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Low-Frequency Dynamics of Moored Vessels

B. W. Oppenheim? and P. A. Wilson2

Marine
Technology

Three complete theories of the low-frequency dynamics of ships and disks moored with multileg mooring
systems in deep water are derived, evaluated, and computerized. One theory is nonlinear; it includes the
effects of cubic damping, nonlinear mooring forces and the excitation-yaw motion feedback, and it is han-
dled by simulation. It yields random, regular and transient records, probabilities and statistics, exact and
linearized transfer functions, and spectra of responses. The second theory is linear, solved in the frequency
domain. The third is a static theory, which is a by-product of the linear one. Mooring lines of arbitrary com-

positions are considered.

1. Introduction

THIS PAPER presents several theoretical methods for pre-
dicting the low-frequency dynamics of large ships and disks
moored in deep waters with multileg mooring systems.

The motions of moored vessels caused by the random envi-
ronments have a very distinct spectral content. There are large
and narrow peaks at low frequencies and smaller but wide peaks
at high frequencies and the two regions have almost no overlap.
There is also a large steady displacement. The terms “high” and
“low” are used relative to the frequencies of the waves. The
high-frequency motions have wave frequencies typically from
0.2 to 2 radians per second (rad/s). The low frequencies occur in
the range from 0 to approximately 0.2 rad/s. The high-frequency
motions are caused by the high-frequency hydrodynamic force
associated with individual waves. This force has a zero mean and
the motions caused by it are approximately linear with respect
to wave amplitude and thus also of zero mean. The second-order
hydrodynamic force (commonly called drift force) is proportional
to the square of the wave amplitude and it has a mean level. This
force is associated with occurrence of wave groups, with inter-
actions between the high-frequency vessel motions and the
high-frequency excitation, and with wave diffraction. The “direct
current” (dc) component of the low-frequency force, together
with the almost-steady wind and current forces, causes the static
displacement of the moored vessel. The low-frequency part of
the force causes slow oscillatory motions, since a moored vessel
constitutes a mass-spring-damper oscillator. The damping and
spring are typically small; consequently large resonant motions
occur, larger in fact than the high-frequency ones.

The high-frequency dynamics are almost independent of water

' depth, except in the extremely shallow depths which are of no

practical interest, and the magnitudes of the dynamic responses

are proportional to the wave amplitude. The magnitudes of the

low-frequency responses are approximately proportional to the
depth. Therefore, the low-frequency theories alone can be re-
garded as asymptotic solutions of the total problem in deep wa-
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ters. However, procedures for combining the low- and high-fre-
quency parameters are available in [1].3 The deepwater as-
sumption is also introduced for simplifying the mathematical
models. The low-frequency excitation is small; it causes large
horizontal vessel motions because the horizontal damping and
restoring forces are also small. On the other hand, the vertical
damping and restoring forces are large on the types of vessels
studied here; therefore the vertical low-frequency motions are
small. The changes of state caused by the vertical motions can
therefore be neglected if the water is deep, and this is the ap-
proach adopted herein.

The mooring systems considered are of the spread multileg
type, sketched in Fig. 1. This type has evolved in offshore oil in-
dustry to be the most popular. It offers high positioning precision,
flexibility, and reliability, as well as a quick deployment and easy
maintenance. It has been routinely applied in water depths of up
to approximately 1 km (3280 ft), using wire and chain mooring
lines. The heavy weight of such lines precluded moorings in
deeper waters. However, due to the recent advances in the
technology of light synthetic ropes, this type can be expected to
be extended to much deeper waters. The mathematical model
derived is valid for an arbitrary composition of the mooring
lines.

There are several inherent nonlinearities present in the system.
The mooring forces are well known to be nonlinear and these
introduce both nonlinear restoring forces and a nonlinear cou-
pling in the equations of motion. The low-frequency oscillatory
damping is viscosity-controlled and it is cubic in velocities. The
low-frequency wave forces are quadratic in wave amplitude.
These nonlinearities occur regardless of vessel type. If the vessel
lacks circular symmetry, the environmental forces will also de-
pend on the angles of incidence of the weather elements, that is,
indirectly, on the vessel angular orientation in space. This con-
stitutes a nonlinear feedback between the yaw motion and the
excitation. Another nonlinearity arising from the angular ori-
entation is the necessity of using two frames of reference for de-
fining the terms in the equations of motion: the body frame,
which moves with the vessel and in which the body forces are
determined, and an earth frame, in which the mooring forces are
defined, since the anchors are obviously attached to the earth.
Thus, axis transformations must take place at each new state of

3 Numbers in brackets designate References at end of paper.
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Fig. 1 Schematic configuration of muitileg mooring
Nomenclature
{a4] = 3*3 added-mass matrix Gy = one-sided wave spectrum
A = wave amplitude Gee = one-sided measured spectrum
Ay Ay, = kth fairlead coordinates in body of total excitation force
frame Gy: = one-sided measured spectrum
[by] = 3*3 matrix of linear damping of some response x
coefficients H = horizontal tension in mooring
B = ship beam line
BF = body frame Hp,Hp,,Hp, Hy = transfer functions of total, surge,
B.gi.Bycy B, = kth anchor coordinates in global sway and yaw wave-drift
frame force components in body

BroysBya:Bzo = kth anchor coordinates in nat-
ural equilibrium frame
[ci] = 3*4 matrix of nonlinear damp-
ing coefficients
[dy] = 3*3 matrix of linear mooring
force coefficients, linearized
at EF
D = water depth
D,,Dy,Dy = surge, sway, and yaw compo-
nents of damping force in
body frame
E = total excitation force
E..E,,E; = components of E in body frame
Erg,Eyg.Eyy = components of E in equilibrium
frame
E;,Ey, Ey, = components of E in natural
equilibrium frame
E.E; = mean drift force and moment
Eg =relative oscillatory excitation
force in equilibrium frame
EF = equilibrium frame
F. = current force
Fc,,Fc',F,,.‘ = components of F, in body frame
FeppFeyFey, = components of F, in natural
equilibrium frame
Fy = wind force
Fy,,Fu,,Fu, = components of F,, in body frame
F,,,,O,F.,,”,F.,,“ = components of F, in natural
equilibrium frame
g = gravitational acceleration
Gr,Gum = one-sided spectra of wave drift
force and moment
G2,GY = one-sided white spectra of wave
drift force and moment
GF = global frame

frame
He,H* HL = exact, equivalent-linear and
linear transfer functions of
vessel motion responses
I, = vessel moment of inertia in yaw
motion
L = ship length
m = vessel mass

[my;] = 3*3 matrix of vessel mass

N,Np = yaw moment in body frame and
natural equilibrium frame

P(t,y) = oscillatory wave-drift force
with components (P,,P,,P,)
in body frame

Q(t) = standard random excitation
signal derived from U(y)

Qo = amplitude of standard har-
monic excitation signal
r =moment arm of linear yaw
moment

r¢(t) = exact radial motion record

ro(t) = approximate radial motion
record

[Rgo] = vector of vessel shift from
global to natural equilibri-
um frame with components
(xCosyCos¢’Co)

[Rog] = vector of vessel shift from nat-
ural equilibrium frame to
equilibrium frame with
components (Xog, Yoz, Vo)

R = mooring restoring force
R,,Ry,Ry = components of R in body
frame
RyoRyRy, = components of R in natural
equilibrium frame

t = time
T = mooring line tension
Tpr, = breaking strength of ith seg-
ment of mooring line
[Ty} = 3*3 matrix of characteristics of
linear equations of motion
Uk, Vi = horizontal and vertical spans of
kth mooring line .
U(u) = white band-limited unit one-
sided spectrum
1,4,z = body frame axes
xG.Yc,3¢ = global frame axes
xg,Y 2e = equilibrium frame axes
%o.Y0,20 = natural equilibrium frame
axes
Xo,¥o = mean values of xo(t) and yo(t)
X,Y,N = body forces in body frame
X0,Y0.No = body forces in natural equilib-
rium frame
8 = wave direction in natural equi-
librium frame
Bc = current direction in natural
equilibrium frame
Bw = wind direction in natural equi-
librium frame
Y = wave direction in body frame
Y = current direction in body frame
Yw = wind direction in body frame
A = vessel displacement
At = time interval
w = frequency in the high-fre-
quency region
u = frequency in the low-frequency
region
Hmax = cutoff frequency of white exci-
tation spectrum
p = water density
[a'f,] = 3*3 covariance matrix
V.¥c.¥Ee¥o = yaw motion in body, global,
- equilibrium and natural
equilibrium frames
¥coVor = see x, and x,,
® = disk vessel diameter
4 = direction of kth mooring line in
body frame
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the system, and this is a source of nonlinearity.

" . 7he ship and disk types of the vessel have been selected for two
reasons. Firstly, the weather forces on disks are independent of
the disk angular orientation in the horizontal plane while the
forces on ships are so dependent. This requires different non-
linear mathematical models to be applied to the vessels, and by
comparing their behavior it is possible to diagnose the non-
linearities in the ship case. Secondly, the two vessel types prac-
tically cover the area of interest, since the other generic hull forms
(semisubmersible, spar buoy, sphere and submersible) are less
suited for the deepwater mooring applications because of their
low hydrostatic restoring forces. :

The dynamics of the system include the mean and oscillatory
excitations and responses of the vessel and the mooring system.
The vessel responses are defined in terms of horizontal motions
and the mooring system responses by the distribution of tensions
and motions of the mooring line elements. The vessel and the
moorings constitute a coupled system with practically an infinite
number of degrees of freedom. Fortunately, it has been shown
in [2] that the resonance frequencies of the mooring line pa-
rameters occur on practical installations outside of the low-fre-
quency range; therefore the dynamics of the mooring system can
be approximated here by a quasi-static model. This enables a
description of the total system dynamics by the equations of the
vessel motions only. The effect of the moorings on the vessel can
therefore be represented by the restoring forces and by algebraic
contributions to the excitation, damping and inertia terms in the
equations of the vessel motion. Also, in the quasi-static model
all mooring line parameters are uniquely related to the instan-
taneous orientation of the vessel in space; therefore they can all
be determined as functions of the vessel motions. This model has
been adopted in the present analysis.

Three complete theories are derived for predicting the low-
frequency dynamics: nonlinear, linear, and simple static, the
latter being a by-product of the linear model. The nonlinear
theory presents solutions in the time domain by simulation. It
is relatively expensive in terms of computer cost and therefore
it is of limited use in routine design applications. A simpler and
less expensive (but also less accurate) linear theory is derived too,
and its limitations are evaluated. The linear theory is handled
in the frequency domain. The static model is also evaluated since
it is still the most popular tool in the industry and its validity has
not been completely evaluated, to the authors’ knowledge.

