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Journal of Ship Research, Vol. 26, No. 1, March 1982, pp. 16-24 

Polynomial Approximations to Mooring Forces in Equations of 
Low-Frequency Vessel Motions 

B. W. Oppenheim 1 and P. A. Wilson 2 

Multivariate polynomial approximations are considered to the coupled nonlinear mooring forces acting on 
a vessel moored with multileg moorings• The objective is to yield explicit forms of equations of the low-fre- 
quency vessel motions, since the exact mooring forces are known numerically only. Such forms could 
then be used for analytical solutions of the equations of motion. It is shown that the polynomials lack suffi- 
cient generality and accuracy for this purpose, and hence solution of the problem can be considered only 
by the exact method. 

I n t r o d u c t i o n  

THE OFFSHORE exploration vessels are often kept on station 
• using the so-called multileg mooring systems. Such systems are 

popular due to their high positioning precision and reliability, as 
well as their quick deployment and easy maintenance. This type 
of mooring provides the restoring forces to the vessel by the cate- 
nary effects. As the vessel moves under the influence of waves, 
wind and current, some mooring lines become slacker and some 
become tauter, thus giving a net restoring force on the vessel. 

Typically, a mooring line may contain several segments made 
of wires, chains and, more recently, synthetic ropes. Wires and 
chains obey the Hook law and they are relatively heavy. The 
synthetic ropes are usually nonlinearly elastic and they are light, 
often even buoyant or neutrally buoyant. Submerged buoys and 
hung weights are sometimes attached along the lines for improving 
the eatenary performance. Also, surface-floating spring buoys 
are frequently used in order to improve the spring effect and to 
facilitate the line deployment. The sea floor is rarely level and 
its topography affects the line loads and shape considerably. All 
these effects result in strongly nonlinear mechanics of the mooring 
lines. A static theory of an arbitrary-composition mooring line 
is given in [1], 3 where it is shown that, due to the nonlinearities, 
the solutions can be obtained only numerically. A simplified 
version of this theory that is utilized in the present calculations is 
also presented in the Appendix, together with the algorithm used 
for obtaining the mooring restoring force eomponents acting on 
the vessel, 

The nonlinearities of individual lines also make the total re- 
storing force nonlinear. When this force is resolved into compo- 
nents along and about some vessel axes, the components are also 
nonlinearly coupled. 

The moored vessels experience two distinct types of motions. 4 
Small but rapid (high-frequency) motions are induced by indi- 
vidual waves, and large but slow (low-frequency) motions occur 
due to the second-order slowly varying wave force. The latter 
force also has a de component which, together with the wind and 
current loads, contributes to a steady vessel shift. The high-fre- 
quency dynamics have been successfully developed using linear 
mechanics only, for example, [2, 3]. The low-frequency motions 
of the vessel in deep waters can be limited to the horizontal plane 

1 B. W. Oppenheim, Ph.D. & Associates, Inc., Los Angeles, Cali- 
fornia. 

2 Ship Science, Southampton University, Southampton, England. 
3 Numbers in brackets designate References at end of paper. 
4 The vessel's flexural vibrations are disregarded in this discussion. 
Manuscript received at SNAME headquarters March 31, 1980; revised 

manuscript received February 17, 1981. 

only, since the vertical motions are orders of magnitude smaller 
than the horizontal ones and therefore they cause negligible 
changes of state. The several inherent nonlinearities present in 
this dynamic problem, besides those of the mooring restoring 
forces, are as follows. The low-frequency damping is approxi- 
mately cubic in velocity since it is mostly viscosity-controlled. 
Since the vessel motions can be large and slow, the effect of the 
varying weather-incidence angles can contribute large variations 
of the weather loads, constituting a nonlinear feedback from the 
vessel yaw motion to the excitation. The large motions also require 
that two frames of reference be used for defining the equations 
of motion, one fixed in the vessel for computing the hydrodynamic 
body forces and one fixed in the earth for computing the mooring 
restoring forces since the anchors are obviously attached to the 
earth. The transformations of the motion derivatives and forces 
between the two frames thus also constitute a source of non- 
linearities. The feedback and transformation nonlinearities will 
vanish, however, if the vessel has a circular symmetry about a 
vertical axis, for example, disk, sphere and spar. 

