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 EVOLUTION, PHENOTYPIC SELECTION,

 AND THE UNITS OF SELECTION*

 TIMOTHY SHANAHANt

 Department of Philosophy

 Loyola Marymount University

 In recent years philosophers have attempted to clarify the units of selection
 controversy in evolutionary biology by offering conceptual analyses of the term

 'unit of selection'. A common feature of many of these analyses is an emphasis
 on the claim that units of selection are entities exhibiting heritable variation in

 fitness. In this paper I argue that the demand that units of selection be char-
 acterized in terms of heritability is unnecessary, as well as undesirable, on his-
 torical, theoretical, and philosophical grounds. I propose a positive account of

 the proper referent of the term 'unit of selection', distinguishing between the
 processes of evolution and phenotypic selection. The main result of this analysis
 is greater clarity about the conceptual structure of evolutionary theory.

 1. Introduction. That evolution can proceed in the absence of natural

 selection is now a commonplace. Evolution can result from such non-

 selective processes as drift, mutation, inbreeding, and so forth. That nat-

 ural selection can proceed in the absence of evolution has more recently

 become widely appreciated. Stabilizing selection, for example, is a pro-

 cess in which deviants from an optimal value of a character are selected

 against, thus maintaining gene frequencies at equilibrium in a population.

 As John Endler puts it, "Natural selection is a process that results from

 biological differences among individuals, and which may give rise to cu-

 mulative genetic change or evolution, but does not guarantee it" (Endler
 1986, p. 26). Evolution and natural selection are therefore understood to

 be contingently related processes. It is the conjunction of the two pro-

 cesses-evolution by natural selection which is held to account for much
 of the diversity we encounter in the living world. Carefully distinguishing

 between the two closely related processes has contributed to improve-

 ments in the articulation of evolutionary theory, and consequently to a
 clearer understanding of the causes of biological phenomena.

 The distinction between evolution and natural selection is an important

 one, but it does not go quite far enough. Natural selection itself is a

 complex process which can be resolved into its constituent subprocesses.

 *Received December 1987; revised May 1988.
 tI would like to thank Edward Manier and two anonymous referees of this journal for

 helpful comments on an earlier draft of this paper.

 Philosophy of Science, 57 (1990) pp. 210-225.
 Copyright ? 1990 by the Philosophy of Science Association.
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 EVOLUTION, PHENOTYPIC SELECTION, AND UNITS OF SELECTION 211

 Doing so is essential for the identification of units of selection. In this

 paper I argue that units of selection should be identified with those entities

 that causally contribute to the subprocess of phenotypic selection, re-

 gardless of whether such entities also causally contribute to the distinct

 processes of evolution and natural selection. A consequence of this view

 is that units of selection need not be characterized in terms of heritable

 variation in fitness. Adopting a distinction made recently by Maynard

 Smith, I distinguish between units of selection and units of evolution. I

 then show how this distinction throws light on historical, theoretical, and

 philosophical aspects of the units of selection controversy.

 2. Heritability. For a set of biological entities to evolve by natural se-

 lection there must be biological differences among the entities that affect
 their ability to survive and/or reproduce. Variance in fitness is thus a

 necessary condition for evolution by natural selection. But it is not a suf-

 ficient condition. There must also be a correlation between the properties

 of parents and offspring, so that the results of selection in one generation

 are passed on to the next generation. There must be heritability. In terms

 of geneticist Richard Lewontin's influential analysis, "The generality of

 the principles of natural selection means that any entities in nature that

 have variation, reproduction, and heredity may evolve" (Lewontin 1970,

 p. 1).

 Several authors (for example, Wimsatt 1980, 1981; Lloyd 1986) writ-

 ing on the units of selection controversy have argued that Lewontin's

 criteria for entities in nature to evolve also isolate requirements for an

 entity to be a unit of selection. Thus Wimsatt: "These principles give
 necessary conditions for an entity to act as a unit of selection". He goes

 on to say, "The three conditions must all be met by the same entity, in

 a way that can be summarized by saying that entities of that kind must

 show heritable variance in fitness" (Wimsatt 1980; reprinted in Brandon

 and Burian 1984, p. 102). These conditions, however, fail to be sufficient
 for an entity to be a unit of selection. Any entity displaying heritable
 variance in fitness is either a unit of selection or is composed out of units
 of selection. In particular, Wimsatt argues, the entities which are to be

