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COMPUTING BOUNDARY SLOPES OF 2-BRIDGE LINKS

JIM HOSTE AND PATRICK D. SHANAHAN

Abstract. We describe an algorithm for computing boundary slopes of 2-
bridge links. As an example, we work out the slopes of the links obtained by
1/k surgery on one component of the Borromean rings. A table of all boundary
slopes of all 2-bridge links with 10 or less crossings is also included.

1. Introduction

In a series of papers by Hatcher and Thurston [7], Floyd and Hatcher [4], and
Hatcher and Oertel [6], the set of incompressible, boundary incompressible sur-
faces in the complement of a 2-bridge knot or link, or a Montesinos knot, are
completely described and classified. In the case of knots, these papers also de-
scribe the possible boundary slopes that occur, and in [6] a table of all boundary
slopes of Montesinos knots with 10 or fewer crossings is given. Unfortunately, this
table contains several errors. However a corrected table has been published by
Dunfield [3]. Moreover, the computer program written and used by Dunfield is
available at http://www.CompuTop.org.

While Floyd and Hatcher explicitly describe all incompressible surfaces in the
complement of a 2-bridge link, they do not compute the boundary slopes of these
surfaces, saying only that it should be possible in principle. In his Ph.D. the-
sis [9], Lash starts with their construction and shows how to compute the asso-
ciated boundary slopes. His ultimate goal was to compare the set of boundary
slopes of the Whitehead link, L3/8, to those predicted by the algebraic-geometric
machinery of Culler-Shalen [2]. Applying his algorithm to L3/8, Lash was able to
show that in this case, every boundary slope arises from a degenerating sequence of
representations of the link group into SL2C. Ohtsuki [10] has shown this to be true
for all 2-bridge knots (excluding slopes that correspond to a fiber in a fibration),
but the question remains open for all 2-bridge links in general. To investigate this
question it would obviously be helpful to have boundary slope data for all 2-bridge
links. Unfortunately, Lash’s thesis has never been published and tables of boundary
slopes of links have not been available.

In this paper we describe Lash’s algorithm and develop an improved algorithm.
The new algorithm eliminates several computationally intensive steps. With a
little practice it can be readily applied by hand, and is easier to implement on
a computer. This allows us to describe the types of boundary slopes that can
occur. As an illustration of our techniques, we compute the boundary slopes of
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Figure 1. The 2-bridge link Lp/q, for p = 3 and q = 4.

the (4k − 1)/(8k) 2-bridge links. These links may also be described as 1/k surgery
on one component of the Borromean rings. For this class of links, we have found
an explicit description of their eigenvalue varieties and in a forthcoming paper will
investigate the relationship between the actual boundary slopes and those detected
by the eigenvalue variety.

We have written a computer program to implement our algorithm and include
here a table of boundary slopes of all 2-bridge links up to 10 crossings. In our
table, links through 9 crossings are also identified by their index in Rolfsen’s table
[11]. Our program, as well as a much larger table to 16 crossings, will eventually
be available at http://www.CompuTop.org and as part of Knotscape [8].

In Section 2 we briefly describe Floyd and Hatcher’s construction for 2-bridge
links. The reader is referred to their original paper for more detail. Then in
Section 3 we describe Lash’s algorithm for finding the boundary slopes of a given
2-bridge link using Floyd and Hatcher’s construction. In Section 4 we improve
the algorithm and discuss some of its theoretical consequences. The next section
includes a nice example for the infinite family of 2-bridge links already mentioned
above. Finally, in Section 6 we tabulate boundary slope data for all 2-bridge links
with 10 or less crossings.

2. Floyd and Hatcher’s construction

Let p and q be relatively prime positive integers such that 0 < p < q, p is odd,
and q is even. We assume that the reader is familiar with the standard 2-bridge
diagram of the 2-bridge link Lp/q. For example, L3/4 is shown in Figure 1. It is
important to note that our definition of Lp/q agrees with that of [6] and [9], but is
the mirror image of the more conventional depiction of Lp/q with the “(straight)
bridges on top.” See for example, [1] or [7].

Viewing S3 as the 2-point compactification of S2×R, we may place Lp/q in S2×I

so that it meets S2 × {0} and S2 × {1} each in two arcs, and each intermediate
level in four points. We may think of each level, S2 × {z}, as the quotient R2/Γ,
where Γ is the group generated by 180◦ rotations of R2 about the integer lattice
points Z

2. The four points of the link at each intermediate level are precisely the
four points of Z2/Γ. The arcs at level z = 1 are the image of the lines in R2 which
pass through integer lattice points with slope p/q. Similarly, the two arcs at level
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z = 0 are the image of vertical lines through integer lattice points. Finally, PSL2Z

acts linearly on each level, leaving Z2/Γ invariant.
Floyd and Hatcher next describe four basic branched surfaces, ΣA, ΣB, ΣC and

ΣD, copies of which will be stacked, one on top of the other, to build a branched sur-
face spanning the 2-bridge link. Actually it is not these surfaces exactly, but rather
homeomorphic images of them, that will be compressed vertically and stacked to-
gether. To understand the Floyd and Hatcher construction, and Lash’s computation
of the boundary slopes, we need to first understand these four basic building blocks.

Beautiful illustrations of the four surfaces are given in [4] which we will not
attempt to reproduce here. Instead, we describe the surfaces in a different fashion.
Each is contained in S2 × I. In both of the half-intervals [0, 1

2 ) and ( 1
2 , 1] the

surface is a product of the half-interval with a finite number of disjoint embedded
arcs in the 2-sphere with endpoints at the four points of Z2/Γ. The transversality of
the surface with the horizontal levels completely degenerates at the 1

2 -level, where
branching occurs which allows the arc system at the 0-level to transition to the
arc system at the 1-level. Figure 2 shows cross-sections of each branched surface
at heights 0, 1

2 , and 1. At the 1
2 -level the shaded areas indicate horizontal parts of

the surface. Each of the four branched surfaces can carry a variety of embedded
surfaces in the usual way indicated by the number of sheets, or weights, on each
piece of the branched surface. The weights are also indicated in Figure 2 as well
as arrows at the 1

2 -level which indicate the direction of branching as one moves
up from the 0-level to the 1-level. Finally, notice that all the surfaces shown in
Figure 2 carry the implicit assumption that α > β (and sometimes that α and β
have the same parity).

If g =
(

a b
c d

)
is any element of PSL2Z, let ĝ =

(
d c
b a

)
. We may take

S2 × I to itself with the homeomorphism ĝ×id and carry any one of the four
basic surfaces to a new branched surface that begins and ends at arc systems with
slopes depending on g. Images like this of the four basic surfaces can then be
joined together vertically provided they have matching arc systems where they are
attached. In this way we can piece together a branched surface that begins with
the two arcs of Lp/q at level 0 of slope 1

0 and ends with the two arcs of Lp/q at
level 1 of slope p

q . For example, suppose we begin with the Hopf link, L1/2. We
wish to piece together a branched surface that starts at slope 1

0 and ends at slope
1
2 . Starting with a copy of ΣA we may move from two arcs at slope 1

0 to an arc
system consisting of three arcs: one at slope 1

0 and two at slope 0
1 . We may then

attach to this an upside-down copy of ΣD which then takes us to an arc system
of three arcs: two at slope 0

1 and one at slope 1
2 . Finally, we will end with an

upside-down copy of ΣA transformed by ĝ×id where g =
(

1 0
2 1

)
. Notice that

the linear transformation ĝ takes lines of slope 1
0 to lines of slope 1

2 and lines of
slope 0

1 to lines of slope 0
1 , because(

1 2
0 1

) (
0
1

)
=

(
2
1

)
and

(
1 2
0 1

) (
1
0

)
=

(
1
0

)
.

Therefore, the upside-down copy of ΣA transformed by ĝ×id ends with the desired
arc system of two arcs of slope 1

2 .
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Figure 2. The four basic branched surfaces.

There is a beautiful correspondence between branched surfaces constructed in
this way and continued fraction expansions of p/q which in turn may be viewed as
paths in the following diagrams. Consider first the tessellation D1 of H2 by ideal
triangles shown in Figure 3. The rationals, together with 1

0 , are arranged around
the unit circle as shown, and two fractions a

b and c
d are connected by a geodesic if

and only if ad − bc = ±1. (This diagram contains the Stern-Brocot tree generated
from 1

0 and 0
1 by adding fractions the “wrong way” according to the (mis)rule

a
b + c

d = a+c
c+d . See [5], for example.) The group of orientation preserving symmetries
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Figure 3. The diagrams D0, D1, and D∞.

of D1 is PSL2Z. Let G ⊂ PSL2Z be the subgroup of Möbius transformations
given by z → az+b

cz+d where c is even. It follows that the triangle { 1
0 , 0

1 , 1
1} is a

fundamental domain for the action of G and the G-images of the ideal quadrilateral
Q = { 1

0 , 0
1 , 1

2 , 1
1} tessellate H2. If we delete the G-orbit of the diagonal { 0

1 , 1
1} and

replace it with the G-orbit of the opposite diagonal { 1
0 , 1

2}, we obtain a new diagram
called D0, which is also shown in Figure 3.