Ideally, solutions of nonlinear equations of motions should be
solved analytically in the frequency domain, and by simulation
in the time domain, since the two methods supplement one an-
other. The present nonlinear theory utilizes the time-domain
solutions only. It is particularly suited to the present applications
for two reasons. Firstly, the nonlinear restoring forces are de-
termined numerically only, and they can be handled directly in
this form in the time domain. Secondly, the coding of the equa-
tions of motion alone is relatively trivial in this method and the
higher-order terms of the expansions of various forces can be
easily added to the equations in the future, as knowledge of such
terms becomes available. In other words, it is a simple matter to
raise the order of the theory without having to solve the problem
anew. The disadvantage of the method is the relative lack of
generality of the solutions—they are valid only for one particular
set of input conditions at a time; thus many simulations must be
performed to obtain a complete picture of the problem. This may
sometimes become prohibitive in terms of computing costs. It is
demonstrated, however, that this method can yield an almost
complete matrix of results necessary for both design applications
and a general understanding of the physical problem. The ex-
ception is the problem of stability in the narrow sense, that is, an
unlimited growth of oscillations. The simulation is only capable
of detecting the instability, if any, for a particular set of condi-
tions, by a trial-and-error process, and in general it is difficult
to guess the conditions that may yield instabilities when the
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equations of motion are nonlinear. Fortunately, if the past op-
erational experience is any guide, the instability does not occur
in the mooring applications. No case of it has ever been docu-
mented in over 20 years of offshore operations in all kinds of
weather conditions. It should be pointed out that the instability
in the wide sense (growing but bounded oscillations induced by
excessive loads and causing the system failure) has occurred on
many occasions, but this is a trivial mathematical case and it can
be detected easily by the present theories. The feasibility and
practicality of solving the nonlinear equations of motion by an-
alytical methods in the frequency domain are addressed in [3].
It is concluded there that such procedures are not practical be-
cause of the complexity and lack of generality of the terms ap-
proximating the mooring restoring forces in the equations of
motion.

The general philosophy adopted to this mooring problem is
governed by accuracy and computing time considerations as well
as by the usefulness of the end product to the mooring design
applications. Accuracy must be regarded in the context of several
inherent uncertainties always present in the mooring design (in

~ addition to those related to the seakeeping problem), as follows.

The theories assume a perfect geometry of the mooring system,
which is rarely accomplished in real life. The topography of the
sea bottom is difficult and costly to measure and it affects the
vessel performance significantly. For example, a single unde-
tected rock on the bottom may entangle a mooring line, thus af-
fecting the line geometry. This may cause the line to carry most
of the total load and the other lines to be slack. The anchors are
typically dropped by workboats and their fall is not vertical due
to water currents and because they are attached to the mooring
lines, and therefore their positions on the bottom are rarely
known accurately. The deck arrangements of the offshore ex-
ploration vessels are typically very complex with large windage
areas; therefore the prediction of the wind loads is rarely accurate.
Even if wind tunnel tests are performed, the error can be large
because of the scaling errors.

Different but also significant inaccuracies are inherent in the
model tests of moored vessels. The deepwater moorings cannot
be accurately simulated in the model scale because of the limited
tank depth and also because the mooring line dynamics are
subject to different scaling laws than those of the vessels. It is
difficult to simulate the wind, current, and wave effects simul-
taneously, and the first two may also strongly affect the total
performance. Significant uncertainties also appear on the
mathematical side of the problem. The present theories of the
drift force are typically in error of 20 to 40 percent, or more. The
theoretical knowledge of many high-order terms in the expansion
of the equations of motion is quite limited and the experiments
are either impractical or costly.

Taking into consideration these uncertainties and the objective
to develop practical tools for mooring design applications, it
seemed justified to introduce simplifications in the mathematics
when it was obvious that the rigorous methods, although feasible,
would extend the computing time by order(s) of magnitude. This
refers to treating the mooring lines quasi-statically in two-di-
mensional form and to decoupling the dependence of the drift
forces on the wave angle from that on the wave frequency. Both
the treatment of the line dynamics three-dimensionally and
rigorous drift force calculations would require massive compu-
tations, as can be noted from references {2] and [4], respectively.
Due to the present simplifications, the complete theories could
be developed in the form of self-contained algorithms with re-
alistic computing times.

In order to make the present theories directly applicable to the
design, the dynamic responses are computed in statistical and
probabilistic terms. To obtain these results from the nonlinear
simulations it is necessary only to generate random response
signals and to measure the probabilities and statistics directly
in the time domain. In order to compare the linear and nonlinear
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results, however, a spectral analysis of the nonlinear records is
performed, and the derived spectra and transfer functions are
compared with those of the linear theory and computed directly
in the frequency domain. The spectra and transfer functions are
also much more convenient for identification and diagnosis of
the nonlinear phenomena. Also for this purpose, two additional
types of simulations are performed: with regular harmonic ex-
citation, which yields the nonlinear transfer functions, and with
a square-wave excitation for examining the transient states of
the system. .

The mathematical models are presented as follows. Sections
2 to 4 describe the nonlinear theory with derivations of the
equations of motion and of the excitation and restoring forces,
respectively. Section 5 presents a description of the processing
of the simulated nonlinear records in the time and frequency
domains. Section 6 contains derivations of the dynamic linear
and static theories. Finally, Sections 7 and 8 present results and
conclusions, respectively.

It is concluded in the results that the static theory is inade-
quate on its own. The linear theory is valid for the case of the
horizontal motions not exceeding 4 to 8 percent of water depth,
for the vessels having the fairleads located sufficiently far from
the center of gravity, as is the case in a typical drilling rig. For the
analysis of larger motions or for the turret configurations of
fairleads, the nonlinear theory should be used. Ships with turrets
can experience violent motions with large feedback effects. The
remaining nonlinearities are weak.

2. Equations of motion

Four frames of reference are utilized in formulating the
equations of horizontal vessel motion. In each frame the motion
is described by two orthogonal translations called surge (x or 1)
and sway (y or 2), and a rotation, yaw (Y or 3). All frames are
right-handed, with x-y planes parallel to the mean sea level, with
the z-axis pointing vertically upward, and initially all having the

origins at the vessel center of gravity. The frames are shown in
Fig. 2, and are defined as follows.

Global frame Oxgyczg and natural equilibrium frame
Ox,Y02,. A vessel upon arrival at the mooring station has its
anchors taken by a workboat and dropped at some specified po-
sitions. The vessel shifts during the drop and setting. Once all
anchors and pre-tensions are set, the vessel takes a position of
equilibrium of the mooring forces, in the absence of the weather
elements. If the sea floor is irregular and the mooring system
asymmetry is significant, the static displacement can be large.
It is convenient from the operational point of view to know the
total displacement vector and to prescribe accordingly the initial
vessel position relative to-the desired anchor positions. Two
frames are used for this purpose, global frame (GF) and natural
equilibrium frame (NEF), corresponding to the initial and final
vessel positions, respectively. The initial position relative to the
anchors is defined by the horizontal spans of the lines. The static
displacemement vector, denoted [R¢, ) has components

[RGo] = (xGo:yGo:¢Ga) (1)

where Y, represents the vessel rotation. The global frame is
used only once in a given problem. After computing the coordi-
nates of the NEF, the anchor coordinates defined initially in the
GF (Bxg;Byg;»Bzg;, | = line index) are recomputed in the NEF
and the GF is no longer needed. The new anchor coordinates
are

By, = Byg, cosyg, + Byg, singg, — x¢,
By, = =Byg sinyg, + Byg, cos¥g, = ¥a, (2)
B, = Bzc,-

Equilibrium frame Oxgygzg. When the dc weather loads
are applied, the vessel drifts to another position of static equi-
librium. The frame attached to the vessel in the new position is
named thé equilibrium frame (EF). This frame is convenient for
formulating the linear equations of the relative vessel motions,
where the motions are assumed infinitesimal. The static dis-
placement from Oy, t0 Oygys.p is defined by the vector

[Rogl = (XogsYorWor) (3)

Although only the dc weather components are used for computing
[Roz], they are not constant on ships since they vary with the
angle of incidence of the weather elements relative to the ship
centerline.

Body frame O,,,, The body frame, being fixed to the vessel
at all times, is utilized for computing the inertia, damping, and
excitation forces in the nonlinear equations of ship motions. This
frame is not needed in the disk case since the body forces can be
found directly in the NEF due to the disk symmetry.

It is the absolute vessel motions which are of interest in
mooring applications; therefore all results of the nonlinear theory
will be obtained by integrations in the NEF. Similarly, the results
of the linear theory, although computed in the EF, will be con-
verted to the NEF.

The time-domain integration requires that the highest deriv-
atives of the motions be expressed explicitly. Therefore the fol-
lowing derivations lead to the motion accelerations in the NEF
and, in the ship case, also to the auxiliary accelerations in the

BF.
General equations in NEF, The Newtonian equations of the

vessel motion are in this frame

mx, = X,
mjo = ¥, @
LYo =N,

where m is the vessel mass, I,, the mass moment of inertia about
the z,-axis; £,, Jo, and ¥, the accelerations in surge, sway, and
yaw; and X,, Y,, and N, represent the total of excitations and
body force components.
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_ - Equations of motion in BF (ship onl.y). Performing the

classical axis transformation [5,1], on the forces (X,,Y,,N,) and
accelerations (£,,5,,¥,), the Newtonian equations in the BF
become

m(E~-yY) =X
m@—iy) =Y (5)
I.y=N

where the terms myy and miy represent the centrifugal forces.
The right-hand sides of (5) are expanded in the Appendix into
the excitation E, damping D, acceleration A, and restoring
mooring forces R, as follows

X; = Ei(t) — Ai(Z,9,¥) — Di(2,3.¥) — Ri(x,y.¥),
‘ X;=X,Y,N (6)

where the suffix { = x,y,J denotes the three force components.
The acceleration and damping forces are expanded further in the
Appendix as explicit functions of the accelerations and veloci-
ties

Ai(£,9.9) = auf + aigy + ;) “(7)
Di(2y,¥) = bint + bigy + bigly + cini3 + cioy® ,
+eciyd+ciyy (8)
i=xy¥=123

The matrices of the added mass [a;;] and linear and higher-order
damping terms [b;;] and [c;;] are defined in the Appendix. The
‘excitation and mooring forces are derived in Sections 3 and 4,
respectively, in both the BF (for the ship) and NEF (for the
disk).