A solution of the low-frequency nonlinear dynamics has been 
presented in [4] using time-domain simulation with relative ease. 
A disadvantage of the simulations, however, is that they can yield 
only a solution for one particular and complete set of the input 
conditions at a time, where the inputs include the vessel geometry 
and mass distribution, mooring system composition, sea bottom 
topography, and weather conditions. Even a routine mooring 
design requires many of these inputs to be evaluated and this is 
both tedious and involved computationally. The simulations of 
the dynamic parameters in irregular waves must be carried out 
for many hundreds of cycles in order to yield sufficiently accurate 
probabilistic and statistical results. 

It would thus be desirable to solve the equations in the frequency 
domain. Such solutions, when available, are convenient in the 
design since the desired responses of the system can usually be 
expressed by explicit functions of the terms in the equations of 
motion, and this form allows for an efficient parametric sensitivity 
analysis to be performed on individual terms in the functions, or 
on the input parameters. Also, the frequency-domain solutions 
would be more efficient eomputationally, since the entire solution 
(for all frequencies and all excitation magnitudes) could be ob- 
tained in one eomputer run. For example, judging by the linear 
version of the moored vessel dynamics, discussed in [41, the com- 
puter time of a single simulation, including the statistical processing 
of the records, is about six times longer than the total computation 
in the frequency domain. 

Unfortunately, no general analytical methods are available for 
treating the present nonlinear dynamics in their entirety, to the 
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authors' knowledge. Two specific aspects of the problem seem 
prohibitive, both caused by the large yaw motion allowed, namely, 
the existance of two frames of reference and the feedback. When 
the yaw is assumed small (but the remaining motions are allowed 
to be large), the equations of motion can be formulated in a single 
equilibrium frame, and the feedback can be neglected. It has been 
shown in [4] that the small yaw assumption is justified for ships 
having the mooring line fairleads located sufficiently far from the 
center of gravity, that is, at bow and stern, and if the motions are 
not excessive (but they can be larger than the "limits" of the linear 
motions). Also, in the case of the circular-symmetry vessels, the 
single frame of reference and the lack of feedback are automati- 
cally justified. 

With the small yaw assumption the remaining nonlinearities 
are in the damping and mooring forces. The former are given 
explicitely by cubics but the latter are available numerically only, 
thus they have to be expressed by explicit functions in order to 
proceed with the analytical solutions. This paper addresses the 
feasibility and practicality of approximating the exact coupled 
mooring forces by multivariate explicit functions for that purpose. 
Judging by the literature on the subject of nonlinear vibrations, 
for example, [5, 6], the solutions seem possible only if the functions 
are in the form of simple polynomials. The exact forces are 
computed here using the method given in the Appendix. 

A right-handed frame of reference, Oxgz, is fixed in the vessel 
center of gravity in the vessel position where the mean weather 
loads are in static equilibrium with the mean mooring forces. The 
x-axis points toward bow and the y-axis to port. The vessel motions 
along the x- and g-axes are named surge and sway and the rotation 
about the z-axis, denoted ~, is named yaw. The exact mooring 
forces are denoted by three components: Rx(X,g,~,'), Rv(x,g,~), 
and R~(x,y,~;). The polynomials that approximate them are de- 
noted Px(x,g,t~), P~(x,g,~J), and P~(x,y,~), respectively. In other 
words, the motions and the forces represent the oscillatory con- 
tributions relative to the mean levels. It is important to note that 
even if the mooring system is initially perfectly symmetric (that 
is, in the absence of weather elements), the forces defined in the 
present frame will not be symmetric in general since the static 
vessel shift to this frarne is arbitrary; it depends on the mean 
weather load. 