Between D0 and D1 there exists a family of oriented diagrams Dt, for 0 < t < 1,
obtained by expanding each diagonal in D1 (labeled C in Figure 3) to a rectangle
which may then be collapsed to the opposite diagonal (labeled D in Figure 3),
thus giving D0. The intersection of each of D0, Dt, and D1 with the fundamental
quadrilateral Q is shown in Figure 4. The edges of Dt fall into four G-orbits
which are named A, B, C, and D and which have, respectively, representative edges
A0, B0, C0 and D0 as defined in Figure 4. As t → 0 the edges degenerate into B
and D-type edges in D0. If instead, t → 1, the edges degenerate into A and C-type
edges in D1. We may orient the edges of Dt by using the orientations of A0, B0, C0

and D0 shown in Figure 4, but there is no coherent way to orient the edges of D0

or D1. Finally, by setting Dt = D1/t for 1 ≤ t ≤ ∞, we obtain a diagram for every
t ∈ [0,∞].

Floyd and Hatcher show that the diagram Dt provides a beautiful way of de-
scribing all the incompressible surfaces in the 2-bridge link exteriors. In particular,
minimal edge paths in Dt from 1

0 to p
q will correspond to branched surfaces which

in turn will carry the incompressible surfaces. An edge path in Dt is minimal if
it never contains two consecutive edges that lie in the same triangle or rectangle
of Dt. It is not hard to see that a minimal edge path in Dt (with t �∈ {0, 1,∞})
will collapse to a minimal edge path in either D0 or D1 as t approaches 0 or 1
respectively. Moreover, these limiting paths in D0 and D1 uniquely determine the
path in Dt. For a particular fraction p

q there can only be a finite number of minimal
edge paths connecting it to 1

0 . This follows from the fact that these minimal paths
are all contained in a unique minimal chain of quadrilaterals consisting of Q and a
finite number of its translates under G.
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Figure 4. Expanding the diagonals of D0 and D1 to obtain Dt

(pictured here with t = 3/4).

Each minimal edge path in Dt (with t �∈ {0, 1,∞}) from 1
0 to p

q provides a
recipe for piecing together images of the four basic surfaces ΣA, ΣB, ΣC , and ΣD

as follows. Suppose γ is a path consisting of consecutive edges e1, e2, . . . , em. For
each edge ei there exists an element gi ∈ G taking Ei to ei, where Ei is one
of the four representative edges A0, B0, C0, or D0 in Q. Let Si be ΣA, ΣB, ΣC ,
or ΣD depending on whether Ei is A0, B0, C0, or D0 respectively. Now take Si to
(ĝi×id)(Si), rescaling vertically so as to place the image in S2×[ i−1

m , i
m ]. Moreover,

if the orientation of gi(Ei) is opposite to that of ei, we first reflect Si through the
2-sphere S2 × { 1

2} before applying ĝi × id.
If t is rational and equal to the reduced fraction α/β, we can further use this

information to assign weights to the branched surface as follows. If t > 1 the
branched surface is weighted as shown in Figure 2. If instead, 0 < t < 1, the above
construction is altered by first rotating each of the basic surfaces ΣA, ΣB, ΣC , and
ΣD through 180◦ in the obvious way so as to interchange the two components of
Lp/q. We then swap α and β and proceed as before. Thus for every minimal edge
path in Dt with t a positive rational number different from 1, we have associated
a weighted branched surface and thus an actual surface in the complement of the
link.

If t = 0, 1, or ∞ we must modify this recipe slightly. If we let t approach zero or
infinity, then the above constructions will limit at surfaces for which α = 0 or β = 0
respectively. But the limiting surfaces which arise from the above constructions
when α → β do not give all desired surfaces with α = β. Instead, the process must
be modified slightly. As t → 1 the minimal edge paths in Dt approach minimal
edge paths in D1 that consist entirely of A or C-type edges. Returning to Figure 2,
notice that if α − β = 0, then ΣA with n = α and ΣC are isotopic. Thus if C-type
edges are involved, then ΣA allows for more general branching than ΣC , and for
this reason we replace each use of ΣC with ΣA.

Finally, the main result of Floyd and Hatcher is the following theorem.

Theorem 2.1 (Floyd and Hatcher). The orientable incompressible and meridion-
ally incompressible surfaces in S3−Lp/q, without peripheral components, are exactly
(up to isotopy) the orientable surfaces carried by the collection of branched surfaces
associated to minimal edge paths in Dt from 1

0 to p
q and with t ∈ [0,∞].
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Recall from [4] that a surface S in the complement of the link L is meridionally
incompressible if whenever there is a disk D ⊂ S3 with D ∩ S = ∂D and such that
D meets L transversely in one interior point, then there exists a disk D′ ⊂ S ∪ L
with ∂D = ∂D′ and such that D′ also meets L transversely in a single interior
point.

Floyd and Hatcher then go on to explicitly describe when two surfaces con-
structed in this way are isotopic. However, they do not compute the boundary
slopes of these surfaces, saying only that it should be possible in principle.

3. Lash’s algorithm

The boundary of a branched surface derived from the Floyd-Hatcher construction
defines a train track on the boundary of the regular neighborhood of the link.
Thus the boundary of any incompressible surface carried by the branched surface
is carried by this train track. Lash’s first step is to determine the train tracks for
each of the four basic surfaces ΣA, ΣB, ΣC and ΣD.

Before doing this, we introduce some notation. Let the four points of Z2/Γ be
(0, 0), (1, 0), (0, 1) and (1, 1). At the 0-level, assume that the two arcs of Lp/q join
the points (0, 0) to (0, 1) and (1, 0) to (1, 1). Furthermore, let Lp/q = {K1, K2}
where K1 contains (0, 0) and (0, 1). Orient K1 so that it runs vertically upward
from (0, 0) and orient K2 so that it runs vertically upward from (1, 1). Choose as a
fundamental domain of R2/Γ the region D = [0, 1] × [−1/2, 3/2]. Removing small
disks of radius ε centered at the four points of Z/Γ will remove semi-disks from
the fundamental domain D. These correspond to meridional cross sections of the
regular neighborhood of the link.

Let µ1 be the oriented meridian of K1 having linking number +1 with K1. Let
λ1 be the oriented longitude of K1 defined as follows. Start with the line segment
from (0, 1 − ε, ε) to (0, ε, ε). Join to this the vertical segments {(0, ε)} × [ε, 1 − ε]
and {(0, 1 − ε)} × [ε, 1 − ε]. Next, add the curve in R2 × {1 − ε} which starts at
(0, ε, 1− ε), ends at (0, 1− ε, 1− ε), and is parallel to K1. Finally, orient λ1 parallel
to K1.

The 180◦ rotation of Figure 1 about the vertical axis {(1/2, 1/2)}×R interchanges
the components of the link, and preserves their orientations. We define the oriented
meridian µ2 and longitude λ2 of K2 as the images of µ1 and λ1 respectively under
this rotation.

We will initially compute all boundary slopes with respect to the basis {µi, λi}.
However, λi is not necessarily a preferred longitude of Ki, so it will be necessary
later to know its linking number with Ki. It is a straightforward exercise to compute
this. We obtain

(3.1) lk(Ki, λi) = −
q−2
2∑

j=1

(−1)[[2jp/q]]

where [[x]] is the greatest integer less than or equal to x. Note, for example, that
λi is never the preferred longitude if q is a multiple of 4 since the linking number
must be odd in this case.

Figure 5 depicts the train track boundaries of each of the four basic branched
surfaces. Each row of the figure shows the train tracks on the boundary of each of
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the four “columns” which are the regular neighborhoods of the vertical segments
of the link. These are depicted in the corresponding regions of D × [0, 1], that is,
the product of the semicircular arcs surrounding each integer lattice point with the
unit interval [0, 1]. Notice that we have used slopes ranging from −∞ to ∞ to
parameterize the semicircular arcs. Thus we see the train tracks for ΣA, on each of
the four columns, begin at slopes of ±∞ and end at slopes of ±∞ and 0. Similarly,
the train tracks for ΣC , on all four columns, have curves that begin at slopes of 1
and end at slopes of 0.

Suppose Σ is a branched surface obtained by piecing together homeomorphic
copies of the four basic branched surfaces and that S is a surface carried by Σ.
Because Σ corresponds to a path in Dt from 1

0 to p
q , Σ will always begin with a

copy of ΣA and end with an upside-down copy of ΣA. Let the initial weights on
Σ at the 0-level be α and β as shown in Figure 2. Thus, at the 0-level on the
neighborhood of K1, the boundary of S consists of α arcs. If we orient one of
these arcs in the direction of K1 and follow it upward, it will follow the train track
up the (0, 0) column until it reaches the top, traverse a curve of slope p

q at the
1-level, and then follow the train track down the (0, 1) column. In Figure 5 we have
chosen to orient the train tracks parallel to K1 and K2 for this reason. When we
return to our starting point at the bottom we may end there, or perhaps continue
to travel around again in the longitudinal direction. If the boundary of S consists
of several components, we may orient them all parallel to K1 and K2 (even if these
orientations are not compatible with an orientation of S).