 identified as units of selection must exhibit heritable context-independent

 variance in fitness among entities at that level which does not appear as

 heritable context-independent variance in fitness at some lower level

 (Wimsatt 1981, p. 144).
 Context-independence is important, we are told, because only the con-

 text-independent variance in fitness is heritable. Variance in fitness which
 is context-dependent is destroyed when the context changes, and thus

 cannot be passed on to offspring. For example, phenotypic variance in

 fitness which is due to environmental factors is not passed on to offspring,
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 212 TIMOTHY SHANAHAN

 although such offspring may exhibit it if the environment is the same as

 that occupied by their parents (Falconer 1981). Likewise, phenotypic

 variance due to genotype-environment interaction, or due to epistatic in-

 teractions among genes, is not heritable in the strongest sense, because

 such variance exists in virtue of contextual factors which may well change

 from parents to offspring. 'Heritability', in the sense in which population

 biologists use the term, denotes the contribution that additive genetic vari-

 ance contributes to the total phenotypic variance. Phenotypic variance in

 a particular trait is said to be additive when it is due simply to the summed

 effects of each of a number of individual alleles taken separately. Her-

 itability, and hence additive genetic variance, are closely related to the

 rate of evolution. R. A. Fisher's Fundamental Theorem of Natural Se-

 lection states (roughly) that the rate of evolution is proportional to the

 additive genetic variance of the population (Fisher 1930). More precisely,

 the rate at which a trait is evolving in a population increases as the product

 of its heritability and the intensity of the selection forces. When a term

 representing heritability is combined with a term representing a selection

 coefficient, the resulting model determines the rate of evolution-a very

 interesting and important result, and one which provides the foundation

 for Wimsatt's account (Wimsatt 1981, p. 144).

 I wish to claim that although heritability (in either the narrow popu-

 lation genetics sense or in some broader sense) is essential for evolution

 by natural selection, and, indeed, for natural selection without evolution,
 it is nonetheless not a requirement for identifying an entity as a unit of

 selection. To show this I will sketch an abstract hypothetical example in

 which selection occurs in virtue of nonheritable variation in fitness among

 organisms. This abstract example will be filled out with concrete biolog-

 ical detail in a later section. The example presented here is intended to

 fix ideas without immersing us in questions of empirical accuracy.

 Suppose, for the sake of argument, that we have a population of or-

 ganisms randomly distributed in a patchy environment, among which there
 is significant phenotypic variance in some component of fitness. In gen-

 eral, such phenotypic variance might be due to underlying genetic factors,
 due to environmental factors, or, most commonly, it would be a product
 of an interaction between genetic and environmental factors (Futuyma
 1986, pp. 195-200). The phenotypic variance in the component of fitness

 in the present case is interesting because it is due entirely to the envi-

 ronment. That is, the genetic contribution to the variance in this com-

 ponent of fitness is 0.0, and the environmental contribution to the vari-

 ance in this component of fitness is 1.0. The population of organisms is
 then subjected to a selection regime, with the result that a higher pro-

 portion of those organisms possessing the component of fitness in ques-
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 EVOLUTION, PHENOTYPIC SELECTION, AND UNITS OF SELECTION 213

 tion survives than of those lacking it. These survivors then go on to mate

 and produce offspring.

 In the case I've just described there would be phenotypic variation in

 fitness among the individuals in the population of organisms as well as

 a selective force acting on these organisms. As a consequence, there would

 be differential mortality among the organisms in virtue of biological prop-

 erties they possess (or lack), and the frequency of traits in the population

 would change as a result. But, given the absence of a genetic basis for

 the variation in the biological property in question, there might well be

 no corresponding change in gene frequencies nor change in frequency of

 traits in the population from one generation to the next. There would be

 no natural selection, because there would be no invariable correlation

 between the traits that aided the survival of the parents and those that are

 represented in the offspring. On this scenario we have differential survival

 (and mortality) of organisms in virtue of the survival value of their bi-

 ological properties, but, due to the absence of heritability for these prop-

 erties, no natural selection. Still, I would claim that the entities involved

 in the process described above are selected for in virtue of biological

 properties they exhibit, and thus function as units of selection in that

 process. I conclude that heritability is not a necessary feature of a unit

 of selection.

