth with a final direction of motion “below” the 
horizon, therefore would not be seen by the observer at T.  

In any case, from both perspectives, the Sun is exactly at the horizon at the precise 
moment of sunset or sunrise. 

 
 
A more analytical approach 

 
The analysis of the previous section can be made more quantitative by using rotating 

coordinate systems. As illustrated in Fig. 1a and 1b, we consider the Sun as point-like 
source (S) located at a distance D of one astronomical unit, , 
and our planet as a sphere of radius , equal to the Earth’s equatorial 
radius. The ratio  is therefore very small and our figures are obviously 
not up to scale. 

mAUD 1110496.11 ×==
mR 610378.6 ×=

51026.4/ −×=DR

For our problem it is convenient to use a very particular set of units: distances will be 
measured in astronomical units (AU), time in minutes (min) and angles in degrees (°). 
Assuming that the time needed for light to travel the Sun-Earth distance is exactly eight 
minutes, the speed of light c and the angular velocity ω of our planet can be expressed by 
very simple numbers:3

min4
1

min8
1 ; o== ωAUc ,        (1)  

so that, as already remarked, in eight minutes the Earth rotates an angle of two degrees. 
We will also take  to be the time of “sunset”, i.e., when the Earth observer 

receives the last light at position T. This light left the Sun eight minutes earlier, therefore 
at the initial time . At this time we will assume that the x’-y’-z’ system is 
rotated by an initial angle , with respect to the fixed x-y-z system, around the 
common z, z’ axis. In this way, eight minutes later at time 

0=t

min80 −=t
o20 −=α

0=t , the two systems will 
coincide at sunset. The uniform rotation of the primed system is thus described by the 
angle of rotation α: 

)8(2)( 4
1

00 ++−=−+= tttωαα        (2) 
and the equation of motion of the light “projectiles” in the direction tangent to the Earth’s 
surface, in the inertial system, describes a simple uniform motion in a straight line: 

Ry
tttcDx

=

+−=−−= )8(1)( 8
1

0        (3) 
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when expressed in the particular units we have introduced above. With this choice of 
units we can compare the expressions in Eqs. (2) and (3) and find a useful relation 
between x and α: 

α2
1−=x .          (4) 

At this point we can determine the equations of motion of light in the rotating system 
x’-y’-z’ and show that it is indeed following the curved trajectory shown in Fig. 2. The 
connection between the primed and non primed coordinates is given by a simple rotation 
around the z, z’ axis, by the angle α: 

ααααα
ααααα

cossincossin'
sincossincos'

2
1
2
1

Ryxy
Ryxx

+=+−=

+−=+=
     (5) 

where we used Eqs. (3) and (4) to express the coordinates x’, y’ as a function of a 
common parameter α. These parametric equations of motion, when plotted for α varying 
between  (the initial angle) and , will reproduce the curve in Fig. 2. o2−=α o0=α

To plot this solution it is actually easier to consider plane polar coordinates r’, φ’: 
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where again the parameter α varies from o2−  to . It is easy to check from Eq. (6) that 
at sunset ( ) the light beam reaches the Earth observer at T (

o0
o0=α Rr =' and  for 

) and that its direction of arrival is aligned with the horizon direction (

o90'=ϕ
o0=α 0' =dt

dr  for 
). 0=t

Alternatively, one can use the Cartesian components of the velocity in the primed 
coordinates, obtained from the time derivatives of Eq. (5), to study the direction of 
motion at any point along the trajectory. It is also easy to check the direct connection 
between the velocities in the two systems, given by the classic relation rvv rrrr

×+= ω'  and 
describe our problem as a classic Coriolis Effect. 

The expression in Eq. (6) describes a spiral-like curve, which is a typical result when 
a uniform motion in a straight line is seen in a uniformly rotating frame of reference. Eq. 
(6) can be brought into the classic form of an Archimedean spiral by neglecting the Earth 
radius , which is much smaller than the Sun-Earth distance. AUR 1<<

In general, an Archimedean spiral is the curve traced out by a point that moves at 
constant velocity v along a rod that is rotating about the origin at a constant angular 
velocity ω. Its equation in polar coordinates is +∞<<∞−>== ϕωϕ ,0/, vaar , 
composed of two different branches for positive or negative values of φ. 