Suppose ∂S has k components on the regular neighborhood of K1 and that each
has algebraic (and geometric) intersection of li with µ1. Thus

l1 + l2 + · · · + lk = α.

Furthermore, suppose each has algebraic intersection mi with λ1. Then gcd(mi, li)
= 1 for all i and moreover, because the components of ∂S are all disjoint and
nontrivial, each boundary slope mi/li is the same. From this it follows that li and
mi are constant, say li = l and mi = m. Thus to determine the boundary slope
m/l we need only compute the total algebraic intersection M1 = m1+m2+ · · ·+mk

of ∂S with λ1 and divide it by α. Similarly, the boundary slope of S on the regular
neighborhood of K2 is M2/β where M2 is the total algebraic intersection of ∂S with
λ2. Again, these boundary slopes are with respect to the basis {µi, λi}.

To compute M1 we must sum the algebraic intersection of the oriented train
tracks with λ1 on columns (0, 0) and (0, 1). We may do this one section at a time,
with each section coming from one of the four basic surfaces. We may simplify mat-
ters by pulling back λ1 under the inverse of ĝ×id and counting its intersection with
the standard train tracks shown in Figure 5, rather than examining the images of

the standard train tracks under ĝ×id. If g =
(

a b
c d

)
, then ĝ−1 =

(
a −c
−b d

)

and the vector
(

0
1

)
, which represents a slope of ∞ (and the longitude λ1), pulls

back to the vector
(

−c
d

)
, which represents a slope of −d/c. Thus we must ex-

amine how the standard train tracks intersect the vertical line located at slope
−d/c.
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Figure 5. Train track boundaries of each of the four branched surfaces.
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For example, suppose γ is a minimal edge path in Dt beginning at 1
0 and ending

at p
q . Let ei be an edge of γ that is the image of Ei = A0 under the element

gi of G. Furthermore, suppose that the orientations of ei and gi(A0) agree. If
0 < −d/c < ∞, then the algebraic intersection on column (0, 0) is −n and on
column (0, 1) is −(β − n). Note that on column (0, 0) the meridian runs from 0
towards ∞ while on column (0, 1) the meridian runs from 0 to −∞. This explains
the minus signs in the above calculations. The total contribution to M1 at this
level, in this case, is thus −β. If instead, −∞ < −d/c < 0, we obtain β − n on
column (0, 0) and n on column (0, 1) for a total contribution to M1 of β. Note that
−d/c cannot be zero. This is because c is even and therefore both a and d must be
odd since det(g) = 1. However, −d/c may equal ±∞ if c = 0. In this case the train
track is not transverse to the (pullback of the) longitude. When this occurs, we
may isotope the longitude slightly by pushing it in the positive direction of µ1. So
in this case, if −d/c = ±∞ we obtain an intersection on column (0, 0) of β −n and
on column (0, 1) of −(β−n) for a net contribution to M1 of zero. Table 1 lists these
results together with the contributions to M1 for the other three types of surfaces,
all in the case where the orientations of ei and gi(Ei) agree. If these orientations
are opposite, then we must flip each surface upside-down, and it is easy to see that
the effect is to negate the entries in the table.

A similar examination of the standard train tracks allows us to compute M2.
However in this case an additional consideration seems necessary. For any g ∈ G,
ĝ takes (0, 0) to itself and (0, 1) to itself since c is even and both a and d are
odd. But if b is odd, then (1, 0) and (1, 1) will be traded while if b is even these
lattice points will each be fixed. Thus it seems necessary to consider these cases
separately. However, a close examination of the case when b is odd reveals that
both the orientations of the train tracks as well as the orientation of µ2 are reversed
and the total contribution to M2 is unaffected. Thus separate formulae for b even
or odd are not needed. The results for each of the four basic surfaces are listed in
Table 1.

The data in the first four rows of Table 1 are sufficient to compute the boundary
slopes when t = α/β �∈ {0, 1,∞} and even in the limiting cases t → 0 or t → ∞.
But as mentioned already, when t → 1, if any C-type edges appear in the limiting
minimal path in D1, then we replace the corresponding C-type surfaces with the
more general A-type surfaces. Suppose e is such a C-type edge in D1. Then e joins
a/c and b/d in D1 where both c and d are odd, ad − bc = 1, and thus, exactly one

of a or b is even. Therefore we may choose g =
(

a b
c d

)
and assume that b is

even, while a, c, and d are all odd. Now ĝ fixes (0, 0) and (1, 0) while trading (0, 1)
and (1, 1). To properly use Figure 5 now, we must orient columns (0, 0) and (0, 1)
up and the other two down. Furthermore, the meridian µ1 points from 0 to ∞ in
the (0, 0) figure and from 0 to −∞ in the (1, 1) figure. Similarly, the meridian µ2

points from 0 to ∞ in the (0, 1) figure and oppositely in the (1, 0) figure. It is now
a simple matter to compute the contributions to M1 and M2 given in the last row
of Table 1. Here we see that the number n of horizontal sheets does not cancel
from the calculations. Notice also that because both c and d are odd, −d/c cannot
equal zero or infinity.

Everything is now in place to compute the boundary slopes for a given 2-bridge
link, Lp/q. Beginning with 0 < β < α, and hence 1 < t < ∞, we first find all



COMPUTING BOUNDARY SLOPES OF 2-BRIDGE LINKS 1531

Table 1. Contributions to M1 and M2 according to surface type.

Surface Type M1 M2 −d/c

A

β

−β

0

β

−β

0

−∞ < −d/c < 0
0 < −d/c < ∞
−d/c = ±∞

B

β − α

α − β

0

0
0
0

−∞ < −d/c < 0
0 < −d/c < ∞
−d/c = ±∞

C
−2β

0
0
2β

0 < −d/c < 1
otherwise

D

β − α

0
α − β

α − β

α − β

α − β

−∞ < −d/c < 1/2
−d/c = 1/2,±∞
1/2 < −d/c < ∞

A for C
2(β − n)
−2n

2n

2(n − β)
−∞ < −d/c < 0
0 < −d/c < ∞

minimal paths in Dt from 1/0 to p/q. For each of these paths, each edge e must be

identified as the image of E ∈ {A0, B0, C0, D0} by some element g =
(

a b
c d

)
∈

G. Next, using −d/c and the data in Table 1, the contributions to M1 and M2

are computed, and these are added over all edges in the path to obtain M1 and
M2. Note that the entries in the table must be negated if the orientation of e does
not match that of g(E). Notice also that M1 and M2 are always integer linear
combinations of α and β. The boundary slope of this surface is then

M1

α
=

xα + yβ

α
= x + yt−1

on the boundary associated to K1 and
M2

β
=

zα + wβ

β
= zt + w

on the boundary associated to K2. This gives a 1-parameter family of boundary
slopes for each rational number t greater than 1. As t approaches ∞ we may simply
take the limits of the slopes obtained so far provided z �= 0. In this case the lim-
iting boundary slopes are x and ∞. However, care should be taken in interpreting
the limiting 4-tuple, (M1(α, β), α, M2(α, β), β) → (xα, α, zα, 0). The orientations
of K1 and K2 give well-defined intersection numbers for curves which intersect a
meridian. For curves which are parallel to a meridian, we have not distinguished
between whether they agree or disagree with the meridian’s orientation. There-
fore, the limiting 4-tuples (xα, α, zα, 0) and (xα, α,−zα, 0) correspond to the same
surface. If z = 0, then M2 and β both approach zero as t approaches ∞. This
means that the surface has no intersection with the regular neighborhood of K2

and thus has no boundary slope associated with K2. It should be noted that we
have not sought to impose the “meridional incompressibility” condition described
in [4] on these limiting surfaces. At the other extreme, letting t approach 1 will
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produce legitimate boundary slopes, but not all possible slopes with α = β. In-
stead we must consider the limiting minimal edge path in D1, swap A for C-type
edges (if there are any) and now use the data from the last row of Table 1. Fi-
nally, to allow for t < 1, we must rotate all our surfaces 180◦ around the axis
{(1/2, 1/2)} × R, thus trading α with β. The 4-tuple (M1(α, β), α, M2(α, β), β) of
the algebraic intersections with λ1, µ1, λ2, and µ2 respectively is then transformed
to (M2(β, α), α, M1(β, α), β) with it now the case that α < β. Letting t approach
zero now corresponds to letting α approach zero. As with the case t → ∞, if the
boundary curves on component one are meridians, then there is an ambiguity of
sign in the first entry of the 4-tuple. Furthermore, some surfaces with α = 0 may
be meridionally compressible. Finally, all of these computations are with respect to
the bases {µ1, λ1} and {µ2, λ2}. To convert to a preferred basis, we must consider
the linking number l =lk(λ1, K1) =lk(λ2, K2) given in Equation (3.1). Converting
to the preferred basis sends the 4-tuple (M1, α, M2, β) to (M1 + lα, α, M2 + lβ, β).