Substituting equations (6), (7) and (8) into equation (5) and
reordering terms so that only the acceleration terms remain on
the left-hand sides yields

(m+ au)f +apy+ al:ﬂ/ = my‘P + Ex(t) - Dx - R,
anf + (m + az)y + awy = —miy + E,(t) - D, — R, (9)
agii + agy + (L. + ag))¥ = Ey(t) — Dy — Ry

Before solving (9) algebraically for the accelerations, the terms
which are always zero are eliminated to shorten the notation. It
is shown in the Appendix that the terms with indices 12, 21, 13,
and 31 are zero for the ship. The desired expressions for the ac-
celerations in the BF become now

£ = [myy + E; = D, — R}/(m + ay1)
¥ = [z + ag3)(~miy + E, - D, — Ry)
. . —ag(Ey — Dy —Ry|/M (10)
¥ =[-as2(-miy +E, - D, - R,)
+ (m +ag) (E, — Dy — Ry))/M

where
M = (m + az2),; + as3) — azaszm

The sequence of operations for the ship is as follows. At any
given time ¢, the NEF motions (x,,,,{/s) and velocities (%o.y0,
¥,) are available either from the initial conditions or from the last
integration step. The motions serve to compute the restoring
forces R. The yaw motion, together with the time t, serves to find
the excitation forces E. The velocities are converted to the BF,
(#,y,), and these serve to calculate the damping and centrifugal
forces in equations (10). Having all terms in (10) available, the
accelerations (£,5,4) are found and are converted to the NEF
accelerations, (£,,5,,¥,). The latter, together with velocities
(£0,¥0,¥,) and a desired time step At, serve as input to the next
integration step.

The foregoing procedure could also be applied to the disk;
however, it would be wasteful since all disk forces are available
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directly in the NEF. The disk equations are therefore reformu-
lated.

Equations of motion in NEF (disk only). The forces on the
right-hand sides of (4) are taken as being equal to (6), and in turn,
to (7) and (8), but written with subscript o to denote that they
are found directly in the NEF. Next, taking the terms with the
highest derivatives to one side, eliminating the terms with sub-
scripts 12, 21, 13, 31, 23, and 32, which are always zero on disks,
and solving algebraically for the accelerations yields

%o = (Exo - Dx,, - Rxa)/(m + ay1)
.‘Yo = (Eya - Dy,, - R_y,,)/(m + ago) (11)
Vo =(Ey, = Dy, — Ry )/, + a33)

Solutions of nonlinear equations of motion. There exists
a multitude of published and well-proven algorithms for solving
the ordinary differential equations. The code selected here uti-
lizes the variable-step-size method where the step size is deter-
mined from the prescribed local-error limit and from the rapidity
of changes of the functions being integrated. The code is de-
scribed in a bulky but educational volume [6]. The principal
advantage of this code is that it interpolates rather than evaluates
the right-hand sides of the equations at most of the steps, pro-
vided the functions there are regular. Where some rapid varia-
tions occur in the functions, the step is decreased for an accurate
integration. Both speed and accuracy are quite important in this
problem since long records are required (of the order of several
hundred motion cycles) in order to perform accurately the sta-
tistical analysis of the motion records.

The initial conditions have a strictly abstract meaning in the
low-frequency problem because the always-present high-fre-
quency motions serve as perturbations of the vessel path.
Therefore the initial conditions are selected to shorten the
computer time spent on handling the transient state; that is, they
are chosen to be as close as possible to the low-frequency vessel
path in the position-velocity space. The only point known a priori
to lie close to it is the origin of the EF with zero velocities.4

3. Excitation forces

The excitation forces contain the mean and oscillatory parts
of the wave force, denoted E and P, and the wind and current
forces, F,, and F,,

Ei(t)'Yy‘wa'Yc) = Ez('Y) + Pi(t,’)‘) + Fw,‘('Yw) + Fc,’('Yc)y
i=xyy (12)

where

¥ = 8 = ¢, (t) = wave angle in BF
Yw = Bw — ¥o(t) = wind angle in BF (13)
Ye = Bc — ¥, (t) = current angle in BF
B.Bw.B: = wave, wind and current angles in NEF

The implicit dependence of the forces on the yaw motion, Y, (¢),
constitutes the yaw-excitation feedback phenomenon.

The wind and current vectors are assumed to be constant in
time and the waves to be random and long-crested, defined by
a spectrum G, (w).

The time signals of the second-order wave forces are derived
in three steps. First, the forces in regular waves are determined
in the form of nondimensional force and moment transfer func-
tions. Next, the force component spectra are found from these
and from the wave spectrum. Finally, the force component signals
are obtained by a Fourier transformation. :

Drift force transfer functions. A rigorous treatment of the
forces in irregular waves presupposes a knowledge of the forces
induced by two simultaneous regular-wave trains. Newman [7],

4 This point is selected on a default basis. Optionally, arbitrary initial
conditions can be selected.
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Fig. 3 Drift force dependence on wave angle in regular waves

however, postulated that when the forces due only to a single
harmonic train are utilized for the calculation of the force inir-
regular waves, the error will be small if the wave spectrum is
narrow. This is an important aspect of the problem since there
are no general methods of computing the double-frequency forces
on 3-D bodies. Faltinsen [8] performed calculations of the forces
on 2-D bodies in irregular waves based on rigorously derived
double-frequency forces in regular waves and he compared them
with Newman’s approximation. The conclusion was that the
approximation is fully justified for 2-D bodies and there is no
reason to suspect that it would not hold for 3-D bodies. Therefore,
in the present approach, the transfer functions of the forces are
considered as being functions of a single frequency at a time.

The forces in regular waves are proportional to the wave am-
plitude squared, A2, and they depend on the frequency w, and
in the ship case on the relative wave angle . A formal treatment
of the dependence on 7 requires separate and involved compu-
tation of the forces for each different v. Since in the present
problem the yaw motion is allowed to be large, the feedback in-
troduces continuous and possibly large variations of v; thus a
rigorous derivation of the force signal would be impractical
computationally. Therefore the dependence of the forces on 7y
is simplified, valid for slender ships, by decoupling it from the
dependence on the frequency. The force is known to increase
almost monotonically from bow-on to beam-on wave headings,
and the moment increases from zero in head waves toa maximum
in quartering waves and then back to almost zero in beam waves,
and this behavior can be easily represented by curve fitting. The
following expressions are used

Hp(wy) = Force in wave direction » Hp(@,0°) cos?y
pgA%B
+ Hr(w,90°) sinZy (14)
Moment

Hpm(wyy) = 22AZBL = Hp(w,45°) sin(=27)|sin*y| (15)

where B and L are the ship beam and length, and terms Hp(w,0°),
Hp(w,90°) and Hp(w,45°), given the names of generic forces,
represent the force in head/stern and beam waves, and the mo-
ment in quartering waves, respectively. The generic forces are
easier to compute than those in arbitrary oblique waves. Both
(14) and (15) are applicable to all four quadrants of v as the force
magnitude on slender ships is symmetric with respect to the
centerline and midship, and the yaw moment is always unstable.
The quantity of the approximation (14) is demonstrated in Fig.

3, where it is compared with the exact values for a Series 60 ship .

and for a loaded tanker, both from [8]. Also shown in Fig. 3 is the
curve fitting used in [9], as follows

2 cos2y 2sin?y -
=H ! %) ————+ 9 °) ————
Hr(wy) = Hr(0,0°) 7 oy T Hr(0,90%) 7 T sin2y

16
+ cos“y (16)

Fig. 4 Drift moment versus wave angle in regular waves

The longitudinal and transverse components of the force in the
BF are simply

Hp (w,y) = Hr(w,y) cosy
Hp,(@,y) = Hp(w,y) siny

A comparison of the approximation for the yaw moment,
equation (15), with the few available results of Faltinsen [8] is
shown in Fig. 4.

The force on the disk is independent of the wave angle, it acts
in the wave direction, and the moment disappears since the disk
is symmetrical. The force is nondimensionalized by pgA2® where
& is the disk diameter.

The generic forces are obtained from an interpolating algo-
rithm which uses as the data base the results available for 2-D
cylinders [8] and empirical data for barges {10]. The force on ships
in beam waves is found using strip theory, where the sectional
forces are computed by triple interpolation of the Lewis section
parameters (beam/draft ratio and area coefficient) and fre-
quency. The longitudinal generic force is found by treating the
entire ship as a single 2-D Lewis section and a correction for the
block coefficient is applied to it. Also, the force on the disk is
found by treating the disk as a single Lewis section with the walls
subjected to a cube-into-disk transformation. The procedure is
described and tested in [1]. It is shown that the final error is well
within the error band of the rigorous methods. Figure 5 demon-
strates it for a tanker, where the present results are shown by
heavy lines and the dots and squares are from Faltinsen {8], who
used the Newman/Helmholtz and Maruo expressions for the
force. : .

The objective behind application of the preceding algorithm,
in spite of the availability of rigorous methods [4,11,12], is that
it allows the present mooring dynamics program to be self-con-
tained, handled in its entirety with realistic computing times,
while the rigorous methods are much more involved computa-
tionally and they do not seem to be much more accurate. They
all suffer from a common defficiency of neglecting the viscous
effects in evaluating the first-order motions, which serve, together
with the first-order excitation, to obtain the second-order force.
The symmetric motions are typically in error of up to 10 percent
and the asymmetric ones up to 40 percent; thus the second-order
forces are likely to carry an error of up to 40 percent too, as can
be observed from a review of the most popular rigorous proce-
dures in [8)].

Drift force and moment spectra. There exist techniques for
obtaining the force signals directly from the force transfer
functions and wave spectrum or wave record [7,13]. In the
present approach, an additional intermediate step is included
of deriving first the force spectrum and then generating the sig-
nals from it by a Fourier transform. This approach is convenient
for analyzing the feedback phenomena since the modulation of

amn
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the excitation by the feedback can be clearly observed in the
. gpectra. . ) ,

The mean values of the force, E, and moment, E,, as well as
the spectra of the force and moment, Gr and Gy, respectively,
are derived in [1] using the method given in [14] in the form

E = peB [ 7 Gu(@Hr(wy)dw
Ey(y) = pgBL j; " Gu(@Hmwy)de  (18a)
Grluy) = 2(pgB)? j; " Gu(@)Gy(@ + p)H} (w + g, 7)dw

Gali) = 2(p8BLY? {7 Gu(@)Gulw + WY (w L, 7) dw
(18b)

where pu is the subfrequency, assumed in the derivations to be
small, and G, (w) is the wave spectrum, assumed to be narrow.