In our case, for R=0, Eq. (6) reduces to αϕα −=−=+= ',''' 2
122 yxr , since the α 

parameter has negative values, thus obtaining the spiral curve 
'' 2

1ϕ=r ,           (7) 
which obeys the general expression since in our case 2

1
4/1
8/1 ==== ωω

cva , in our choice of 
units. 

Finally, it is possible to reduce Eq. (6) to a more compact expression, without any 
approximation. The first part of Eq. (6) can be solved for 22'2 Rr −−=α , where the 
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minus sign again is chosen because we use a negative α in the parameterization of our 
curve. Using this last expression and the second part of Eq. (6) we obtain: 

αα
α

ααα

ϕ

ϕϕ cossin1
cossin

'tan1
'tan'sin ''22

4
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2
1
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2
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+
= .  (8) 

Since , we can set 1'/ ≤rR 2

2

'' 1cos,sin
r
R

r
R −== ββ and use trigonometric relations to 

rewrite Eq.(8) as )sin(sincoscossin'sin αβαβαβϕ −=−= , from which we finally 
deduce: 

22'2
'

arcsin' Rr
r
R

−+⎟
⎠
⎞

⎜
⎝
⎛=−= αβϕ       (9) 

which is the most compact expression of the light trajectory in the rotating system, 
directly connecting the polar coordinates r’ and φ’ and will also reduce to the spiral of 
Archimedes for . 0→R

 
 
A sunset-sunrise demonstration 
 
The discussion presented above suggests a very simple experiment which can be used 

as an effective in-class demonstration of these rotational effects or even become part of a 
more structured laboratory activity. 

Our experiment is an adaptation of the standard “Coriolis effect – Ball on rotating 
platform” demonstration,4 combining together two very basic pieces of equipment from 
introductory mechanics labs: a rotating platform and an inclined plane which serves as a 
projectile launcher. 

A small metal ball is launched from the inclined plane over the rotating turntable and 
will represent our beam of light traveling at almost constant velocity in the fixed frame of 
reference.5 The Earth is represented on the turntable by a green circle (see Fig.3) and the 
projectile is launched along a tangential direction to the circle in the fixed frame of 
reference. This fixed direction is represented by a meter stick attached to the projectile 
launcher (visible in the upper right corner of the figure). A small orange circle, 
representing the Sun, is attached to the fixed inclined plane (its position is better 
identified by the red dots in the figure).  

A video camera is mounted on top of the rotating platform and records the view of the 
rotating observer, as seen in the x’-y’ plane. We filmed the motion of the projectile in the 
rotating frame and then used video editing software to produce a “stroboscopic” picture 
of the motion.  

Figure 3 illustrates one of the pictures we obtained, showing a close resemblance to 
the spiral curve plotted in Fig. 2 following Eq. (6) or (9). The metal ball is launched when 
the “Sun” is at position A and then reaches the “observer” at T when the “Sun” is 
approximately at point B, therefore aligned with the horizon direction as expected. 

Although similar rotating platform demonstrations are described by many papers and 
articles,6 we are not aware they have ever been used to illustrate our simple sunrise-
sunset problem, which could therefore represent a new way to introduce the Coriolis 
Effect and related topics. 
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Relativistic analysis of the problem 
 
A final point needs to be considered in the analysis of the original problem. We have 

used concepts of non-relativistic kinematics of rotating systems to study the motion of a 
beam of light. Should we consider corrections arising from special relativity? 

The relativistic treatment of rotating systems and their connection to inertial ones is a 
topic which is seldom discussed in standard relativity textbooks. We found a complete 
analysis in a classic book by H. Arzeliès.7

In a relativistic approach, when a rigid object is rotating at constant angular velocity 
ω, we need to ensure that all the linear velocities of all the points of the object do not 
exceed the speed of light, crv <= ω , for all the coordinates r of the body, and this is 
obviously the case of our rotating planet. 