4. An improved algorithm

As mentioned already, M1 and M2 are always integer linear combinations of α
and β. After implementing Lash’s algorithm on a computer and looking at sample
data, the conclusions of the following theorem were apparent. In searching for a
proof, we were led to a revision of Lash’s algorithm that is much simpler to apply
by hand and implement on a computer. The revised approach will be described in
the proof and illustrated in the next section with an interesting example.

Before stating some results we define M(γ) to be the pair of intersection numbers
(M1, M2) associated to the path γ in Dt.

Theorem 4.1. Given any path γ (not necessarily minimal) in Dt with 1 < t < ∞,
which begins and ends at vertices of D1, M(γ) is of the form

M(γ) = (xα + yβ, yα + zβ)

where x ≡ z mod 2. If additionally, γ begins at 1
0 and ends at p

q , then x+y ≡ 1+q

mod 2.

The proof of this theorem is an easy consequence of the following two lemmas.

Lemma 4.2. Suppose γt is a path in Dt starting at p0
q0

, ending at pn

qn
and consisting

solely of A and B-type edges. Letting t → 1, γt will collapse to the path

γ1 =
{

p0

q0
,
p1

q1
, . . . ,

pn

qn

}
in D1 containing only A-type edges. Then

M(γt) =

(
n−1∑
i=0

δi

)
(α, β) and

M(γ1) =

(
n−1∑
i=0

δi

)
(β, β)

where

δi =
{

0, if qiqi+1 = 0;
piqi+1 − pi+1qi, otherwise.
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Figure 6. Lemma 4.3 describes the result of traveling around each region.

Proof. Let e be an edge of γ1 oriented from a
c to b

d where a, b, c and d are all positive,

c is even and ad−bc = ±1. The corresponding matrix g ∈ G is either g =
(

a b
c d

)

or g =
(

a −b
c −d

)
, whichever one has determinant one. In γt, e begins with an

A-type edge, oriented forward, and ends with a B-type edge, oriented backwards.
Referring to Table 1, we see that the contribution to (M1, M2) is either (0, 0) if
c = 0, or (ad− bc)(α, β). It is easy to check the remaining case where c is odd and
d is even. �

Lemma 4.3. Let g =
(

a b
c d

)
be any element of G and label the regions of g(Q)

as shown in Figure 6. If γi = ∂Ri, oriented counterclockwise, then M(γi) are given
by:

γi M(γi)
γ0 or γ2 (0,−2β)
γ1 or γ3 (−α + β, α − β)
γ4 (−2β,−2α + 4β)

Proof. Suppose g =
(

a b
c d

)
and consider the path γ0. The first edge in the path

is of type A and is oriented forward, the second is type C oriented backwards, and
the final edge is type A oriented backwards. The matrix g is used to determine

the contribution of the first two edges, while
(

a a + b
c c + d

)
is used for the third

edge. Thus to determine the contribution of the third edge we must consider
−d′/c′ = −(c + d)/c = −1 − d/c. Suppose first that −d/c = ±∞ and hence
−d′/c′ = ±∞. Using Table 1, we see that the three edges contribute (0, 0), (0,−2β)
and (0, 0) respectively, for a sum of (0,−2β). Next, suppose −∞ < −d/c < 0 and
thus −∞ < −d′/c′ < 0. Now the edges contribute (β, β), (0,−2β) and (−β,−β),
giving the same total as before. As our next case, suppose 0 < −d/c < 1 and hence
−∞ < −d′/c′ < 0. The edges now contribute (−β,−β), (2β, 0) and (−β,−β), again
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giving a sum of (0,−2β). Finally, if 1 < −d/c < ∞, then 0 < −d′/c′ < ∞ and we
obtain (−β,−β) + (0,−2β) + (β, β) = (0,−2β).

The computations for the other regions are similar and are left to the reader. �

Proof of Theorem 4.1. Let γ be a path in Dt with endpoints in D1 and let γ′ be
obtained from γ by pushing each “diagonal” edge across a region of type R0 through
R3 (as in Lemma 4.3) to eliminate all edges of type C and D. Thus M(γ′) = k(α, β)
for some integer k. Notice that any path in D1 must pass through fractions whose
denominators alternate in parity. Thus if γ′ starts at 1

0 and ends at p
q it must have

a number of edges equivalent to q mod 2. Since the first edge contributes zero to
k and every other edge contributes ±1, we have that k and q have opposite parity.

To go back to γ from γ′ suppose that we must move across n+
0 regions of type

R0 (or R2) in the positive sense and n−
0 in the negative sense. Similarly, let n+

1 and
n−

1 be the number of regions of type R1 (or R3) that we must push across in the
positive or negative sense respectively. Then

M(γ) = k(α, β) + (n+
0 − n−

0 )(0,−2β) + (n+
1 − n−

1 )(−α + β, α − β)
= ((k − n+

1 + n−
1 )α + (n+

1 − n−
1 )β,

(n+
1 − n−

1 )α + (k − n+
1 + n−

1 − 2n+
0 + 2n−

0 )β).

Thus

x = k − n+
1 + n−

1 ,

y = n+
1 − n−

1 ,

z = k − n+
1 + n−

1 − 2n+
0 + 2n−

0

and x ≡ z mod 2. Furthermore, x + y = k. Thus if the path begins at 1
0 and ends

at p
q we see that x + y ≡ 1 + q mod 2. �

The following lemma, which is analogous to Lemma 4.3, allows us to handle the
case where C-type edges are replaced with A-type edges in D1. The proof is similar
to the proof of Lemma 4.3 and is left to the reader.

Lemma 4.4. Let g =
(

a b
c d

)
be any element of G where b is even and label the

regions of g(Q) as shown in Figure 7. If γi = ∂Si, oriented counterclockwise, then

M(γ0) = (−2β + 2n,−2n) and
M(γ1) = (−2n,−2β + 2n)

where 0 ≤ n ≤ β.

Using this lemma we may determine the form of M(γ) for any path in D1.

Theorem 4.5. Let γ be any path in D1. Then M(γ) has the form

M(γ) = ((x + ys)β, (x − ys)β)

where y is the number of C-type edges in γ and s is a rational parameter with
−1 ≤ s ≤ 1. If additionally, γ begins at 1

0 and ends at p
q , then x + y ≡ 1 + q

mod 2.
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Figure 7. Lemma 4.4 describes the result of traveling around each region.

Proof. If γ has no C-type edges the result is the same as Lemma 4.2. If C-type
edges are present, push each such edge across a region of type S0 (as in Lemma 4.4)
to obtain a path with only A-type edges. Applying Lemma 4.4, we now have that

M(γ) = k(β, β) +
P∑

i=1

(−2β + 2ni,−2ni) −
P+N∑

i=P+1

(−2β + 2ni,−2ni)

for some integer k, nonnegative integers P and N , and integers ni where 0 ≤ ni ≤ β.
Let

X = 2
P∑

i=1

ni − 2
P+N∑

i=P+1

ni.

If we let

s =
X − (P − N)β

(P + N)β
,

then it is not hard to show that −1 ≤ s ≤ 1. Substituting for X in M(γ) we obtain
the desired result with y = P + N and x = k − P + N . �

Theorems 4.1 and 4.5 place restrictions on the form of M(γ) where γ is a path
in either Dt or D1. The following theorem shows that these are in fact the only
restrictions that apply and moreover that minimal paths may be used to realize
any desired value of M(γ).

Theorem 4.6. There exist minimal paths in either Dt or D1 which begin at 1
0 and

end at some p
q that realize all possible values of M subject only to the constraints

of Theorems 4.1 and 4.5.

Proof. Focussing on Theorem 4.1, let x, y, and z be any three integers such that
x ≡ z mod 2. Suppose also that x + y ≡ 1 mod 2. We seek a fraction p

q , with q

even, and a minimal path γ from 1
0 to p

q such that M(γ) = (xα + yβ, yα + zβ).
Referring to the proof of Theorem 4.1, we will show how to build a minimal path
with compete control over k, n+

0 , n−
0 , n+

1 , and n−
1 .