 It might be objected that the case I've described is an example of the

 operation of chance in biological phenomena, not a case of selection in

 any sense, the reason being precisely that there is no invariable corre-

 lation between traits that aided the survival of the parents and those rep-
 resented in the offspring. This objection misses the point in at least two

 ways. First, the example does not stipulate that the cause of the differ-

 ential mortality be some unusual event, such as a flood or an earthquake,

 which wipes out organisms regardless of their biological properties. The

 selecting agent can be as frequent as one likes, sifting the population

 many times each generation until either no organisms remain, or else until
 it ceases to be efficacious because the only organisms left are ones un-

 affected by this selective agent. Second, the very fact that differential

 mortality is a function of differential exemplification of a biological prop-
 erty precludes this from being an instance of chance. Chance (for ex-

 ample, random genetic drift) is a nondiscriminating sampling process,
 whereas selection is a preeminently discriminating sampling process (Beatty

 1984; Shanahan 1989). It would be strange to call a process which sys-

 tematically eliminates individuals not bearing a certain property, but spares

 those displaying it, a chance process. This is especially so when the two
 kinds of individuals are randomly distributed, as in the hypothetical pop-
 ulation. I conclude that selection can operate on nonheritable properties
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 214 TIMOTHY SHANAHAN

 of biological entities. Heritability and selection are distinct.

 3. Phenotypic Selection. The biological motivation for making the dis-

 tinction between heritability and selection comes from the need to sep-

 arate distinct subprocesses constituting the two-step process of natural

 selection in order to determine what empirical role each subprocess plays,

 either individually or in conjunction with others, in producing biological

 phenomena. Endler (1986), following the practice of quantitative genet-
 icists and animal breeders (Fisher 1930; Haldane 1954; Falconer 1981;

 Lande and Arnold 1983), divides the process of natural selection into the

 sequential subprocesses of "phenotypic selection" and "genetic re-

 sponse". 'Phenotypic selection is the within-generation change in the trait

 distribution among cohorts . . . and is independent of any genetic system

 or genetic determination" (Endler 1986, pp. 12-13). The genetic re-

 sponse is the genetic change which results from phenotypic selection in

 combination with the genetic system. This latter subprocess involves the

 transmission of the results of phenotypic selection to the succeeding gen-

 eration, and requires that such results be heritable. Both phenotypic se-
 lection and genetic response are necessary for natural selection; neither

 is sufficient by itself. "Phenotypic selection determines the distribution

 of traits during reproduction, but inheritance is required to transform the

 distribution into the next generation" (Endler 1986, p. 13).

 Although natural selection requires both subprocesses, the actual se-

 lection involved takes place in the first subprocess-during phenotypic

 selection. For this reason natural selection is sometimes identified with
 phenotypic selection (for example, Lande and Arnold 1983). It is during

 this subprocess that entities interact with the environment and, in virtue
 of possessing certain biological properties, change the frequency of traits
 in the ensemble of entities. The genetic response subprocess, as described

 by Endler, is an essentially nonselective process which transmits the re-

 sults of phenotypic selection to the next generation. Both processes are
 necessary for the evolution of adaptations, and thus entities which undergo

 the sequential subprocesses of phenotypic selection and genetic response
 are in a position to display adaptations. But entities which undergo phe-
 notypic selection but do not have a corresponding genetic response, pre-

 cisely in virtue of undergoing phenotypic selection, function as units of
 selection in an important biological sense.

 4. Units of Selection and Units of Evolution. This claim, of course,
 rests on a novel definition of the term "unit of selection", one which, to
 the best of my knowledge, is first made explicit by John Maynard Smith
 (1987). He distinguishes between "units of selection" and "units of evo-
 lution". When we ask what are the biological entities that are selected
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 EVOLUTION, PHENOTYPIC SELECTION, AND UNITS OF SELECTION 215

 for or against, we are asking about the units of selection. That is, units

 of selection are entities which, in virtue of biological properties they dis-

 play, interact with the environment in a way that causes their survival

 and/or reproduction to be differential. The concept of a "unit of evolu-

 tion" is more complex. "To qualify as a unit of evolution, it is not suf-

 ficient that an entity be selected for or against; it must have heredity"

 (Maynard Smith 1987, p. 121). More precisely, in order to be a unit of

 evolution, a biological entity must display the properties of multiplica-

 tion, heredity, and variation. Such entities are important because, May-

 nard Smith argues, given these properties, they may evolve adaptations.