When the moored vessels are large, their natural frequencies
in the horizontal motions are small and the spectra (185) need
to be evaluated at only small frequencies u. In this case, the
double convolutions can be approximated by simple integrals by
neglecting the dependence on p. This results in the force spectra
becoming band-limited white spectra

Gr(uy) = 2(0gB)? j; " G (W Hw,y)dw = GH()
"= const in v (19a)
Galp,y) = 2(pgBL)? fo " G2 () H (w0, 1)dw = Glly)

=constiny (19b)
0 < p € pmay, small

These expressions over estimate the force spectrum and the error
increases with frequency. Therefore, the smaller the vessel, the
more conservative will be the evaluation of the oscillatory drift
force. A sensitivity analysis has been performed in [1] to examine
this error, and also the effect of ., on the motions and the effect
of the wave spectrum width, The following conclusions are ex-
tracted from it. L .

(a) Standard wave spectra can be used in expressions (18)
and (19) with confidence. Four of them were examined:
Bretschneider’s, International Ship Structures Congress (ISSC),
Pierson-Moskowitz’s, and JONSWAP. The first three are rela-
tively wide, and the JONSWARP is narrow as the assumption re-
quires. The latter appears unacceptable, precisely because of this
narrowness, since it magnifies the local errors which are always
present in the force transfer functions. The ISSC turned out to
be the most suitable. Being a two-parameter spectrum it yields
good control over the spectrum shape and it is free of the defi-
ciencies of the older two-parameter Bretschneider’s spectrum.
The one-parameter Pierson-Moskowitz spectrum is not recom-
mended.

(b) The frequency cutoff, tmax, equal to 150 percent of the
maximum frequency of motion resonance is sufficient for motion
simulation since the motion transfer functions have high peaks
and they fall off rapidly at higher frequencies.

(¢} The white-spectrum approximation yields negligible
errors in large installations of practical interest.

Following the foregoing conclusions, the present method uses

the ISSC wave spectrum. The white force spectrum has the fre-
quency cutoff at 150 percent of the maximum natural frequency
of the motions. . -

Substituting the transfer functions (14) and (15) into (19) and
carrying our integrations yields

E(y) = E(0°) cos?y + E(90°) sin2y (20)
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Ey(y) = Ey(45°) sin(—2v)|sin2y| (21)
GU(y) = G34(45°) sin*(27) (22a)

G3(y) = 2(pgB)? j;

Kmax

GL(VHH w,y)dw

= 2(pgB)? J:)#m Gil(v)H}(w,0°)dw costy
Amax .

+2pgB)? "™ G2(1HHw90°)dw sinty

+ 2(pr)2§ S GE () HE(0,0°) Hp (0,90%)do| sin?2y

Denoting the quantity in square brackets by G$, the force spec-
trum becomes

G¥v) = GH(0°) costy + G% (90°) sinty + G% sin22y (22b)

Drift-force time signals. All spectra on the right-hand sides
of (22) are white and all cover the same frequency range; therefore
they all can be expressed as products of a standad unit white
spectrum

Uw=1 0 <H S fimax
and constant scaling factors, as follows
- GH0°,1) = GH0°)U(p)
GH(90,u) = GH90)U (i) (23)

G¥(p) = GPU(w)
G (u) = GY(45°)U(p)




e ——
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Let_tl'fe standard signal in time corresponding to the unit spec-
trum U() be Q(t).5 It can be shown from the Fourier transform
theory that if the spectral ordinates are multiplied by a constant
C, then the signal ordinates must be multiplied by C /2 in order
to preserve the transformation. Utilizing this fact, the oscillatory
drift force components P(t,y) in equation (12) can be written
as

P(t,Y) = VGF(7) Q(t) (24)

Substituting (22b) into (24) yields the desired expression for the
slowly oscillatory part of the force on ships

P(t,y) = [G2(0°) costy + G#(90°) sin‘y + G} sin?27]*°Q(¢)
(25)

The drift yaw moment is obtained similarly

Py(t,y) = vVG%(Y) Q(t) = VG (45°) sin?27Q(¢t)  (26)

but there may exist in general a time shift between the force and
moment, due to a phase shift between them in regular waves.
However, since the spectra do not contain the phase information,
the time shift must be selected arbitrarily. It is taken here as zero
as it then yields the most conservative loading condition.

The decoupling of the dependence of the transfer functions
on w from that on 7, together with the white-spectrum approxi-
mations, yielded a considerably more efficient formulation of the
oscillatory parts of the forces. Firstly, only four simple integrals
for G(0°),G%(90°), G and G%(45°) need be evaluated to com-
pletely describe the spectrum in arbitrary wave headings versus
the more involved double convolutions (18) which would have
to be computed individually for each different wave angle. Sec-
ondly, only one Fourier transform is necessary, from U(x) to @(¢),
and it is the same for all possible cases; thus it can be computed
once, stored, and utilized in all applications.

The wave-force signal in the disk case follows from the ship
case by omitting the dependence on wave angle. The mean force
becomes

E = pgd j; " Golw Hr(w)dw

and the spectrum

(27

Gk = 2(pg®)? [ 7 GE(@)HHw)dw = const = G}
0<p<puma (28)
resulting in the following expression for the force signal

E(t)=E++/GFQ()
E\p(t) =0

(29)

Wind and current forces. The wind and current forces on
ships are evaluated similarly to the mean wave forces in terms
of the dependence on the incidence angle

F;(v:) = F;(0°) cos2y; + F;(90°) sin%y;

Fi,(Y)| _ oy Jeosvi
[Fi,w,-)] - ]

F;,(v:) = F;,(45°) sin(—27)|sin2;|

(30)

where i = w for wind or i = ¢ for current, and where the force
components are expressed in the BF.

The forces on disks are independent of the incidence angle.
They become in the NEF

5 The most efficient method of obtaining §(t) from U(x) is by using
the Fast Fourier Transform [1,15], with the arbitrary phase angles being
generated randomly from the uniform distribution between 0 and 2,
thus yielding a Gaussian signal Q(t).

F; = F = const
Fi,,| _ - [cosBi
[F] F {sinﬁi] 84
Fi\@o =0

where i = w or ¢, as before.

Total excitation forces. Summing up the wind, current, and
mean and oscillatory wave forces yields the final force compo-
nents in the BF due to a random environment

E () _ o oo —_ [cos‘y]
[Ey(t,y)} [E(0°) cos?y + E(90°) sin?y] diny

+ [F,,(0°) cos2y,, + F,,(90°) sin?y,] {c?syw]
sinyy

+ [Fo(0°) cos?y, + F(90°) siny,] [C?SW]
siny,
+ [G2(0°) costy + G$(90°) sinty

+ G sin?2y]05Q(t) {°?57] (320)
siny
E,(t,y) = E(45°) sin(—27v)|sin27|
+ F,,(45°) sin(—2v,,)|sin27v, |
+ F,(45°) sin(—27.)|sin27.|

+ 4/ G (45°) sin22yQ(t)

The excitation forces on the disk are summed up in the NEF

E.,(t)] _ g [cosB cosfy
[Ey.,m] =F [sinﬂ] *Fu {sinﬁw]

(32b)

cosf. cosﬁ} -
Ey(t)=0 # e [sinﬂc] +VGHRL) {sinﬁ (33)

The standard signal Q(t) is generated it equal intervals r-At,
as Q(¢,). Since the algorithm which integrates the non-linear
equations of motion is of the variable-step-size type, the signal
must be made available at any arbitrary time. The following in-
terpolation is used for this purpose

sin—(t — t;)
ew = 3 ———aqtw (34)
e (t-t)

L, <t <t

This expression preserves both the mean and root-mean-square
(rms) values of the original signal. Its theory and evaluation are
given in [16].

Regular excitation. For the case of a harmonic excitation,
the random signal Q(t) should be replaced by some harmonic
Q,eivt. If the system were linear, there would exist a unique set
of the motion transfer functions, one per motion mode, each being
independent of the magnitude of the oscillatory excitation; thus
any value of Qg could then be used. In the nonlinear case, there
may exist an infinite family of the transfer functions dependent
parametrically on the excitation magnitude; thus in order to
correlate the results obtained from the “random” and “regular”
simulations, the two excitation magnitudes must be made
equivalent in some sense. The criterion adopted here is to equate
the energies of the random and harmonic signals

92
fﬂ U(p)du = fmax = &
0 2

which yields the desired amplitude

QO = 2l‘max
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.In i:he disk case, if @(t) is harmonic, the oécillatory excitation will -

be harmonic too. In the ship case, however, the oscillatory com-
ponents may not be harmonic because of the feedback effect in
equation (32).

4. Mooring restoring forces

When the vessel path is horizontal and when the mooring lines
are constrained to vertical planes, the static loads and shapes of
the lines are uniquely related to the horizontal spans of the lines.
For a mooring line to take a 2-D shape in a vertical plane, the
general external horizontal forces acting on the line must vanish.
They include the current loads and the friction on the sea floor
in the direction nonparallel to the line. The effect of these loads
can be shown to be small in multileg moorings. It is significant
only for the lightly loaded, slack lines, but its relative influence
on taut lines is small. Since the taut lines contribute by far the
most to the total horizontal force, the neglect of those loads causes
small errors only.

It is theoretically possible to handle the 3-D shapes of the
mooring lines using finite-element models, for example, [2], but
it would obviously result in the simulation time being longer by
order(s) of magnitude. Because of this, and in view of the small
gains of accuracy that could be achieved, it is considered im-
practical. Instead, the much simpler catenary equations are used
for the line mechanics. The assumption of 2-D shapes also per-
mits us to reduce the simulation time further by presolving the
line parameters for all possible systematically arranged horizontal
line spans. Since the spans, being dependent on the vessel posi-
tion, are known during the simulation, it is possible to compute
the instantaneous line forces by interpolating on the spans. The
table which contains the line parameters (including the horizontal
and vertical tensions at fairleads) is named the Catenary
Table.

The theory of the mooring line utilized here has been described
in [22]. It is valid for any multisegment line of arbitrary compo-
sition of wires, chains, buoyant or neutrally buoyant or non-
buoyant synthetic ropes, and submerged and surface buoys. The
anchor can lie on a sloping bottom and the synthetic ropes can
be nonlinearly stretchable.