Figure 8 shows six blocks of quadrilaterals, each containing a minimal path.
Heavy dots are placed at vertices with even denominators. Starting with either of
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1

1

11

1

1

1

1

1

1

1

11

0

0

1
0

1
0

−1

−1

−1

−1

−1

−1−1

∆n+
1 = 1

∆k = 2
∆n−

1 = 1
∆k = 0

∆n+
0 = 1

∆k = 4

∆n−
0 = 1

∆k = 0

∆k = 1 3 5 ∆k =−1 −3 −5

Figure 8. Building blocks for a minimal path γ with desired M(γ).

the last two blocks in the second row, we may then paste on any number of the first
four blocks (in any order), always gluing blocks together as indicated by the arrows.
No matter how the blocks are joined together, the path will remain minimal. The
first four blocks involve C and D type edges and can be used to create any desired
values for n+

0 , n−
0 , n+

1 , and n−
1 . Once these parameters are fixed, a sufficiently long

starting block of one of the two types may be prepended to create any desired value
of k.

It is not hard to adapt this argument to the case where x + y ≡ 0 mod 2 or to
the case of Theorem 4.5. Moreover, more efficient sets of building blocks than these
can easily be designed. �

5. An example

In this section we will apply our improved algorithm to compute the bound-
ary slopes of the links L 4k−1

8k
. Since 4k−1

8k has the continued fraction expansion
[0, 2,−2k,−2], these links can be pictured as shown in Figure 9. Here we have
replaced the −2k right-handed crossings with 1

k -surgery on an unknot surrounding
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1
k

Figure 9. The links Lk

the parallel strands. Viewed this way we see that L 4k−1
8k

, which we will henceforth
simply denote as Lk, is 1

k surgery on one component of the Borromean rings.
The minimal chain of quadrilaterals in the diagram Dt connecting 1

0 to 4k−1
8k is

abstractly depicted in Figure 10. It is not hard to show by induction that for k > 1
there are precisely six minimal paths, {γ1, . . . , γ6}, in Dt from 1

0 to 4k−1
8k . These

are listed in Table 2 by listing the consecutive vertices in each path. The vertices
Ri, Si, and Ti each lie between two vertices of D1 (or D0) as indicated in the figure.
If k = 1, path γ4 is no longer minimal and should be deleted from the list.

Associated to each of these paths, in the case where t > 1, is a weighted branched
surface with α > β. To find the boundary slopes of surfaces carried by such a
branched surface we must first compute the intersection numbers (M1, M2) and
then adjust for our choice of basis. We will derive (M1, M2) from each path by
using the lemmas given in the last section.

Let σ1 be the path in D1 given by σ1 = { 1
0 , 1

1 , 1
2 , 2k

4k+1 , 4k−1
8k }. It follows easily

from Lemma 4.2 that M(σ1) = (3α, 3β). We may now deform σ1 to γ1 by moving
the path over two regions, each of type R1 (or R3) as shown in Figure 6. This
results in adding 2(−α + β, α − β). We therefore obtain (2α + β, α + 2β). To pass
to either γ2 or γ3, we deform γ1 across two regions of type R0 and one of type R4.

1
0 S0

1
1

2k
4k+1 T2k

4k−1
8k

T0 R0 1
2

R2k+1 S2k

0
1 R1 R2k

2k−1
4k−1

Ri Ri+1

i−1
2i−1

i
2i+1

Si Ti

2i−1
4i

Figure 10. The minimal chain of quadrilaterals from 1
0 to 4k−1

8k .
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Table 2. Minimal Dt paths from 1
0 to 4k−1

8k .

γ1: 1
0 , S0, R0,

1
2 , R2k+1, T2k, 4k−1

8k

γ2: 1
0 , S0, R0,

1
2 , R2k, S2k, 4k−1

8k

γ3: 1
0 , T0, R1,

1
2 , R2k+1, T2k, 4k−1

8k

γ4: 1
0 , T0, R1,

1
2 , R2k, S2k, 4k−1

8k

γ5: 1
0 , T0, R1, R2, . . . , R2k, S2k, 4k−1

8k

γ6: 1
0 , T0,

0
1 , S1, T1,

1
3 , S2, T2, . . . ,

2k−1
4k−1 , S2k, 4k−1

8k

In either case then, we must add (−2β,−2α) and obtain a total of (α, β). To move
from γ2 (or γ3) to γ4, we again move across two regions of type R0 and one of type
R4 and again add (−2β,−2α). This gives (α − 2β,−2α + β) for M(γ4). We may
now obtain γ5 from γ4 by moving across 2k − 1 regions of type R0. Thus the value
of M(γ5) is (α−2β,−2α+β)+(2k−1)(0,−2β) = (α−2β,−2α+(3−4k)β). Now
let σ2 = { 1

0 , 0
1 , 1

2 , 2k−1
4k−1 , 4k−1

8k }. We may either think of moving γ4 to σ2, or start
over again with Lemma 4.3. Either way we obtain (−α,−β) for M(σ2). Finally,
to obtain γ6 from σ2, we must move across 2k − 1 regions, each made up of one
region of type R0, two of type R1 and one of type R4. This results in adding
(2k − 1)(−2α, 0) to M(σ2) giving a total of ((1 − 4k)α,−β).

We have now accounted for all the possibilities when α > β. We may determine
all cases where β = 0, and thus t = ∞, from these by substitution, but letting α
equal β does not give all possibilities for t = 1. Because both γ5 and γ6 involve
C-type edges, so do their limiting minimal edge paths in D1. In this example,
both γ5 and γ6 limit to the same minimal edge path γ1

5 in D1. To recover all
possible boundary slopes when α = β we must now consider the branched surface
corresponding to this path where C-type surfaces are replaced with A-type surfaces.

Starting from σ2 we may move to γ1
5 by moving across k regions of type S0 and

k − 1 regions of type S1. Thus we must add
∑k

i=1(−2β + 2n2i−1,−2n2i−1) and∑k−1
i=1 (−2n2i,−2β + 2n2i) to M(σ2) = (−α,−β). This gives (−(1 + 2k)β + X, (1−

2k)β − X), where X = 2
∑2k−1

i=1 (−1)i+1ni. Here 0 ≤ ni ≤ β.
The final 4-tuples (M1, α, M2, β) for L 4k−1

8k
in all cases where α ≥ β ≥ 0 are

given in Table 3. All of these data are still with respect to the basis {µi, λi}.
From Table 3 we may easily derive the corresponding 4-tuples when 0 ≤ α ≤ β.

Namely, (M1(α, β), α, M2(α, β), β) is changed to (M2(β, α), α, M1(β, α), β). Notice
that if a minimal path in Dt does not involve any C-type edges, then the contribu-
tions to M1 and M2 given in Table 1 are equal when α = β. Thus the same 4-tuple
will result as we approach α

β = 1 from either above or below. Using Equation (3.1)
it is not difficult to show that lk(λ1, K1) = lk(λ2, K2) = −1 for all k. The final
boundary slopes M1/α and M2/β for all rational values of t, and with respect to
the preferred basis are now given in Table 4. Furthermore, the slopes in this table
are described by the rational parameters t = α/β in the case where α �= β, and

s =
X − β

(2k − 1)β
in the case where α = β. Note that a pair of boundary slopes of the form (0, φ)
means that the corresponding surface has no boundary components on K2 (and a
slope of zero on K1).
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Table 3. Boundary slope data for L 4k−1
8k

, k > 0, with respect to
the basis {µ1, λ1} and for α ≥ β. The path γ4 is not counted if
k = 1. Here X = n1 − n2 + n3 − · · · + n2k−1.

path algebraic intersection with restrictions
(λ1, µ1, λ2, µ2)

γ1 (α + 2β, α, 2α + β, β) α > β ≥ 0
γ2 (α, α, β, β) α > β ≥ 0
γ3 (α, α, β, β) α > β ≥ 0
γ4 (α − 2β, α,−2α + β, β) α > β ≥ 0
γ5 (α − 2β, α,−2α + (3 − 4k)β, β) α > β ≥ 0
γ6 ((1 − 4k)α, α,−β, β) α > β ≥ 0
γ1
5 (−(1 + 2k)β + 2X, β, (1 − 2k)β − 2X, β) 0 ≤ ni ≤ β = α

Table 4. Boundary slope pairs for L 4k−1
8k

, k > 0, with respect to
the preferred basis {µ1, λ

0
1}. Both t and s are rational parameters.

∂-slopes restrictions
(0, 0)
(0, φ), (φ, 0)
(−4k, φ), (φ,−4k)
(−4k,−2), (−2,−4k)
(2t−1, 2t) 0 ≤ t ≤ ∞
(−2t−1,−2t) 0 ≤ t ≤ ∞, k > 1
(−2t−1 + 2 − 4k,−2t) 0 ≤ t ≤ 1
(−2t−1, 2 − 4k − 2t) 1 ≤ t ≤ ∞
(−1 − 2k + (2k − 1)s,−1 − 2k − (2k − 1)s) −1 ≤ s ≤ 1

6. Boundary slopes of 2-bridge links up to 10 crossings

We have written a computer program to implement the algorithm described in
Section 4. One begins by finding all minimal paths in D0 and D1 from 1

0 to p
q . These

determine the minimal paths in Dt. Each minimal path γ in Dt is then deformed
into a path γ′ of only A and B-type edges. Lemma 4.2 is used to compute M(γ′),
and M(γ) is derived from this using Lemma 4.3. In order to minimize the chance
of producing errors, each of us coded a program independent of the other with
debugging proceeding until our results agreed.