 Maynard Smith's distinction between two kinds of units important in

 evolutionary theory is an extremely useful one. As he says, "[I]t is im-

 portant to distinguish between the objects we can expect to evolve ad-

 aptations and those we cannot" (Maynard Smith 1987, p. 122). Because

 the primary motivation for distinguishing units of selection from units of

 evolution is that the latter are the entities that display adaptations, whereas

 the former do not necessarily do so, a more appropriate term might be

 "units of adaptation". However, because Maynard Smith has used the

 term "units of evolution" in print, and because it does capture an im-

 portant concept, I will continue to use his term in this paper. Units of

 selection, then, are entities which, in virtue of biological properties they

 display, interact with the environment in a way that causes their survival

 and/or reproduction to be differential. Units of evolution are entities which,
 in virtue of displaying heritable variation in fitness, may evolve adap-

 tations.

 I am well aware that this distinction as I have described it still leaves

 unresolved the question of which biological entities are instances of each

 type of unit. Determining the correct answer to this question requires

 consideration of conceptual and empirical issues beyond the scope of this

 paper. My aim here is the more general one of delineating the kinds of

 entities that need to be distinguished before clarity can be achieved with
 respect to the identification of specific instances of units of selection (and

 evolution). With this aim in mind, I turn next to applications of this dis-
 tinction.

 5. Historical Applications. Adoption of the distinction between units of

 selection and units of evolution helps to clarify historical, theoretical, and
 philosophical aspects of the units of selection controversy. I discuss each

 of these aspects in turn, beginning with the historical.

 Although disagreements about the units of selection can claim an an-

 cestry going back to the corespondence between Charles Darwin and Alfred

 Russel Wallace (see Kottler 1985 for details), the units of selection con-
 troversy began in earnest in the mid-1960s with the publication of V. C.
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 Wynne-Edwards' Animal Dispersion in Relation to Social Behaviour (1962),

 and G.C. Williams' response in his Adaptation and Natural Selection

 (1966). As the title of Williams' book suggests, a focal point of the debate

 concerned adaptations, in particular the question of whether adaptations

 should be attributed to higher-level biological entities such as groups.

 Wynne-Edwards argued that in fact such adaptations are quite common

 in nature, for instance in the form of "epideictic displays" which serve

 to inform individuals of the census size of their population so that they

 can adjust their reproductive output accordingly, thus preventing the pop-

 ulation from over-exploiting its resources and suffering a crash-and maybe

 extinction. Wynne-Edwards proposed "group selection" as the mecha-

 nism explaining the maintenance of such group adaptations. Groups in

 which individuals show reproductive restraint persist longer than, and may

 invade areas left vacant by, groups in which individuals do not exercise

 such restraint and as a consequence of resource depletion go extinct.

 In an article published in Nature in 1963, Wynne-Edwards attempted

 to clarify some of the issues presented in his book of the preceding year.

 He emphasizes that group selection on his view accounts for group-level

 adaptations evolved for group (rather than for individual) benefit.

 The kinds of adaptations which make [overriding individual advan-

 tage] possible . . . belong to and characterize social groups as enti-

 ties, rather than their members individually. This in turn seems to

 entail that natural selection has occurred between social groups as

 evolutionary units in their own right, favouring the more efficient

 variants among social systems wherever they have appeared, andfur-

 thering their progressive development and adaptation. (Wynne-Ed-
 wards 1963, p. 623; emphasis added)

 He is quite clear that group-level fitness is not reducible to the sum-

 mation of individual fitness values.

 Population fitness . . . depends on something over and above the
 heritable basis that determines the success as individuals of a con-

 tinuing stream of independent members. It becomes particularly clear
 in relation to population homeostasis that social groups have highly
 important adaptive characteristics in their own right. (Wynne-Ed-

 wards 1963, p. 624)

 The emphasis throughout is on group adaptations resulting from heritable
 differences between groups as social units.

 Williams countered that most (or perhaps all) such supposed group ad-
 aptations could be explained in terms of individual organisms each be-
 having so as to maximize its own fitness. Fish do not swim in schools
 because doing so is good for the school, even though it might, as a matter
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 EVOLUTION, PHENOTYPIC SELECTION, AND UNITS OF SELECTION 217

 of fact, be good for the school, but because each fish is doing what is

 good for itself. Schooling behavior is the product of individual adapta-

 tions. Thus there is no need to postulate group adaptations when the same

 facts can be explained more parsimoniously in terms of individual ad-

 aptations (Williams 1966, pp. 212-217). Because group selection was

 held to be the cause of group adaptations, Williams' arguments against

 the latter were held to count equally against the former. Largely as a result

 of his critique, group selection explanations fell into disrepute.