Total mooring restoring forces. The horizontal span of the
kth line is available at any instant as a function of vessel motion
(x60,Y0,¥0), the anchor position, and the fairlead geometry

Ui = [(Bxo, = Az,)2 + (Byy, — Ay )5,k =1,... K (35)

where
B:,sByo, = kthanchor coordinates in NEF
oAy, = kth fairlead coordinates in NEF, given by the

v,=0

" fairlead coordinates in BF and vessel mdfioﬁé; y
" asfollows : . R
Axok =x9+ A:u c051/0 - Ay,; Siml/o.
X A}'ck =yo+ Az'. sin% + Ayk CQS\I/Q
The horizontal forces in the line plane, Hy, are available from the
Catenary Table by interpolation on Uj. The total mooring forces
in the BF (utilized in the ship motion equations) become

R.| _ X cos '
{RJ] N l.gl Hy {sin] O

K
Ry = hz_:l Hp[cosQi(As,, — %o) — sinQi(4y,, = ¥0)]

(36)

(37

where £}, is the direction of the kth line in BF. The forces in the
NEF (utilized for the disk) are

R., = R, cosy, + R, siny,

'Ry, =R, cosy, — R, siny,
Ry, =Ry
Figure 6 illustrates sample mooring force components R, Ry,

and Ry, for an asymmetric mooring system as “3-D” functions
of the position x, and y,, with ¥, = const = 0°.

(38)

5. Processing of time records

The simulated records are first processed to yield information
which could be directly and exhaustively used in designs of
mooring systems. This includes measurements of the probability
density functions (PDF’s), the mean and rms values of the exci-
tations and responses, and x-square tests of the probability that
the PDF’s are Gaussian. These results give the designer two
choices. First, the Gaussianity can be accepted at some proba-
bility level. Then the mean and rms values can be utilized to
formulate the theoretical normal and Rayleigh PDF’s of the
parameters to obtain all statistics of interest (typically the Nth
highest responses) from the well-established formulas (for ex-
ample, [19]). Alternatively, the Gaussianity can be rejected; then
the statistics must be obtained numerically directly from the
measured PDF’s.

Also included in the record processing is an analysis of the
sensitivity of the responses to weather conditions and mooring-
system stiffness in a broad range of these parameters. This serves
two purposes. Firstly, the results of the linear and nonlinear
theories can be compared with each other to establish the enve-
lope of validity of the former theory. Secondly, a general under-
standing of the nonlinear mooring phenomena is sought, and
their importance in practical applications is assessed. The sen-
sitivity analysis is based on transient-state simulations, on the
transfer functions of the responses measured in the time domain

Y
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Fig. 8 Components of mooring restoring force as functions of vessel position, yaw Wo) =0
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from regular records, and on a Fourier analysis of random records
which yields spectra and equivalent-linear transfer functions
(linearized in the least-square sense). These are compared with
the spectra and linear transfer functions derived from the linear
equations of motion directly in the frequency domain.

The transfer functions of the responses, although being in-
formative in the sensitivity analysis, are of little use to the de-
signer since they lack generality. Even if the system were per-
fectly linear, there would exist a separate set of the functions in
each different weather condition because the effective moor-
ing-system stiffness depends on the initial stiffness and on the
stiffness changes induced by the mean weather loads.

The parameters obtained from the records are computed as
follows.

(a) Probability density functions are measured using a
probability analyzer [1,15] with 20 intervals spanning the pa-
rameter range, and based on 2400 samples of the steady-state part
of the record. This number of samples is also used to measure the
mean and rms values of the records.

(b) Exact transfer functions, of a response x(¢), have their
modulas measured from the regular-excitation simulations as

e = [x(t)]max - [x(t)]min '
|Hs (w)] [EOlmax = TE©) i |wmconst (39)

where E(t) is the total excitation force signal. This expression
gives the function value at one frequency only. A total of 17
frequencies is applied, one at a time, they are selected automat-
ically in the neighborhood of the natural frequencies of the vessel
motions, for detecting the jump phenomena, if any.

(c) 'The spectra of the excitations and responses are com-
puted by the Fast Fourier Transform [15], using 800 samples, and
224 amended zeros per record. The Nyquist frequency corre-
sponds in all cases to twice the maximum actual frequency of the
system. A cosine window of the type (1/10, 8/10, 1/10) is applied
to all records and a smoothing is performed to yield 25 degrees
of freedom of the x-square distribution.

(d) Equivalent-linear transfer function H%(w) of some re-
sponse x(t) is obtained for all motions, in the least-square sense,
as

G.x(w)]os

A )] = [GEE(w)

where G, and Ggg are the response and total-excitation-force
spectra, respectively.

(e) Transient-state records are obtained by simulating the
motion of the vessel released from the EF origin and drifting to
the NEF origin in the absence of weather elements. This is
analogous to using a step excitation.

The statistical analysis, being based on single records, requires
the assumption of stationarity and ergodicity. The stationarity
has been verified by the trend tests [15], for all weather conditions
and mooring-system stiffness combinations of practical interest,
including the cases where nonlinearities are significant. The
stationarity is, however, a necessary idealization here, since the
real simulation time is typically 5 to 30 hours and the weather is
most likely to vary during such a long time.

The basic set of records includes three excitation components,
E. (t), E, (t), and Ey,(t), and three motion responses, x,(t),
¥o(t), and ¥, (t). Four additional records are derived from these,
as follows.

The exact radial motion, r.(¢), defined as

re(t) = [x2(t) + y2(2)]05 (41)

is often desired in offshore applications for evaluating the stresses
on underwater tools suspended off the vessel and attached to the
sea bottom (for example, drill strings on drill ships). This record
is used for measuring the PDF of the radius and its exact transfer
function, H,(w). (The plots displayed later show this radius.)
The definition (41) is, however, inconvenient to use for com-

(40)

10

parisons between the nonlinear and linear motions in the fre-
quency domain since the spectrum of (41) has the frequency
range doubled relative to that of either xq or yo, whichever is
greater, due to the squaring operation in (41), and the derivation
of the spectrum from the linear surge and sway is cumbersome
computationally. Therefore the comparison is performed on an
approximate radius, which is free of this deficiency, and having
the error so small in practical applications that the approximation
can still be used as an estimate of r (). It is defined as the pro-
jection of r.(t) onto the line passing through the NEF origin and
the mean vessel position (%,,¥,). The oscillatory part of this
quantity, r,(t), is

ro(8) = rL(t) cosd(2)

I'L(t) = {[xo(t) - 7012 + [yo(t) _5;0]2]0.5 (42)
- - & - - xo(t) - X
0(t) = tan lfo cos~1 T

Since the vessel remains approximately the same amount of time
inside and outside the mean radius circle, its harmonic range is
almost the same as that of x,(t) and y, (¢).

The modulus of the total excitation force signal, | E(t)], is in-
cluded to facilitate the detection of the force zero-crossings. Due
to the always-present large mean force, the number of crossings
is usually small and difficult to observe from the record. The
modulus reverses the negative portions of the record, thus in-
troducing superharmonics which can be easily detected in the
spectrum.

All records considered so far describe the vessel dynamics only.
In order to describe the mooring system parameters, the records
of the line tensions at the fairleads, T'(t), are also included.
Knowing the tensions, all other parameters of the mooring system
can be obtained from the Catenary Table. When all mooring lines
are identical and the sea floor is level, it is sufficient for design
purposes to obtain one tension record only, that of the instan-
taneous tension occurring in the most loaded line. Thus this
record is built of contributions of several, if not all, mooring
lines.

The records, as well as the parameters derived from them
(spectra, transfer functions, and probabilities) are displayed using
the following non-dimensionalization

E(t),|E(t)|,Ex,(t) and E, (t) are divided by A/1000%o

E, (t) is divided by AL/1000%.
%o (), y0(t),re(t) and r,(t) are divided by D/100%
T(t) is divided by T'gg(t)/100%
Yolt) is in degrees

where A, D, L, and Ty, are, respectively, the vessel displacement,
water depth, ship length, and the breaking strength of the line
on which the tension is measured.

6. Linear theory of low-frequency dynamics

When the oscillatory vessel motions about the EF origin are
assumed to be infinitesimal, the equations of motion can be lin-
earized about that origin and then they can be solved directly in
the frequency domain in a manner similar to that used in the
seakeeping theory. Such solutions are obviously much less in-
volved computationally but their disadvantage, besides being less
general, is that they yield directly only the vessel dynamics sta-
tistics and not those of the mooring system. In the nonlinear
theory the instantaneous mooring line parameters are available
at all times. In the present case they are not, because the linear-
ized restoring force coefficients represent the combined contri-
butions of all mooring lines and thus the information about the
individual mooring lines is lost in the equations of the vessel
motion. A direct linearization of the line parameters is obviously
possible, but in view of their strongly nonlinear character, it
would lead to inaccurate results. In contrast, the total mooring
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forces can be linearized since the nonlinearities of the leeward

.and weather lines partly cancel each other out. Utilizing the
quasi-static dependence of the lines parameters on the vessel
motions, the parameters can be computed more accurately by
finding the motions first and then extracting the mooring data
from the Catenary Table by entering the table with the line spans
computed from the motions.

The linearization is applied to the oscillatory relative vessel
motions only. The static vessel shift [R,.], equation (3), is still
found exactly, that is, with the feedback effect present.

Linear equations of motion. These equations are obtained
from the nonlinear equations (10) by dropping all nonlinear terms
and linearizing the mooring forces about the EF origin. Subscript
E is assigned to the variables defined in the EF. The result is

3
Zl [(mij + a;j)%E; + bijig; + dijxp;] = Eigl(t) 43)
=

XE; =XEYENE i=2xy¥ =123

where [m;;], [a;j], and [b;;] remain as before since the BF in which
they were defined now coincides in angular orientation with the
EF; [d;;] is the mooring stiffness matrix

4 2 2Ri
Y dxj|zemyE=vE=0
The oscillatory excitation forces on ships are obtained by
dropping the steady forces E, F,,, and F, in equation (32) and by
eliminating the feedback effect in view of the small motion as-
sumption. That is, the steady yaw shift ¥,, equation (3), is
substituted for ¥, (t) in equation (13), causing the relative wave
angle y(t) to become constant, ¥ .

YE)=B-Yot) s B—Yor =7
It follows that the force spectra (22) become constant too
GH(y) = G3(0°) costy + GF(90°) sin%y + GY sin22y = G
GU(Y) = GY(45°) sin%27 = GY

The resultant excitation components are then, from (32) and

(33):
E.:(t)] _ cosy' - cosy
[EyE(t)] = VGa© [sin“?] Eg(®) {sin?}

IJ =x5.YEVE

(44)

Ey(t) = V/GQ()

Let the moment be written as a product of the force Eg(t) and
anarmr

Eyg(t) = rEg(t) = [GY/GP]*SEE(t)

Then all three excitation components on a ship can be written
as

Eip(t) = VGT Q(2) 1 (45)

Ei;(t) = VG Q(t) {4

where G{ is in this case given by equation (28).

Since all three excitation components are now expressed as
products of the drift force Eg(t) and constant factors (siny, cosY,
r), the three-input model has been effectively reduced to a sin-
gle-input one.