The second Tait conjecture states that any reduced alternating diagram of a link
is minimal. Thus is it easy to determine the crossing number of Lp/q. If we express
p/q as the continued fraction [0, a2, . . . , an] where each ai is positive, then Lp/q has
a reduced alternating 4-plat diagram with a2 + a3 + · · · + an crossings. Thus the
crossing number of Lp/q is a2 +a3 + · · ·+an. It is now a simple matter to determine
all 2-bridge links with 10 or fewer crossings by finding all such continued fractions.
Furthermore, from the classification of 2-bridge links, we know precisely when two
fractions represent the same link.

The boundary slopes of all 2-bridge links having ten or less crossings are pre-
sented in Tables 5-9. All slopes are with respect to a preferred longitude and merid-
ian basis. For those links with 9 or less crossings, the index of the link in Rolfsen’s
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table [11] is also given. Two types of data are listed. First, all boundary slopes in
the case where 1 < t < ∞ are given. Note that the 4-tuple of intersection numbers
corresponding to the entry (f(t), g(t)) is (αf(α/β), α, βg(α/β), β). From these we
obtain the algebraic intersection numbers (αg(β/α), α, βf(β/α), β) for 0 < t < 1
as described earlier. Thus, the boundary slopes for 0 < t < 1 are (g(t−1), f(t−1)).
Furthermore, one may then derive from these all boundary slopes in the cases t = 0
and t = ∞ and some of the boundary slopes in the case t = 1. Recall that if α or β
equals zero, then there is a sign ambiguity in the first or third entry respectively of
the associated 4-tuple. In addition, we have not sought to remove data that may
correspond to meridionally compressible surfaces. Finally, all additional slopes in
the case t = 1 are given in terms of the rational parameter s with −1 ≤ s ≤ 1.
Here the pair (f(s), g(s)) corresponds to the 4-tuple (βf(s), β, βg(s), β).

Table 5. Boundary slope data for 2-bridge links to 8 crossings.
Parameters t and s are rational with 1 < t < ∞ and −1 ≤ s ≤ 1.

link p/q boundary slopes

22
1 1/2 (−t−1, −t) (t−1, t)

42
1 1/4 (−2, −2) (−2t−1, −2t) (2t−1, 2t)

52
1 3/8 (−4, −2) (0, 0) (−2t−1, −2 − 2t) (2t−1, 2t)

(−3 + s, −3 − s)

62
1 1/6 (−3, −3) (−3t−1, −3t) (3t−1, 3t)

62
2 3/10 (−2 − t−1, −2 − t) (2 − t−1, −t) (−2 + t−1, t) (2 + t−1, 2 + t)

(−3t−1, −3t) (3t−1, 3t) (s, −s)

62
3 5/12 (−6, −2) (0, 0) (−2t−1, −4 − 2t) (−2t−1, −2t)

(2t−1, 2t) (−4 + 2s, −4 − 2s)

72
1 3/14 (−5, −3) (−2 − t−1, −4 − t) (−2 + t−1, −2 + t) (−3t−1, −2 − 3t)

(−t−1, −t) (t−1, t) (3t−1, 3t) (−4 + s, −4 − s)

72
3 7/16 (−8, −2) (0, 0) (−2t−1, −6 − 2t) (−2t−1, −2t)

(2t−1, 2t) (−5 + 3s, −5 − 3s)

72
2 5/18 (−2 − t−1, −2 − t) (4 − t−1, −t) (−2 + t−1, −2 + t) (−2 + t−1, 2 + t)

(4 + t−1, 2 + t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 2 + 3t) (4 + s, 4 − s) (1 + 2s, 1 − 2s)

82
1 1/8 (−4, −4) (−4t−1, −4t) (4t−1, 4t)

82
2 3/16 (0, −2) (2 − 2t−1, −2t) (−3 − t−1, −3 − t) (−3 + t−1, −1 + t)

(2 + 2t−1, 2 + 2t) (−4t−1, −4t) (4t−1, 4t) (−1 + s, −1 − s)

82
6 9/20 (−10,−2) (0, 0) (−2t−1, −8 − 2t) (−2t−1, −2t)

(2t−1, 2t) (−6 + 4s, −6 − 4s)

82
3 5/22 (−7, −3) (−2 − t−1, −6 − t) (−2 − t−1, −2 − t) (−2 + t−1, −2 + t)

(−3t−1, −4 − 3t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (−5 + 2s, −5 − 2s)

82
4 7/24 (−4, −4) (−4, 0) (2, 0) (−2 − 2t−1, −2 − 2t)

(2 − 2t−1, −2 − 2t) (−2 + 2t−1, 2t) (2 + 2t−1, 2 + 2t) (−4t−1, −4t)

(4t−1, 4t) (1 + s, 1 − s) (−2 + 2s, −2 − 2s)

82
5 7/26 (−2 − t−1, −2 − t) (6 − t−1, −t) (−2 + t−1, −2 + t) (−2 + t−1, 4 + t)

(6 + t−1, 2 + t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (3t−1, 4 + 3t) (5 + 2s, 5 − 2s) (2 + 3s, 2 − 3s)

82
7 11/30 (−7, −3) (−4 − t−1, −4 − t) (−4 + t−1, −2 + t) (−3t−1, −4 − 3t)

(−t−1, −2 − t) (−t−1, −t) (t−1, t) (3t−1, 3t)

(−2 + s, −2 − s) (−5 + 2s, −5 − 2s)

82
8 13/34 (−4 − t−1, −2 − t) (4 − t−1, −2 − t) (4 − t−1, 2 − t) (−4 + t−1, −2 + t)

(−4 + t−1, 2 + t) (4 + t−1, 2 + t) (−3t−1, −2 − 3t) (−t−1, −2 − t)

(−t−1, −t) (t−1, t) (t−1, 2 + t) (3t−1, 2 + 3t)

(−4 + s, −4 − s) (−2 + s, −2 − s) (3s, −3s) (2 + s, 2 − s)

(4 + s, 4 − s)
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Table 6. Boundary slope data for 2-bridge links with 9 crossings.
Parameters t and s are rational with 1 < t < ∞ and −1 ≤ s ≤ 1.

link p/q boundary slopes

92
1 3/20 (−6, −4) (−3 − t−1, −5 − t) (−3 + t−1, −3 + t) (−4t−1, −2 − 4t)

(−2t−1, −2t) (2t−1, 2t) (4t−1, 4t) (−5 + s, −5 − s)

92
4 5/24 (−6, −4) (−4, −6) (0, 0) (−2 − 2t−1, −4 − 2t)

(−2 + 2t−1, −2 + 2t) (−4t−1, −2 − 4t) (4t−1, 4t) (−5 + s, −5 − s)

92
10 11/24 (−12, −2) (0, 0) (−2t−1, −10 − 2t) (−2t−1, −2t)

(2t−1, 2t) (−7 + 5s, −7 − 5s)

92
2 5/28 (2, −2) (4 − 2t−1, −2t) (−3 − t−1, −3 − t) (−3 + t−1, −3 + t)

(−3 + t−1, 1 + t) (4 + 2t−1, 2 + 2t) (−4t−1, −4t) (−2t−1, −2t)

(2t−1, 2t) (4t−1, 2 + 4t) (2s, −2s) (5 + s, 5 − s)

92
3 7/30 (−9, −3) (−2 − t−1, −8 − t) (−2 − t−1, −2 − t) (−2 + t−1, −2 + t)

(−3t−1, −6 − 3t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (−6 + 3s, −6 − 3s)

92
5 7/32 (0, −4) (0, 0) (−2 − 2t−1, −4 − 2t) (2 − 2t−1, −2 − 2t)

(2 − 2t−1, 2 − 2t) (−5 − t−1, −3 − t) (−5 + t−1, −1 + t) (−2 + 2t−1, −2 + 2t)

(2 + 2t−1, 2 + 2t) (−4t−1, −2 − 4t) (4t−1, 4t) (−5 + s, −5 − s)

(−2 + 2s, −2 − 2s)

92
8 9/34 (−2 − t−1, −2 − t) (8 − t−1, −t) (−2 + t−1, −2 + t) (−2 + t−1, 6 + t)

(8 + t−1, 2 + t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (3t−1, 6 + 3t) (6 + 3s, 6 − 3s) (3 + 4s, 3 − 4s)

92
6 11/36 (−2, −2) (−2, 0) (2, 2) (−2 − 2t−1, −2 − 2t)

(2 − 2t−1, −2t) (5 − t−1, 1 − t) (5 + t−1, 3 + t) (−2 + 2t−1, 2 + 2t)