 More recently, however, D. S. Wilson (1975, 1979, 1980, 1983) has

 done much to revive the group selection debate by defending his "struc-

 tured deme" model of "intrademic group selection". The model concerns

 organisms whose interactions with each other during some part of their

 life history take place within small local populations. Wilson calls such

 local populations "trait-groups". Mosquito larvae occupying different pitcher

 plants, bark beetles inhabiting different trees, and young birds being raised

 in the same nest are examples he mentions (1980, p. 21). After a period

 of interaction, the trait-groups dissolve, the individuals in each dispersing

 into the global population to mate. Mating in the global population is

 essentially random with respect to previous trait-group membership (that
 is, panmixia obtains). The cycle can then begin again: the pitcher plant

 mosquito, for example, will lay its eggs in another pitcher plant, and a
 new local population of larvae will have been founded.

 Wilson then asks us to consider how gene frequencies in the global

 population might be affected by this cycle of within-trait-group interac-

 tion and dispersal into the global population. Changes in gene frequencies

 within each trait-group are a product of individual selection operating

 within each trait-group. Changes in gene frequencies in the post-dispersal
 global population are a product of the relative contributions each trait-

 group makes to the global population when it dissolves as well as con-

 tinuing individual selection. Trait-group contributions to the post-disper-

 sal global population need not be equal.

 Consider a genotype whose activities increase the productivity of its
 local population without, however, changing the gene frequency within
 the population. Populations with a high frequency of this genotype
 will be more productive than those with a low frequency, and will
 differentially contribute to the pool of dispersers. The genetic com-
 positions of the dispersers will be biased toward the genotype that
 increases the productivity of its group, and this bias is carried into

 all groups colonized by the dispersers. (Wilson 1980, p. 19)

 In summary, by introducing the concept of structured demes (that is,
 a global random-mating population broken up into local groups of inter-
 acting individuals), Wilson argues that natural selection becomes sensi-
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 tive, not only to the fitness of individuals relative to each other in their

 local populations, but also to the productivity of local populations relative

 to each other in the global population. "This latter component may be

 regarded as natural selection on the level of populations, or group selec-
 tion" (Wilson 1980, pp. 19-20; emphasis in original).

 Wilson's model describes a group process which is similar to the group
 process envisioned by Wynne-Edwards in an important respect. In both

 processes the subdivision of a global population into local groups con-

 tributes to the increased representation of certain alleles in the global pop-

 ulation. In both processes groups interact with their environments (which

 may include other groups) in ways that cause their persistence and/or
 multiplication to be differential. In both processes groups function as units

 of selection. But the substantial differences between the two models of
 "group selection" are worth noting as well.

 An obvious difference is that whereas the mechanism for Wynne-Ed-

 wards' model is differential group extinction, the mechanism for Wilson's

 model is differential trait-group productivity. Maynard Smith (1982, p.

 30) suggests the terms "group-extinction selection" and "trait-group se-

 lection" to mark this distinction. A more important difference, however,
 is that whereas Wynne-Edwards' groups exhibit group adaptations, Wil-

 son's trait-groups do not.

 An adaptation is a property of a biological entity whose existence is
 explained by reference to the selective advantage the property conferred

 on the biological entity's ancestors. Adaptations are not just properties
 conducive to fitness. They are phenotypic traits that have evolved as a

 direct product of natural selection (Williams 1966; Lewontin 1978; Bran-
 don 1981; Gould and Vrba 1982). In this sense, adaptations need not even

 benefit the biological entities presently displaying them, if the environ-
 ment the entity finds itself in is different from that in which the property
 was selected for among its ancestors. For a biological entity to possess

 a property as an adaptation, it must have inherited it from its progenitors,
 but it need not increase the fitness of its present possessor.

 Wynne-Edwards' groups display adaptations (for example, conserva-
 tive resource utilization, reproductive restraint) in virtue of being the di-
 rect descendents of groups which benefitted from the possession of such
 properties. Groups displaying such adaptations give rise to subsequent
 groups displaying the same adaptations, while groups lacking such ad-

 aptations go extinct. Wynne-Edwards' groups display heritable variation
 in group fitness. In his own words, they are "evolutionary units", or what
 are here being called units of evolution.