Let the standard signal Q(t) be harmonic, evt, Thus the
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steady-state linear responses are harmonic too

xE x
et w

with complex amplitudes x%, y, and Y. Substituting (45) and
(46) into (43) and canceling e*«t yields

cosy i=1
3 ) siny (=2
> [—(m,'_,' + a,-j)wz +ibjw + dij]x%j = IEEl i _ 47)
j=1 7 r o i=3
xf; = xLybVE
The following substitutions are introduced
—(myj + aj)w? + ibjjw + dij = Ty; (48)
0
ZE = H () (49)

|Eg|
Dividing (47) by | Eg| and utilizing (48) and (49) gives three al-

gebraic equations for Hj(w), j = z,y,J. Their solutions are
Hpw) = % [cosY(T22T 33 — T'32T23) + siny(T13Ts2
— T33T12) + r(T12T23 — T22T13))
Hyx(@) = 7 [c07 (T2 Ty = TssTy) + sin (T Ty
| = TwTa) + r(T1sToy — TT1)]  (50)
Hys(@) = 5 [00sT(TaiTsz = ToaT) + sin¥(T1o Ty
= T32T11) + r(T1u T2 — T12T2))

where D is the determinant of the equations, | Tj;|.

The quantities H () represent the complex transfer functions
of the oscillatory surge, sway, and yaw motions in the EF. They
are next transformed to the NEF components, denoted by su-
perscript L (for linear)

H:l:’a(w)r = H,,E(w) COS¢0E - Hys("-’) Sin‘l/as
HL (0) = H, g(w) singog + Hyg(w) cosdop
Hi(0) = Hyp(w)

The natural frequencies of the linear surge, sway, and yaw

motions are found by solving the following characteristic equa-
tions

(51)

Ti(w))=0 =123 =xy,¢ (52)

Linear radial motion. The surge and sway motions in the EF,
due to the excitation of unit amplitude and frequency w, can be
written in the form

x4(wt) = |H.g| coswt

yh(wt) = |Hyg| cos(wt+ e — &) (53)

where €, and ¢, represent the phases contained in the transfer
functions, u stands for the motion due to unit excitation, and
where both motions are measured from the beginning of the surge
motion cycle, The path (53) (shown in Fig. 7) is an ellipse. The
points on the ellipse which are closest and farthest away from the
Ox,y, origin, denoted C’ and C, lie on the arcs described by R ;s
and R,,4;. The intersection of the arcs with the line r, is shown
by points B’ and B. When the oscillatory motions are small in
comparison with the mean radius rq, the arcs R i, and R qax can
be locally approximated by straight lines, and the points B’ and
B can then be approximated by A’ and A. The error of the ap-
proximation disappears, when one of the ellipse axis coincides

1
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Fig. 7 Linear radial motion

with the line r,, and this would be likely to occur when all weather
components are nearly colinear. The angle between the xg-axis
and the direction r, is 6 ~ ¥, ;, where 8 = tan=1(y,z/%oz). The
projection of the ellipse onto the line r, is therefore given by the
linear axis transformation

rt = x% cos(f — Yop) + ¥% sin(@ — ¥op)
= |Hygl coswt cos(d — Vo)
+ |Hyg| sin(8 — yor) cos(wt + €, — €)  (54)

The modulus of the radial-motion transfer function is given by
the amplitude of r¢

HE (w) = max|r#(wt)] (55)

The time angle & = wt which maximizes r“(wt) is found by
equating dr“(wt)/d(wt) to zero

er:mx = tan~!
—|H, ;| sin(f = o) sin(e, — &)

56
* |Hyg| cos(@ — Yog) + |Hyg| sin(8 — ¥o5) cos(ey — &) (56)
The desired transfer function thus takes the form
‘Hfa(w)l = abS”HxE(w)l(:OSQ(OJ) COS(B.— ¢OE)
+ |Hyg(w)] sin(f = ¥,z) cos[Q(w)
+6(@) — e (@] (57)

and the motion rg is harmonic with the same frequency w as the
linear surge and sway motions. The foregoing approximation
obviates the need to consider the extended frequency range of
the exact radial motion, [x(t) + y£(t)]1/2 Recall that the radius
ro(t) derived from the nonlinear surge and sway is also defined
in the same way, for consistency.

Probabilities and statistics. The cospectra of the linear surge,
sway, and yaw motions are available from the classical expres-
sion

Gij(w) = [HF(WI*H WG, i = xoy0b0
from which the covariance matrix can be obtained
o} = j;“mu Gij(w)du
Similarly for the radial motion r,

G"oro(”') = |H£O(F)I2GO’ 6’2'07'0 = ‘;:)#mu Groro(u)du (59)

These quantities are sufficient to completely describe the sta-
tistics and probabilities of the linear motions because when the
excitation is Gaussian, the motions are Gaussian too. _

(58)

12

In order to obtain the PDF’s of the mooring system parameters,
a joint PDF of the surge, sway, and yaw motions is needed. Uti-
lizing the argument of Gaussianty, it can be written, after [17],
as

p(xo»yo,'ﬁbo) = P(x -X) = (27r)"3/2|0'?jl -1
X exp{—0.5(x — X)T[¢}]"1(x - X)] (60)

where

|o;j] = determinant of the covariance matrix [o%]
( )T = transpose matrix
[ 1-! = inverse matrix

X = %5,Y0:¥0
X = XogYorWor

The spans of all mooring lines have been shown to be uniquely
related to the motions (x,,Y0,¥,). Entering the Catenary Table
with these spans, all mooring line parameters can be extracted
by interpolation. It follows that the PDF of all parameters is the
same as the joint PDF of the motions. For a parameter g this can
be written in the form

p(@) = pla(xo,Yo o)l = P(x0.Y0:¥o) (61)

It should be remembered, however, that p(g) may no longer be
Gaussian, since q{x,,Y,,¥,) is in general strongly nonlinear.

7. Results

The dynamics of a Series 60, Cg = 0.80 ship and a disk of di-
ameter-draft ratio 2.5 are examined, both with displacement of
48 117 tonne (t) (47 155 dwt). Both vessels are moored with the
same mooring stiffness in water 1000 m (3280 ft) deep with level
bottom. The mooring system contains eight identical mooring
lines arranged into a spread pattern of 22.5° ~ 67.5° with port/
starboard and fore/aft symmetry. Each line consists of 300-m (984
ft) *$7.62 cm (3 in.) *w21.27-kg/m (14.3 1b./ft) wire (top), 650-m
(2132 ft) *¢30.5 cm (12.0 in.) neutrally buoyant synthetic rope,
and 1250-m (4100 ft) *¢7 cm™* (2.75 in.) w 97.15-kg/m (65 1b./ft)
chain. Figure 8 illustrates partial data of the Catenary Table for
these lines. The fairleads on the disk are located at the circum-
ference. Two fairlead arrangements are examined on the ship.
In the first, they are located at the bow and stern, in a classical
configuration. In the second, a turret configuration is used, where
the lines are attached to a ring of 10-m (33 ft) diameter under-
neath the ship bottom, concentric with the z-axis. The turret is
sometimes used to facilitate the ship rotation on station for
avoiding the beam-on weather heading.

Four values of the mooring stiffness are examined, expressed
in terms of the line pre-tensions equal to 8, 20, 26, and 32 percent
of the line breaking strength of 500 tonne.

The weather conditions are varied from a mild Beaufort Force
6, through a severe gale of Force 9 to a violent storm of Force 12.
A surface current with a velocity of 2 percent of wind velocity is
included. All weather elements are colinear, pointing 165 deg in
the global frame.6

The foregoing parameters have been selected conservatively;
that is, they result in relatively large responses being, perhaps,
of limited interest for practical applications but convenient for
detecting the nonlinearities.

A short-hand notation is introduced for denoting the vessel-
stiffness-weather combinations. The vessels are denoted by D
or S for disk or ship; by stiffness, for example, 20% Tgg, and by
Beaufort Force, for example, BF 12. Example: S — 20%7Tgr —
BF12.

A qualitative examination of the results is presented first on
a few selected vessel-stiffness-weather combinations. These re-

6 Full design particulars of the vessels, moorings, and weather elements
and loads are given in reference [1].
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sults are shown in Figs. 9 through 20; they are summarized in
Table 1. .

The simulated records shown in Fig. 9 for the “random” case,
in Figs. 10-12 for the “regular” case, and in Figs. 18 and 19 for the
transient-state case all show the full lengths of the records. Two
numbers listed at the grid of each record correspond to the full
grid range. The vertical lines in Figs. 10-12 indicate the times of
the frequency changes.

- The spectra, Figs. 1315, are shown in four frames. Each frame
illustrates the linear and nonlinear excitation spectra by dashed
. lines and the linear and nonlinear motion spectra by heavy lines,
all for one component only. The linear excitation spectra are
uniform and the nonlinear excitation spectra are irregular since
- they are computed from the records. The linear and nonlinear
motion spectra are identified by the letters L and N, respectively.
" The four frames correspond to the following components:

X = spectra of surge, x,, and of surge excitation, E,,
Y = spectra of sway, y,, and of sway excitation, E,,
ZZ = spectra of yaw, Yo, and of yaw excitation, Ey,

R = spectra of radius, r,, and of total exciting force
modulus |E|

- The frequency resolution is shown by a horizontal segment in the
upper frame of Fig. 13.

The frequency ranges of the nonlinear excitation spectra can

- be observed to be somewhat larger than those of the linear ones
in the three upper frames of Figs. 13-15. In the lowest frames, the
extension is quite significant, and there is a dc level present. The
former effect is due to the cosine windows applied to the records
prior to the spectral analysis. The latter effect is due to taking
. therecord | E(t)| instead of E(t); that is, it shows the effect of the
zero crossings in the total excitation force. ’
The transfer functions, Fig. 16 and 17, contain four frames,
each showing the exact, equivalent-linear (least-square linear-
ized), and linear functions. The four frames correspond, from the
_top, to the surge, sway, yaw, and radial motions.

The probability density functions, Fig. 20, are shown together
with the cumulative probability functions for the excitations and
responses.