(2 + 2t−1, 4 + 2t) (−4t−1, −4t) (−2t−1, −2t) (2t−1, 2t)

(4t−1, 2 + 4t) (−1 + s, −1 − s) (5 + s, 5 − s) (2 + 2s, 2 − 2s)

92
9 11/40 (−4, −4) (−4, 2) (0, 0) (4, 0)

(−2 − 2t−1, −2 − 2t) (4 − 2t−1, −2 − 2t) (−2 + 2t−1, −2 + 2t) (−2 + 2t−1, 2 + 2t)

(4 + 2t−1, 2 + 2t) (−4t−1, −4t) (4t−1, 2 + 4t) (5 + s, 5 − s)

(2 + 2s, 2 − 2s) (−1 + 3s, −1 − 3s)

92
7 13/44 (−6, −4) (−6, 0) (−2,−2) (−2, 0)

(2, −2) (2, 0) (2, 2) (−4 − 2t−1, −2 − 2t)

(−2 − 2t−1, −4 − 2t) (2 − 2t−1, −4 − 2t) (2 − 2t−1, −2t) (−4 + 2t−1, 2t)

(−2 + 2t−1, 2t) (2 + 2t−1, 2 + 2t) (−4t−1, −2 − 4t) (−2t−1, −2t)

(2t−1, 2t) (4t−1, 4t) (−5 + s, −5 − s) (−1 + s, −1 − s)

(2s, −2s) (1 + s, 1 − s) (−3 + 3s, −3 − 3s)

92
11 17/46 (−9, −3) (−6 − t−1, −4 − t) (−4 − t−1, −6 − t) (−4 − t−1, −2 − t)

(−6 + t−1, −2 + t) (−4 + t−1, −2 + t) (−3t−1, −6 − 3t) (−3t−1, −2 − 3t)

(−t−1, −4 − t) (−t−1, −2 − t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (−4 + s, −4 − s) (−2 + s, −2 − s) (−3 + 2s, −3 − 2s)

(−6 + 3s, −6 − 3s)

92
12 19/50 (−4 − t−1, −2 − t) (6 − t−1, −2 − t) (6 − t−1, 2 − t) (−4 + t−1, −2 + t)

(−4 + t−1, 4 + t) (6 + t−1, 2 + t) (−3t−1, −2 − 3t) (−t−1, −2 − t)

(−t−1, −t) (t−1, t) (t−1, 4 + t) (3t−1, 3t)

(3t−1, 4 + 3t) (−4 + s, −4 − s) (−2 + s, −2 − s) (3 + 2s, 3 − 2s)

(5 + 2s, 5 − 2s) (1 + 4s, 1 − 4s)
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Table 7. Boundary slope data for 2-bridge links with 10 crossings
(part 1). Parameters t and s are rational with 1 < t < ∞ and
−1 ≤ s ≤ 1.

p/q boundary slopes

1/10 (−5, −5) (−5t−1, −5t) (5t−1, 5t)

3/22 (−1, −3) (2 − 3t−1, −3t) (−4 − t−1, −4 − t) (−4 + t−1, −2 + t)

(2 + 3t−1, 2 + 3t) (−5t−1, −5t) (5t−1, 5t) (−2 + s, −2 − s)

5/26 (−1, 1) (1, −1) (−3 − 2t−1, −3 − 2t) (3 − 2t−1, 1 − 2t)

(−3 + 2t−1, −1 + 2t) (3 + 2t−1, 3 + 2t) (−5t−1, −5t) (5t−1, 5t)

(s, −s)

13/28 (−14, −2) (0, 0) (−2t−1, −12 − 2t) (−2t−1, −2t)

(2t−1, 2t) (−8 + 6s, −8 − 6s)

5/32 (−8, −4) (−3 − t−1, −7 − t) (−3 − t−1, −3 − t) (−3 + t−1, −3 + t)

(−4t−1, −4 − 4t) (−4t−1, −4t) (−2t−1, −2t) (2t−1, 2t)

(4t−1, 4t) (−6 + 2s, −6 − 2s)

7/38 (−5, −5) (−5, −1) (−2 − 3t−1, −2 − 3t) (2 − 3t−1, −2 − 3t)

(−3 − 2t−1, −3 − 2t) (2 − t−1, −t) (2 + t−1, t) (−3 + 2t−1, −1 + 2t)

(−2 + 3t−1, 3t) (2 + 3t−1, 2 + 3t) (−5t−1, −5t) (−t−1, −4 − t)

(t−1, −2 + t) (5t−1, 5t) (s, −s) (2 + s, 2 − s)

(−3 + 2s, −3 − 2s)

9/38 (−11, −3) (−2 − t−1, −10 − t) (−2 − t−1, −2 − t) (−2 + t−1, −2 + t)

(−3t−1, −8 − 3t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (−7 + 4s, −7 − 4s)

7/40 (4, −2) (6 − 2t−1, −2t) (−3 − t−1, −3 − t) (−3 + t−1, −3 + t)

(−3 + t−1, 3 + t) (6 + 2t−1, 2 + 2t) (−4t−1, −4t) (−2t−1, −2t)

(2t−1, 2t) (4t−1, 4t) (4t−1, 4 + 4t) (6 + 2s, 6 − 2s)

(1 + 3s, 1 − 3s)

9/40 (−8, −4) (−4, −8) (−4,−4) (0, 0)

(−2 − 2t−1, −6 − 2t) (−2 − 2t−1, −2 − 2t) (−2 + 2t−1, −2 + 2t) (−4t−1, −4 − 4t)

(−4t−1, −4t) (4t−1, 4t) (−6 + 2s, −6 − 2s)

11/42 (−2 − t−1, −2 − t) (10 − t−1, −t) (−2 + t−1, −2 + t) (−2 + t−1, 8 + t)

(10 + t−1, 2 + t) (−3t−1, −3t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (3t−1, 8 + 3t) (7 + 4s, 7 − 4s) (4 + 5s, 4 − 5s)

13/42 (3, 1) (−2 − 3t−1, −2 − 3t) (3 − 2t−1, −1 − 2t) (−4 − t−1, −4 − t)

(−4 + t−1, t) (3 + 2t−1, 3 + 2t) (−2 + 3t−1, 3t) (−5t−1, −5t)

(−t−1, −t) (t−1, 2 + t) (5t−1, 5t) (2 + s, 2 − s)

(−1 + 2s, −1 − 2s)

11/48 (0, −6) (0, 0) (−2 − 2t−1, −6 − 2t) (−2 − 2t−1, −2 − 2t)

(2 − 2t−1, −4 − 2t) (2 − 2t−1, 2 − 2t) (−7 − t−1, −3 − t) (−7 + t−1, −1 + t)

(−2 + 2t−1, −2 + 2t) (2 + 2t−1, 2 + 2t) (−4t−1, −4 − 4t) (−4t−1, −4t)

(4t−1, 4t) (−6 + 2s, −6 − 2s) (−3 + 3s, −3 − 3s)

17/48 (−8, −4) (−2, −4) (0, 0) (−2 − 2t−1, −6 − 2t)

(−5 − t−1, −5 − t) (−5 + t−1, −3 + t) (−2 + 2t−1, −2 + 2t) (−4t−1, −4 − 4t)

(−2t−1, −2 − 2t) (2t−1, 2t) (4t−1, 4t) (−3 + s, −3 − s)

(−6 + 2s, −6 − 2s)
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Table 8. Boundary slope data for 2-bridge links with 10 crossings
(part 2). Parameters t and s are rational with 1 < t < ∞ and
−1 ≤ s ≤ 1.

p/q boundary slopes

11/52 (−8, −4) (−6, −6) (−2,−4) (−2, −2)

(0, −2) (0, 0) (−4 − 2t−1, −4 − 2t) (−2 − 2t−1, −6 − 2t)

(−5 − t−1, −5 − t) (−5 + t−1, −3 + t) (−4 + 2t−1, −2 + 2t) (−2 + 2t−1, −2 + 2t)

(−4t−1, −4 − 4t) (−2t−1, −2 − 2t) (−2t−1, −2t) (2t−1, 2t)

(4t−1, 4t) (−3 + s, −3 − s) (−1 + s, −1 − s) (−6 + 2s, −6 − 2s)

15/56 (−4, −4) (−4, 4) (0, 0) (6, 0)

(−2 − 2t−1, −2 − 2t) (6 − 2t−1, −2 − 2t) (−2 + 2t−1, −2 + 2t) (−2 + 2t−1, 4 + 2t)

(6 + 2t−1, 2 + 2t) (−4t−1, −4t) (4t−1, 4t) (4t−1, 4 + 4t)

(4s, −4s) (6 + 2s, 6 − 2s) (3 + 3s, 3 − 3s)

17/56 (−2, −2) (−2, 0) (2, 0) (2, 2)

(2, 4) (4, 2) (−2 − 2t−1, −2 − 2t) (2 − 2t−1, −2t)