 Wilson's trait-groups, on the other hand, because they are assembled
 anew each generation from the global population, cannot be identified as
 the descendents of specific trait-groups in the previous generation. A given
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 trait-group might be composed of individuals descended from many (or

 all) of the trait-groups in the previous generation. Trait-groups do not

 inherit their group beneficial characteristics directly from other trait-groups.

 They display characteristics affecting group productivity in virtue of prop-

 erties that increased the fitness of the ancestors of their constituent or-

 ganisms in previous generations. The adaptations associated with differ-

 ential trait-group productivity, if there are such, are individual adaptations

 rather than group adaptations. A concise way of stating this is that Wil-

 son's trait-groups do not display heritable variation in group fitness. Un-

 like Wynne-Edwards' groups, they are not units of evolution.

 Although he acknowledges important differences between his model

 and Wynne-Edwards', Wilson says that, "it would be a pity to avoid
 calling it group selection simply because that term has been applied to a

 different conception of groups in the past" (Wilson 1979, p. 609). But
 it is precisely because there are important differences between the two

 conceptions of groups that it is crucial to distinguish between them. Pres-
 ent in Wynne-Edwards' envisioned process of group selection, but lack-
 ing in Wilson's model, are group adaptations. An important historical

 development has taken place in models of group selection. Distinguishing
 between groups as units of selection and groups as units of evolution
 helps to clarify the precise nature of this historically significant devel-
 opment.

 6. Theoretical Applications. The distinction between units of selection
 and units of evolution is not just of historical interest. It has some inter-
 esting applications in contemporary biological theory as well. The ab-
 stract hypothetical example presented earlier (section 2) in which organ-
 isms are selected on the basis of environmentally caused variance in fitness
 is an example of phenotypic selection without a corresponding genetic
 response. Organisms would not be expected to evolve adaptations through
 such a process. They would be units of selection, but not units of evo-
 lution. Here I will add some concrete biological detail to the formal pos-

 sibility sketched earlier.

 Recall that Wynne-Edwards argued that groups which over-exploit their
 resources are at a greater risk of extinction due to population crash than

 are those groups which maintain census size somewhat below the carrying
 capacity of the environment. The mechanism for population control pro-
 posed by Wynne-Edwards was reproductive restraint on the part of some
 (or all) members of the group. Such restraint requires a strong degree of
 altruism, since individuals must sacrifice some of their reproductive po-
 tential for the good of the group. The problem with this theory, as Wil-
 liams and others since have shown, is in explaining how such altruistic

 restraint is maintained against invasion of the group by "selfish" indi-
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 viduals who reproduce to capacity at the expense of their neighbors.

 As Wilson (1980) points out, however, the mechanism for population

 regulation need not be voluntary restraint on the part of individual or-

 ganisms. Population regulation can be achieved by some individuals in-

 terfering with the activities of their neighbors.

 Perhaps the most general pathway for decreasing the cost of popu-

 lation regulation is interference behavior. Whereas in exploitation,

 organisms deal exclusively with their resources, in interference they

 deal directly with competitors. (Wilson 1980, p. 64)

 Interference behavior is characterized by two general features. First,

 "All forms of interference derive their individual advantage from differ-

 ential suppression of resource utilization" (Wilson 1980, p. 64). That is,
 some individuals gain by excluding other individuals from partaking of

 the resources. Eating a competitor is often an energy efficient means of

 preventing that individual from utilizing scarce resources. Second, "Non-

 heritable differences between individuals feature prominently in nearly all

 types of interference" (Wilson 1980, p. 64). The small, the young, and
 the disabled of all genotypes, in particular, are more likely to be the

 victims of interference. Size, age, and state of health are all variables

 affecting vulnerability to being interfered with which are not necessarily
 correlated with genotypic differences among individuals. Wilson illus-
 trates these two features of interference using examples involving chem-

 ical inhibition, cannibalism, dominance, and territoriality. Here I will only

 discuss dominance, indicating how the relevant features of this behavior

 apply also to other behaviors, especially to territoriality.
 In any primate troop in which there are a surplus of males relative to

 females, females will be a limiting resource with respect to which males
 will compete for reproductive access. Observations confirm our expec-
 tations: not all males compete equally well. The concept of dominance
 is used in behavioral ecology to describe a relationship between animals

 in which one individual (the dominant one) is able to supplant another

 (the subordinate one) from valuable resources. In primate troops there is
 often one or more dominant males that effectively monopolizes females,
 preventing subordinate males from mating. Such behavior satisfies the
 first feature of interference identified by Wilson: individual advantage
 results from differential suppression of resource utilization.