. The different types of nonlinear phenomena are next discussed
“individually.
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Fig. 8 Partial data of Catenary Table

Feedback and effect of turret configuration of fairleads.
The yaw-excitation feedback can be best observed from the
spectra. In the disk case, Fig. 13, where no feedback occurs, the
linear and nonlinear excitation spectra are of the same magnitude
at all frequencies; they differ only due to the spectral analysis
inaccuracies. In the ship case, Fig. 14, there is an evident modu-
lation of the nonlinear excitation at the frequencies where the
yaw motion is large. Particularly affected are the sway and yaw
excitations. The surge and the total excitations experience a
minor modulation. However, the areas under the linear and
nonlinear spectra remain of the same order of magnitude for all
excitation components. This case represents the ship having the
fairleads located at the bow and stern. When the same weather
acts on the ship having the fairleads arranged in the turret con-
figuration, Fig. 15, the effect of the feedback becomes profound
indeed. The linear and nonlinear excitation spectra now differ
by order(s) of magnitude. The turret provides a small yaw-re-
storing moment; thus the yaw motion is large, with a large dc
dynamic level. This causes the weather incidence angle to in-
crease and therefore the weather excitation and motion responses
to increase too. When the fairleads are placed at the bow and
stern, Fig. 14, the linear theory gives similar results to those of
the nonlinear theory, in spite of the violent weather of Force 12.
In the turret configuration, Fig. 15, the linear theory clearly ceases
to be valid. Figure 12 demonstrates the effect of the feedback in
regular records, where the variations of both the magnitude and
dynamic mean of the excitation components are evident. In
contrast, the excitation on the disk, Fig. 11, remains independent
of the yaw motion.

These results indicate that the operational advantage of the
fairlead configuration must be carefully traded off in the design
with the ship dynamic performance, since too small a turret may
easily cause violent ship motions.

Motion coupling. The frequencies of the maximum motions
of the disk are practically the same in all motion modes, as can
be seen from the spectra, Fig. 13, and from the regular records,
Fig. 11. Furthermore, this behavior occurred at all weather and
stiffness combinations, although the computed natural frequency
of the yaw is between 5 and 12 times the frequency of the surge
and sway. This phenomenon is caused by the perfect hydrody-
namic disk symmetry, and in the present case the mooring system

13
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Fig. 12 Regular records, S-20 % Tga—BF12, turret configuration of fairleads

is initially symmetri¢ too. The latter symmetry should theoreti-
cally vanish under the weather action and it could be expected
that the stiffness would be different in the surge and sway modes.
The results indicate, however, that the restoring force asymmetry
remains sufficiently small to yield practically the same
frequencies of resonance in surge and sway. Since the yaw exci-
tation is zero on the disk, the only yaw response is that due to the
coupling and it obviously occurs at the frequencies of the surge

SPECTRA

MOTION FORCE ~ ~

~~
P g

b
4
P
4.00

8
] & 3
-2 At W £, g

\

2.00

/
0.00

4.00

T LV
2.00

.00

T
0.00
Fig. 13 Spectra, D-32% Tzz—BF#6, fairleads at circumference
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and sway resonance. In the ship case, the symmetry vanishes and
the three resonances are typically quite apart on the frequency
axis, Fig. 14. Nevertheless, if the stiffness is sufficiently small,
a large weather load may induce such a large motion in one of the
modes that the coupling of the restoring forces will override the
direct excitation in the other modes and all three modes will then
respond at the frequency of the dominant motion. This can be
observed in Fig. 17. It is important to note that this behavior can
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Fig. 14 Spectra, S-20% Tgr—BF 12, fairleads at bow and stern
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be predicted entirely within the scope of the linear theory.

Superharmonics. The superharmonics occur in the records
due to several causes. When the vessel path encloses the origin,
the radial motion experiences superharmonics since there occur
two radius cycles per one cycle of surge and sway. The same
happens to the yaw records since the yaw moment sign then
changes four times per motion cycle, as is evident from Fig. 6 (plot
of Ry,). The superharmonics occur in the tension record when-
ever X, Yo, O ¥, change sign, since the maximum tension then
takes place successively in the leeward, weather, leeward, and
weather mooring lines, in each cycle, Fig. 9. The changes of sign
of the surge and sway also induce the superharmonics in the ra-
dial motion, Fig. 9. The non-linear coupling of the mooring re-
storing forces may also cause the vessel path to take a zigzag
shape. Then, depending on the shape, the superharmonics can
occur in any and all motion records. The disk is particularly
susceptible to this since it experiences no direct yaw excitation.
This type of superharmonics occurred in the yaw, radial, and
tension responses of Fig. 11. Typically the superharmonics occur
only at high stiffness of the mooring system, that is, when the
motions are small. Although the nonlinear superharmonic phe-
nomenon yields interesting vessel behavior, it is of little practical
significance in design applications.

Jump and frequency shift. A well-established fact in the
theory of nonlinear vibrations is that a nonlinear spring may
cause the jump phenomenon. When the spring is hard, the peak
of the transfer function folds over toward higher frequencies.
Provided the peak is sufficiently prominent and the shift large
enough, the function becomes triple-valued, thus causing the
response to jump from the highest to the lowest branch with in-
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creasing excitation frequency and the opposite with decreasing
frequency. When the spring is soft, the peak folds over toward
lower frequencies and the situation is reversed. Of the three
transfer functions examined here—linear, equivalent-linear and
exact—it is only the latter that can show this behavior through
a histerisis loop, if any. The equivalent-linear function may in-
dicate only a frequency shift of the peak.

No jump has been observed in any of the cases examined here.
The shapes of the functions vary from these, corresponding to
the most-linear motions in Fig. 16 (lowest weather load and
highest stiffness), to those, corresponding to the most-nonlinear
motions in Fig. 17 (highest weather load and lowest stiffness).
The lack of jump can be attributed to any and all of the following
interacting phenomena. Firstly, the nonlinearity of the mooring
forces may not be sufficiently large to cause the jump. Secondly,
the coupling of the three spring components may redistribute the
potential energy of the springs. That is, when the system is de-
flected primarily against one of the springs and this spring be-
comes saturated with potential energy, the remaining springs may
take over the deflections before the first spring is sufficiently
deflected to yield the jump. This would also explain the zigzag
path of the vessel, observed in several cases. Thirdly, the exact
transfer functions have the peaks lower than the remaining two
functions since the energy of their harmonic excitation is con-
centrated at a single frequency; thus it overemphasizes the
nonlinearity at that frequency and therefore reduces the re-
sponse. (A spectrum of the harmonic excitation is a Dirac func-
tion while in the random case it is finite, spread over a finite
frequency range.) A lower peak obviously delays the jump phe-
nomenon. The lower peaks can be clearly seen in Fig. 17.
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Although the occurrence of the jump cannot be entirely ruled
out in the multileg mooring applications, the foregoing results
indicate that the likelihood of it is small.

Harmonicity and periodicity. The nonlinearity of the
damping forces combined with the large excitation may cause a
nonharmonic or even a nonperiodic response to a harmonic ex-
citation. These so-called relaxation oscillations occurred in the
case of the lowest stiffness and highest weather load on the ship
with the turret, Fig. 12. The responses of surge (and consequently
of radius and tension) show a strong nonharmonic behavior al-
though it is still periodic.

Cubic damping in transient states. Figures 18 and 19 illus-
trate the transient-state records simulated, respectively, with and
without the cubic-damping terms in the equations of motion, The
motion extinction tests such as these can be realized experi-
mentally for calibrating the cubic damping. It is important,
however, that the actual tests be performed in the presence of the
waves, so that the turbulence induced by the high-frequency
motions can be properly simulated. The measured motions must
then obviously be filtered out before the comparisons with the
low-frequency simulation can be made.

Probabilities. Figure 20 illustrates a typical set of the mea-
sured probability functions. Table 2 presents the results of the
x-square tests applied to the excitation and response probabili-
ties to check whether they are normally distributed. The tested
conditions include the extreme vessel-stiffness-weather combi-
nations.

The results for the turret case indicate that the assumption of
Gaussianity is unacceptable. In the bow-stern fairlead configu-
ration, the surge and to a slightly lesser degree the sway appear
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Fig. 18 Transient-state simulation with linear and nonlinear damping,
D-20% Tga—BF 12

to be normal in all cases. The yaw remains Gaussian when the
motions are large but ceases to be Gaussian when the motions are
small, due to the presence of superharmonics. However, since the
superharmonics occur only when the motions are small, the effect
of the non-Gaussian distribution of the yaw can be neglected in
practical applications and all three primary motions can be as-
sumed to be Gaussian. This assumption is important since in
order to utilize the linear theory for predicting the mooring sys-
tem probabilities, the surge, sway, and yaw motions must all be
assumed to be Gaussian.

It is interesting to note from Table 2 that the excitation com-
ponents have a small probability of being Gaussian, in spite of
the fact that the signal Q(t) in the excitation is Gaussian by
definition. In the case of Ey, this is caused by the feedback from
the non-Gaussian yaw motion and in the case of the excitation
force it is the result of both the feedback and the modulus of the
excitation force |E|.

Natural frequencies. The natural frequencies of the surge,
sway, and yaw motions are plotted in Fig. 21 for all vessel-stiff-
ness-weather combinations. The influence of the weather
strength becomes negligible when the initial system stiffness is
large. The highest frequency of all cases is 0.11 rad/s. This value
is well below the wave frequency range (typically, 0.2 to 2 rad/s);
therefore the separation of the low- and high-frequency regions
is fully justified.

Mooring-system parameters. Figure 22 illustrates the mean
and rms values of the maximum tension record computed from
the simulations. The mean tension increases monitonically with
the initial stiffness and with the weather load, as expected. T!xe
variation of the tension rms with pretension is nonmonotonic;
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Fig. 19 Transient-state simulation with linear damping only ,
D-20% Tgr—BF12

there exist a pre-tension yielding the minimum oscillatory ten-
sion. This behavior may suggest an optimization of the moor-
ing-system stiffness; however, it would not be practical since the
oscillatory tension is only a small fraction of the mean tension
and the latter increases monotonically with the pre-tension.
Therefore the total tension has no minimum in the dynamic
sense, and from the structural point of view the pre-tensions
should be kept as low as possible. The remaining mooring pa-
rameters are related to the tension values through the Catenary
Table, which is partly illustrated in Fig. 8.

The remaining discussion contains comparisons between the
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Fig. 20 Probability density and cumulative functions, S-8% Tgr—
BF12

linear and nonlinear theory results for all vessel-stiffness-weather
combinations examined.

Linear versus nonlinear excitation. Figures 23 and 24
present the comparison of the linear and nonlinear values of the
excitation components. The linear and nonlinear results are
presented by continuous and dashed lines, respectively, or, where
the two overlap, by a line which is partly dashed and partly
continuous. The agreement between the two theories is re-
markable in most conditions. In the disk case both theories
should give the same results by definition, due to disk symmetry.
The differences would be attributable only to the finite accuracy
of the spectral analysis, but they can be seen to be negligible.