(7 − t−1, 1 − t) (7 + t−1, 3 + t) (−2 + 2t−1, 2t) (−2 + 2t−1, 4 + 2t)

(2 + 2t−1, 2 + 2t) (2 + 2t−1, 6 + 2t) (−4t−1, −4t) (−2t−1, −2t)

(2t−1, 2t) (4t−1, 4t) (4t−1, 4 + 4t) (−1 + s, −1 − s)

(1 + s, 1 − s) (6 + 2s, 6 − 2s) (3 + 3s, 3 − 3s)

17/58 (−2 − 3t−1, −2 − 3t) (2 − 3t−1, −2 − 3t) (2 − 3t−1, −3t) (−4 − t−1, −4 − t)

(−4 − t−1, −t) (−2 − t−1, −t) (2 − t−1, −t) (4 − t−1, −2 − t)

(4 − t−1, 2 − t) (−4 + t−1, −2 + t) (−4 + t−1, 2 + t) (−2 + t−1, t)

(2 + t−1, t) (4 + t−1, t) (4 + t−1, 4 + t) (−2 + 3t−1, 3t)

(−2 + 3t−1, 2 + 3t) (2 + 3t−1, 2 + 3t) (−5t−1, −5t) (−t−1, −2 − t)

(t−1, 2 + t) (5t−1, 5t) (−2 + s, −2 − s) (s, −s)

(3s, −3s) (2 + s, 2 − s) (−3 + 2s, −3 − 2s) (3 + 2s, 3 − 2s)

13/60 (−2, −4) (−2, −2) (0, 0) (0, 2)

(2, −4) (2, 0) (−2 − 2t−1, −4 − 2t) (4 − 2t−1, −2 − 2t)

(4 − 2t−1, 2 − 2t) (−5 − t−1, −3 − t) (−5 + t−1, −3 + t) (−5 + t−1, 1 + t)

(−2 + 2t−1, 2t) (4 + 2t−1, 2 + 2t) (−4t−1, −2 − 4t) (−2t−1, −2 − 2t)

(−2t−1, −2t) (2t−1, 2t) (4t−1, 2 + 4t) (−5 + s, −5 − s)

(−3 + s, −3 − s) (1 + s, 1 − s) (5 + s, 5 − s) (−1 + 3s, −1 − 3s)

23/62 (−11, −3) (−8 − t−1, −4 − t) (−4 − t−1, −8 − t) (−4 − t−1, −2 − t)

(−8 + t−1, −2 + t) (−4 + t−1, −2 + t) (−3t−1, −8 − 3t) (−3t−1, −2 − 3t)

(−t−1, −6 − t) (−t−1, −2 − t) (−t−1, −t) (t−1, t)

(3t−1, 3t) (−4 + s, −4 − s) (−2 + s, −2 − s) (−4 + 3s, −4 − 3s)

(−7 + 4s, −7 − 4s)

19/64 (−8, −4) (−8, 0) (−2,−2) (−2, 0)

(2, −4) (2, 0) (2, 2) (−6 − 2t−1, −2 − 2t)

(−2 − 2t−1, −6 − 2t) (−2 − 2t−1, −2 − 2t) (2 − 2t−1, −6 − 2t) (2 − 2t−1, −2t)

(−6 + 2t−1, 2t) (−2 + 2t−1, 2t) (2 + 2t−1, 2 + 2t) (−4t−1, −4 − 4t)

(−4t−1, −4t) (−2t−1, −2t) (2t−1, 2t) (4t−1, 4t)

(−1 + s, −1 − s) (1 + s, 1 − s) (−6 + 2s, −6 − 2s) (−1 + 3s, −1 − 3s)

(−4 + 4s, −4 − 4s)
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Table 9. Boundary slope data for 2-bridge links with 10 crossings
(part 3). The parameters t and s are rational with 1 < t < ∞ and
−1 ≤ s ≤ 1.

p/q boundary slopes

23/64 (−2, −4) (−2,−2) (−2, 0) (0, −2)

(0, 0) (4, 0) (4, 2) (−2 − 2t−1, −4 − 2t)

(4 − 2t−1, −2 − 2t) (−5 − t−1, −3 − t) (−5 + t−1, −3 + t) (−5 + t−1, 1 + t)

(−2 + 2t−1, −2 + 2t) (−2 + 2t−1, 2 + 2t) (4 + 2t−1, 2 + 2t) (−4t−1, −2 − 4t)

(−2t−1, −2 − 2t) (−2t−1, −2t) (2t−1, 2t) (2t−1, 2 + 2t)

(4t−1, 2 + 4t) (−5 + s, −5 − s) (−3 + s, −3 − s) (3 + s, 3 − s)

(5 + s, 5 − s) (2 + 2s, 2 − 2s) (−1 + 3s, −1 − 3s)

25/66 (−4 − t−1, −2 − t) (8 − t−1, −2 − t) (8 − t−1, 2 − t) (−4 + t−1, −2 + t)

(−4 + t−1, 6 + t) (8 + t−1, 2 + t) (−3t−1, −2 − 3t) (−t−1, −2 − t)

(−t−1, −t) (t−1, t) (t−1, 6 + t) (3t−1, 3t)

(3t−1, 6 + 3t) (−4 + s, −4 − s) (−2 + s, −2 − s) (4 + 3s, 4 − 3s)

(6 + 3s, 6 − 3s) (2 + 5s, 2 − 5s)

19/68 (−2, −2) (−2, 2) (0, 0) (0, 2)

(2, 0) (2, 4) (4, 2) (−2 − 2t−1, −2 − 2t)

(4 − 2t−1, 2 − 2t) (4 − 2t−1, −2t) (7 − t−1, 1 − t) (7 + t−1, 3 + t)

(−2 + 2t−1, 2t) (−2 + 2t−1, 4 + 2t) (4 + 2t−1, 4 + 2t) (−4t−1, −4t)

(−2t−1, −2t) (2t−1, 2t) (2t−1, 2 + 2t) (4t−1, 4 + 4t)

(2s, −2s) (1 + s, 1 − s) (3 + s, 3 − s) (6 + 2s, 6 − 2s)

(3 + 3s, 3 − 3s)

29/70 (−11, −3) (−6 − t−1, −6 − t) (−6 − t−1, −2 − t) (−6 + t−1, −2 + t)

(−3t−1, −8 − 3t) (−3t−1, −4 − 3t) (−3t−1, −3t) (−t−1, −4 − t)

(−t−1, −t) (t−1, t) (3t−1, 3t) (−5 + 2s, −5 − 2s)

(−3 + 2s, −3 − 2s) (−7 + 4s, −7 − 4s)

31/74 (−6 − t−1, −2 − t) (6 − t−1, −4 − t) (6 − t−1, 2 − t) (−6 + t−1, −2 + t)

(−6 + t−1, 4 + t) (6 + t−1, 2 + t) (−3t−1, −4 − 3t) (−3t−1, −3t)

(−t−1, −4 − t) (−t−1, −t) (t−1, t) (t−1, 4 + t)

(3t−1, 3t) (3t−1, 4 + 3t) (5s, −5s) (−5 + 2s, −5 − 2s)

(−3 + 2s, −3 − 2s) (3 + 2s, 3 − 2s) (5 + 2s, 5 − 2s)

21/76 (−6, −4) (−6, 2) (−2, −2) (−2, 2)

(0, −2) (0, 0) (4, −2) (4, 0)

(4, 2) (−4 − 2t−1, −2 − 2t) (−2 − 2t−1, −4 − 2t) (4 − 2t−1, −4 − 2t)

(4 − 2t−1, −2t) (−4 + 2t−1, −2 + 2t) (−4 + 2t−1, 2 + 2t) (−2 + 2t−1, −2 + 2t)

(−2 + 2t−1, 2 + 2t) (4 + 2t−1, 2 + 2t) (−4t−1, −2 − 4t) (−2t−1, −2t)

(2t−1, 2t) (2t−1, 2 + 2t) (4t−1, 2 + 4t) (−5 + s, −5 − s)

(−1 + s, −1 − s) (2s, −2s) (3 + s, 3 − s) (5 + s, 5 − s)

(2 + 2s, 2 − 2s) (1 + 3s, 1 − 3s) (−2 + 4s, −2 − 4s)

31/80 (−8, −4) (−8, 0) (−4, −2) (−4, 0)

(0, 0) (2, −2) (2, 2) (−4 − 2t−1, −4 − 2t)

(2 − 2t−1, −6 − 2t) (2 − 2t−1, −2 − 2t) (2 − 2t−1, 2 − 2t) (−4 + 2t−1, 2t)

(2 + 2t−1, 2 + 2t) (−4t−1, −4 − 4t) (−2t−1, −2 − 2t) (2t−1, 2t)

(4t−1, 4t) (−3 + s, −3 − s) (2s, −2s) (−6 + 2s, −6 − 2s)

(−2 + 2s, −2 − 2s) (−4 + 4s, −4 − 4s)
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