 It appears that such behavior may, in some cases at least (and this is
 all that is necessary for our purposes), satisfy the second feature of in-
 terference as well-nonheritable differences between individuals. Dis-

 ruption of the dominance hierarchy in a troop of Hamadryas baboons (by
 removing dominant males and then reintroducing them later) sometimes
 leads to a re-ordering of individuals higher or lower on the hierarchy
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 (Kummer 1971; Bachmann and Kummer 1980). Were differences in po-

 sition in the hierarchy before disruption due to genetic differences be-

 tween the individuals, one would expect, given that disruption doesn't

 affect genetic makeup, that the individuals that were dominant before

 would also be dominant after the disruption. Instead, dominance appears,

 sometimes at least, to be a function of the history of the troop, taken

 broadly to include past "ownership" of resources. If dominance with re-

 spect to control of females is correlated with fitness via increased repro-

 ductive opportunities, then there can ensue selection for being dominant,

 even though dominance in such cases constitutes a nonheritable difference

 between individuals.

 It is easy to see how much the same conclusions might follow from an

 examination of territoriality, defined broadly as any enforced spacing be-

 havior. Those individuals possessing a territory enjoy a certain "resource

 holding power" which excludes others from partaking of those same re-

 sources (Maynard Smith and Price 1973; Maynard Smith 1974; Parker

 1974; Maynard Smith and Parker 1976). Initial acquisition of a territory

 proceeds on a "first-come first-served" basis, perhaps in virtue of having

 inherited the territory from parents. Competitions for territories are usu-

 ally resolved merely on the basis of ownership, rather than on the basis

 of other properties of the individuals (Davies 1978; Krebs and Davies

 1981). Ownership may be heritable in one sense: individuals whose par-

 ents controlled a territory may be more likely to inherit a territory than

 individuals with vagrant parents. But there is no reason to suppose that

 there are relevant genetic differences between the winners and losers in

 such cases. Selection may proceed entirely on the basis of genetically
 nonheritable variation in fitness resulting from the differential utilization

 of resources associated with the holding of a territory.

 Consideration of interference behaviors such as dominance and terri-

 toriality suggests that there is a class of selection processes in which (ge-

 netic) heritability is not essential. The organisms participating in selection

 processes associated with these behaviors interact with the environment

 and with each other in ways that cause their survival and/or reproduction
 to be differential. They function as units of selection. But because such

 organisms do not display heritable variation in fitness with respect to the

 characteristics in question, they do not evolve adaptations with respect to
 such phenotypic properties. They are not units of evolution. Here is a
 theoretical context in which the distinction between units of selection and

 units of evolution clarifies the way in which behavioral characteristics
 may have great selective significance even though they have no effect on

 gene frequencies.

 But if behaviors of the kind described here do not have a direct impact
 on gene frequencies, why should they be regarded as significant? They
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 seem to have no evolutionary consequences, to be evolutionary dead-

 ends. The problem with this objection is that it assumes that the only

 significant selection processes in nature are those that result in evolu-

 tionary change. There is a danger in identifying the reality of processes

 occurring in nature with our ability to measure such processes. Without

 a change in gene frequencies across generations, selection will be difficult

 to detect. The ideal case for identifying the presence of a selection process

 is when gene frequencies show a consistent trajectory for a substantial

 period of time. Ideal though such cases may be, nature is not obliged to

 make things convenient for investigators.The fact that phenotypic selec-

 tion is much harder to identify in the absence of "trail markers" like

 changes in gene frequencies or the evolution of adaptations is a function

 of our perceptual acuity, not a fact about real processes occurring in na-

 ture.

 Population geneticists may have little interest in phenotypic selection

 apart from its direct consequences for evolution, but this is a function of

 the current research agendas of (some) biologists, not an indication of

 the importance of phenotypic selection in the causal structure of nature.

 Ecologically, it seems of the first importance. Wilson summarizes his

 discussion by saying, "In short, we have an event of great ecological

 importance that is phenotypically highly selective between individuals,

 yet is neutral from the genetic standpoint" (Wilson 1980, p. 72). If in-

 terference behavior of the kind described by Wilson represents pervasive

 processes occurring in nature, then, from a theoretical standpoint, phe-

 notypic selection must be regarded as an important biological process

 worth studying.