There is a dc level induced by the feedback on the sway and
yaw mean values at the least realistic combination of the lowest
stiffness and highest weather. Even then, the difference is only
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Table 1 Summary of graphical output quoted
Fig. Vessel- Fairleads
No. Stiffness-Weather Configuration Contents
9 S-32%Tgr—BF6 bow and stern random records
10 S-32%Tpr—BF6 bow and stern regular records
11 D-32%Tgr—BF6 “¢ircumference regular records
12 S-20%Tpr—BF12 turret regular records
13 D-32%Tpgr—BF6 circumference spectra
14 S-20%Tsr—BF12 bow and stern spectra
15 S-20%Tgr—BF12 turret spectra
16 D-32%Tgr—BF6 circumference motion transfer functions
17 S-8%Tg—BF12 bow and stern motion transfer functions
18 D-20%Tpr—BF12 circumference transient simulation
with linear and
nonlinear damping
19 D-20%Tgr—BF12 circumference transient simulation
: with linear
damping only
20 S-8%Tgr—BF12 bow and stern probability functions
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12 percent. At higher stiffnesses, both theories agree to within
3 percent, even for the violent-storm condition.

The differences between the linear and nonlinear excitations
on the ship are more pronounced, caused again by the feedback.
However, disregarding the unrealistic low-stiffness cases, the
differences are less than 13 percent, and at the highest stiffness
they become negligible again.

Linear versus nonlinear motion responses. Figures 25 and
26 present the mean and rms motion responses. The mean values
of all responses are predicted almost identically by the linear and
nonlinear theories, thus indicating that the dynamic dc levels are
negligible. The oscillatory motion predictions differ significantly
between the theories when the stiffness is low, but at the more
realistic stiffness values the agreement is within 15 percent. In
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Fig. 22 Mean and rms values of mooring line tensions

general, the agreement is better for the disk than for the ship, as
expected, since the disk dynamics are subject to fewer non-
linearities.

The oscillatory responses decrease with increasing stiffness
at a much slower rate than the mean responses. Thus the dynamic
contributions play an increasing role with both increasing stiff-
ness and increasing weather. Even at the lowest stiffness, how-
ever, the dynamic effects cannot be neglected, the rms motions
being then equal to between 7 and 67 percent of the mean mo-
tions. It follows that the static mooring model is rather inade-
guate on its own.

8. Conclusions

Three theories of the moored ship and disk performance have
been demonstrated, linear and nonlinear dynamic for the low-

Table 2 Probability of variables being Gaussian

Stiffness, Weather, p(Variable Is Normally Distributed)

Vessel Fairleads %Tsr BF X Yo Yo Te |E| Ey, T
Shi bow/stern 8 12 0.9998 0.9083 0.9922 0.9999 0.0117 0 0.9997
P pow/stern 32 6 0.9839 0.9562 0.0076 0.8521 0.7589 0.9736 0

Disk circumference 8 12 0.9999 0.9816 0.7285 0.9998 0.9812 0
18X circumference 32 6 0.9547 0.9118 0 0.8127 0.6926 0.9530
Ship  turret 20 12 0.0001 0.9973 ] 0 0.9654 0.6006  0.0002
19
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Fig. 23 Mean excitation components

frequency problem, and a static model which represents the mean
values (and is a by-product) of the linear theory. The static model
is inadequate on its own; the dynamic contributions are between
7 and 67 percent of the static values in the examples examined
here. The linear dynamic theory is adequate in the limited class
of applications where the vessel motions are small and where the
fairleads are located sufficiently far from the vessel center of
gravity. The present standards of the offshore oil industry limit
the maximum horizontal vessel motion to 4 to 8 percent of water
depth. In this range the linear theory can be used with confidence.
The nonlinear phenomena that occur then are not important
quantitatively and the linear predictions are within 10 to 15
percent of the nonlinear ones. For the analysis of larger motions,
the nonlinear theory should be used. Also, the analysis of a ship
having a turret configuration of the fairleads should always be
based on the nonlinear theory, since such a configuration may
cause quite violent vessel motions.

Both theories are totally automated. The computing time for
one vessel-stiffness-weather case using the linear theory is50s
on the ICL2970 and 3 s on the CDC7600 machines. The nonlinear
theory, including the spectral analysis and plotting, takes 600 to
900 s and 25 to 40 s, respectively, on the two computers.
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Appendix

Expansion of external forces

The forces X, Y, and N in equation (5) represent the total body
forces dependent on the position, velocity and acceleration vec-
tors, as well as the excitation forces dependent on these vectors
and on the weather elements and time. Assigning the force signs
so that the positive excitation forces oppose the positive body
forces, this dependence is written in the form

X; = E; (weather, t,x,y ¥,£,9,4,%,5,9)
_Xi,(x Y )‘l/’x. vy y‘prf 75}1‘p)
where

E; =E,.E, ,E, = excitation forces
X;=X,Y,N = body forces

The dependence of the excitation on the velocities and acceler-
ations can be immediately disregarded upon noticing that the
low-frequency velocities and accelerations are orders of magni-
tude smaller than those of the weather elements (typical vessel
velocity is of the order of a small fraction of m/s). The dependence
of the excitation forces on the vessel position is further disposed
of using the argument that the wave forces correct to the sec-
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ond-order depend only on the first-order motions and wave ex-
citation, and the effect of the position-dependent mooring forces
on the first-order quantities is negligible due to the relatively
large vessel mass. The effect of the vessel angular orientation, ¥,
is, however, included, since in view of the large and slow yaw al-
lowed here, the incidence angle of the weather elements can
strongly vary and this may introduce large changes of the wind,
current, and wave forces. Thus the excitation forces take the form
E; = E; (weather, t, ) and they are written in a short-hand form
as E; = E;(t).
The body forces are expanded into a Taylor series

Xi=Xix+Xiy+X¥+...+ X

A ) , .
+o [ Xix? 4+ X P2+ Xipry +.F XV

where the subscripts denote the partial derivatives of X’ with
respect to x,y,¥ and their derivatives. The terms are next grouped
by collecting the acceleration terms under a common name A,
velocity (damping) terms under D, position (restoring) terms
under R, and the coupling cross-terms under AD, AR, DR and
ADR, respectively.

X; = A&,3 .. 2552 0549,
+ Di (x,y,\[/,x 2:5’2,‘112,35}",
+Ri(xy xty2 ¥y,
+ ADi (x-x ,fy,x"¢»}"’y5‘h'f\0»
+ ARi (ix ,fy,flp»}"'yj\b,‘.p‘k
+ DR,(xx,xy,x\I/,yy,y\&,\P\b, .
+ ADR;(iix,yvy YV, £%y, L)
The terms AD and ADR are neglected following [18], where it is
stated that there is no significant interaction between the vis-
cosity and inertia properties of the fluid and also that the accel-
eration forces calculated from the classical potential theory give

the linear terms only. Thus the acceleration terms A; take the
simple form

e e e e o

A =apk+aiy +aigd, i=xy¥ (62)

Although only the linear terms are present in (62), they represent
the second-order terms since the low-frequency accelerations are
of second order. The mass of the mooring system can be shown
to be negligible relative to the vessel mass.

The damping forces consist of the wave damping and viscous
damping. The former is disregarded in view of the slow motion
considered here. The viscous damping due to the vessel (that is,
disregarding the mooring-line damping), expanded up to the
second order, is
D; = byt + bigy + big¥ + ik + cizy? + cigy®

+ iy + cisty + cigk¥
To the authors’ knowledge, there are no data on the low-fre-
quency damping in the presence of the high-frequency motion
components. The closest information available is that for ships
maneuvering in calm water at nonzero Froude number [18,23].
It is demonstrated therein that the terms £y and %y are zero in
the longitudinal force D,, and are small in the forces D, and Dy
on vessels with port/starboard (P/S) symmetry. The only cross-
term which is not zero is Y. The terms %2, y2 and 2 are incon-
venient to use because of the signs; instead, two other forms are
used in the literature, either #|%|, y|y| and ¥/|¢|, or £3,y% and
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¥3. In the present work the latter form is favored. The total ex-
pansion thus takes the form

D;i = bk + bigy + big¥ + 123 + cioy3 + ciald + ciy¥  (63)

Using this general notation, it is necessary to point out that the
following terms are always zero due to the P/S symmetry on
ships”;

biz=ba=bis=bsi=crpr=ca=ciz=cz1=0

In the disk case, due to the circular symmetry, the following ad-
ditional coefficients also vanish

byz=bgr=c3=¢a2=0

The foregoing expansion is due to the vessel only. The additional
damping due to the mooring lines is assumed to be linear only.

The mooring restoring forces R are evaluated numerically in
Section 4.

The velocity and acceleration vectors are independent of the
position vector; hence the groups AR and DR due to the vessel
are both zero. On the other hand, these groups are not zero due
to the mooring lines since both the accelerations and damping
of a line element depend on its stiffness, that is, indirectly on the
line geometry, and this changes with the vessel position vector
(x,y,¥). In order to compute these terms, however, it would be
necessary to evaluate the line geometry by a finite-element
method and to keep track of the position and quasi-static velocity
and acceleration of each element in each line in the mooring
system at all times during the simulation. The computational
realism precludes this approach at present; therefore the groups
AR and DR are disregarded altogether. It is likely that these
groups may be small indeed. The damping on the mooring lines

-is important only on the slack lines, and those contribute less to

the system dynamics than the taut lines. Thus the group DR may
be quite small. Similarly, since the group A is negligible on the
mooring lines, the group AR can be expected to be small too.

In summary, it can be stated that the linear theory of the
moored-vessel dynamics contains a full expansion of the forces
up to the second order, and the nonlinear theory contains a
partial expansion of the third-order.

Hydrodynamic coefficients

The added mass in the horizontal motion can be shown from
the free-surface boundary condition to approach a constant value
at Jow frequency. The constant value is equal to the added mass
of a double body in unbounded fluid. Utilizing this fact, the added
mass matrix [a;;] is estimated for the ship using the strip theory
[19], where the sectional mass is computed from the Lewis Sec-
tion theory [20]. This yields ass, @23 = a3 and a33. The ship surge
mass, a1, is approximated by that of an ellipsoid moving along
its longest axis. The remaining terms (a12,a21,813,a31) are all zero
because of the P/S symmetry [19]. The added mass of a disk is
equal to the displaced mass, a1, = ag; = m, and the remaining
terms are all zero in view of the circular disk symmetry.

The linear and cubic damping matrices [b;;] and [c;;] have been
estimated from the tabulated data on the quadratic drag in
steady flow [9].

7 Because of the lack of reliable data, the coefficient of the term y has -

been assumed to be zero in the calculations quoted in Section 7. This
assumption is valid for the disk but not for the ship. However, this as-
sumption has made the results more conservative; namely, the nonlinear
motions are overestimated, together with the other nonlinearities.
Therefore, all qualitative conclusions and comparisons still remain valid
on the conservative side.
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