Then, at any given instant, an infinitesimal element P of the body can be 
approximately regarded as an inertial system moving with velocity ωrv =  with respect 
to the fixed system and standard Lorentz transformations, length contraction and time 
dilation effects will apply. 

In particular, the radial coordinate, perpendicular to the instantaneous velocity of the 
element P, will not be contracted, i.e., rr =' , but any “tangential” length will be affected. 
For example, the circumference length l is Lorentz contracted: 

'21/'21/21/' 2

2

2

2

2

2 )'()( rrrll
c

r
c

r
c
v πππ ωω >−=−=−= ,    (10) 

where, as before, primed quantities refer to the rotating system as opposed to non-primed 
ones referring to the fixed system. 

Simple Euclidean geometry would therefore not apply in the rotating frame: the 
circumference to radius ratio would be bigger than the standard 2π factor, as seen from 
Eq. (10). 

On the contrary, the derivation of the light trajectory in rotating systems is not 
affected at all by relativistic corrections; this is mainly due to the invariance of the radial 
coordinates rr ='  mentioned above. 

An alternative derivation of the light trajectory starts by noting that the equation of 
motion of our beam of light is simply ϕsinrR = , using polar coordinates in the fixed 
system (see Fig. 1b) and the connection between polar angles φ and φ’ is 

tttt 4
1

00 '')('' +=+=−++=+= ϕωϕωαϕαϕϕ      (11) 
The time coordinate in the last equation can be eliminated by noting that in the inertial 
system the speed of light is fixed to c=1/8 in our units and therefore the distance traveled 
by the light in time t is: 

2222
8
1 ' RrRrtct −−=−−== .      (12) 

The negative sign comes from the direction of the beam of light and we can exchange the 
r, r’ coordinates as mentioned above. Using Eqs. (11) and (12), we can obtain the 
trajectory in terms of r’ and φ’: 

)'2'sin(')'sin('sin 22
4
1 RrrtrrR −−=+== ϕϕϕ ,    (13) 

which, solved for φ’, gives exactly the same result of Eq. (9) and therefore represents the 
same solution in our original Eq. (6). 
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This alternative derivation is totally equivalent to the previous one (and actually 
simpler), but we emphasize that it is also an exact solution when relativistic effects are 
taken into account, i.e., it would be correct even if the Earth were spinning very fast, with 
points on its surface reaching relativistic speeds.  

We will leave all further details of the relativistic analysis to the cited textbook,7 but 
we can conclude that even in a fully relativistic treatment of the problem the Sun at 
sunset or sunrise is precisely where we see it: at the horizon and not below or above it! 

 
 

Conclusion 
 
An apparently simple question about phenomena that we witness every day, such as a 

beautiful sunrise or sunset, can be useful to introduce in-class discussion on rotational 
frame of references, apparent motion, Coriolis Effects and even more advanced topics in 
relativity. A very simple demonstration can be easily assembled for further illustrating 
the problem, which might also lead to a more structured lab activity. 
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FIGURES: 
 
 
 

 
 
 
Fig. 1. The view from the fixed inertial system: a) The Sun is emitting its “last” light 
eight minutes before sunset (t = -8 min). At this time the Sun is well above the horizon 
direction, by an angle of two degrees (greatly exaggerated in the figure). b) The situation 
at sunset (t = 0 min). The horizon direction for the terrestrial observer at T is now aligned 
with the direction of the incoming “last” light from the Sun. 
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Fig. 2. The view from the Earth’s rotating system. The “last” light is emitted from the 
Sun at position A (t = -8 min) and appears to be following a spiral-like path towards the 
terrestrial observer at point T. However, the light is perceived as coming from the horizon 
direction at sunset (t = 0 min). At the same time the Sun is at position B, as seen from the 
rotating system, therefore perfectly aligned with the horizon. The distances D and R in 
the figure are not up to scale. 
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Fig. 3. A stroboscopic picture of the motion produced by our experimental apparatus, as 
recorded by a video camera rotating together with the turntable. The resulting curved 
trajectory of the metal sphere, from point A to point T, resembles closely the light path 
described in Fig. 2. The position of the Sun, in each frame of the video recording, is 
indicated by the red dots in the figure. 
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