 7. Philosophical Applications. A final (brief) application of the dis-
 tinction between units of selection and units of evolution concerns the

 recent philosophical literature on the units of selection controversy. A

 number of philosophers have proposed conceptual analyses of the term

 "unit (or level) of selection". As we have seen, some, such as Wimsatt

 (1980, 1981) and Lloyd (1986), require that units of selection be char-

 acterized as entities displaying heritable variation in fitness. Others, such

 as Sober (1984) and Brandon (1982) do not require that units (or levels)
 of selection be characterized in terms of heritability. Mayo and Gilinsky
 (1987) are the most explicit writers on this latter view. "Heritability is

 not strictly necessary for selection. . . For sustained evolutionary change

 via selection, however, heritability is required" (Mayo and Gilinsky 1987,
 p. 515). As my remarks throughout this paper make clear, I think that

 the latter analyses make better sense, both historically and theoretically,
 than the former.

 A challenge to this view is found in remarks made by Griesemer and
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 Wade (1988). They distinguish between (1) the causal process of evo-

 lution by natural selection, (2) the causal process of selection, and (3)

 units of selection. They acknowledge that although heritability is not nec-

 essary for selection, it is necessary for there to be an evolutionary re-

 sponse to selection. The possibility of there being an evolutionary re-

 sponse to selection seems to be the decisive consideration for them in

 conceptualizing units of selection, for they go on to insist that a unit of

 selection is to be characterized in terms of "the capacity to respond ev-

 olutionarily to selection, even if it never in fact does so" (p. 92). Ac-

 cordingly, they endorse a refined "HVF [heritable variation in fitness]
 criterion" due to Lloyd (1986) which they say gives necessary and suf-

 ficient conditions for an entity to be a unit of selection.

 But if the causal processes of evolution by natural selection and selec-

 tion are worth distinguishing, then surely the kinds of biological entities

 that are capable of participating in these two processes are worth distin-

 guishing as well. By including heritability in the requirements for a unit

 of selection, one excludes from the start consideration of entities which

 participate in phenotypic selection, but do not issue in any discernable

 evolutionary response. Such entities and the processes they participate in

 may be rare in nature or they may be common, but a conceptual analysis

 should not prejudice the issue in such a way that certain empirical ques-

 tions are precluded from being asked. By carefully distinguishing be-

 tween processes that require heritability and those that do not, we are in

 a better position to isolate the necessary and sufficient conditions an entity

 must display in order to function in each of these processes, and thereby

 to determine the empirical importance of each in the causal structure of
 nature. The distinction between units of selection and units of evolution

 clarifies the question of which properties an entity must possess in order

 to participate in different biological processes, and thus facilitates the

 empirical investigation of biological phenomena.

 8. Summary/Conclusion. Empirical identification of units of selection
 in evolutionary biology has suffered from confusion concerning the nec-

 essary properties of a unit of selection. Starting from a distinction made

 explicit by Maynard Smith, I have argued that in identifying units of
 selection we are concerned with entities which, in virtue of biological
 properties they display, interact with the environment in a way that causes

 their survival and/or reproduction to be differential. That is, we are con-
 cerned with the entities participating in the subprocess of phenotypic se-
 lection. For such a process, entities need not exhibit heritable variation
 in fitness. When we inquire about the entities which display adaptations,

 we are asking which biological entities exhibit the properties they do be-
 cause their ancestors participated in selection processes favoring those
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 properties. The acquisition of adaptations requires a genetic response on

 the part of the entities in question. Entities displaying heritable variation

 in fitness are units of evolution.

 The distinction between units of selection and units of evolution clar-

 ifies historical, theoretical, and philosophical aspects of the units of se-

 lection controversy. Whereas Wynne-Edwards and Williams were con-

 cerned with biological entities that evolve adaptations, recent debates,

 such as that concerning Wilson's trait-group model, concern the entities

 that function in group-mediated selection processes not issuing in group

 adaptations. The thesis that there may be significant selection processes

 in nature which do not have an impact on gene frequencies finds support

 in the analysis of interference behavior. Finally, by distinguishing be-

 tween the concepts of units of selection and units of evolution, the em-

 pirical investigation of evolutionarily neutral but ecologically significant

 processes is encouraged.
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