C o n s t r a i n t s  i m p o s e d  on p o l y n o m i a l s  

The polynomials must be of a fixed composition of terms so that 
a unique set of the equations of motion can be formulated for all 
combinations of the mean weather load, mooring stiffness settings, 
and for any arbitrary assymmetry of the mooring system. A 
simple mooring design task involves evaluations of a multitude of 
these combinations. Therefore, if the polynomial composition 
of terms were allowed to vary, it would mean having to solve just 
as many different sets of the equations of motion. Typically, the 
analytical solution of a nonlinear set of equations can be a formi- 
dable task in itself. Thus having to solve several such sets would 
be totally impractical. A unique set of the terms should theoret- 
ically be possible since the exact mooring forces are invariant 
qualitatively. This is a consequence of the fact that the forces vary 
monotonically, separately in Ix 1, I~1, and I~1, as a result of the 
mooring lines becoming slacker on the lee side of the vessel and 
tauter on the weather side, along these vessel motions. Also, the 
signs of the forces always exhibit the same symmetry/antisym- 
merry, as shown in Fig. l. 

In order to yield meaningful solutions of the equations of motion, 
all relevant qualitative behavior of the exact forces should be re- 
flected in the polynomials. Specifically, the coupling, sign sym- 
metries, and the presence of extrerna and saddle points should all 
be represented. Of particular importance is the presence of the 
actual extrema and the absence of false ones, as this aspect of the 
behavior influences directly the motion stability problem. A false 
minimum, for example, would indicate a stable motion center. 

, 
Rx 
Rx 

R× 

Ry ~- 

Fig. 1 Signs of mooring forces 

Lastly, the approximations should be sufficiently accurate to 
lead to meaningful and useful results, although no explicit accuracy 
limit is given here. 

F o r m u l a t i o n  of  the  p o l y n o m i a l s  

It is a characteristic feature of multivariate polynomials that by 
adding some terms to the polynomial composition the approxi- 
mation may be worsened. [In contrast, in univariate approxi- 
mation the choice of terms is automatic; terms not needed are as- 
signed (almost) zero coefficients.] Thus in the present case, only 
those terms should be included which can be justified .on physical 
grounds. It should also be kept in mind that the complexity of the 
solutions increases sharply with the order and number of the terms. 
In view of this and in order to avoid false extrema of the approxi- 
mating functions, the order of the polynomials has been limited 
to the third, inclusive. A third-order expansion in three variables 
can be totally controlled in regard to the monotonic behavior. 
Many of the terms of a higher-order expansion would be quite 
difficult to be justified from the problem physics. 

The present problem has been defined with the assumptions that 
yaw is small. Therefore the terms containing orders higher than 
one in yaw motion may be excluded, although this postulation will 
be verified. 

No constant terms are needed in the polynomials because the 
forces disappear at the origin. This also implies that the error of 
the approximation will vanish there. 

The possible terms under the third-order expansion are therefore 
as follows: x,xe,xS,g,g2,gs,~,xg,x2g,xg2,x~,x2~,g~,ge~,xg~. 
The following subsections examine the terms individually for each 
force component, Px, Py, and PC,. 

Px Force  component 

The force sign is antisymmetric in x, thus odd powers of x are 
needed. Since the nonlinearity of the force in x may be strong, 
both x and x s are included. Tbe magnitude of the force may not 
be symmetric, thus the term x 2 is also necessary. The force sign 
is symmetric in g but the magnitude may not be symmetric, thus 
the behavior in g alone is described by terms g and gz. The linear 
terms are always included, hence also the term ~. The second- 
order cross-terms xg, x~, and g~ are needed to reflect the asym- 
metry caused by the arbitrary position of the origin relative to the 
anchors and the initial asymmetry of the mooring lines. For ex- 
ample, the term xg represents the contribution caused by the di- 
agonal symmetry of the line tensions, as sketched in Fig. 2. 

In this case the Rx force will vary more in the (-x,+g) and 
(x,-y) quadrants and less in the ( + x, + g) and (-x,-g)  quadrants 
and this correction is described by the term xg. An analogous 
situation will exist with the other terms, x~ and g~b. 

Let the third-order cross-terms xZg, xy 2, x2~, and y2~ be de- 
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y 

slack line~~taut line 

taut line / ] \ slack line 

Fig. 2 Basic mooring assymetry 

noted mZn. These terms represent the changes of the force caused 
by motion along n, due to the system stiffness changes caused by 
motion in m. To illustrate this point, consider the term xy ~. A 
motion along y will increase the stiffness in x for both + I Y l and 
-lYl, as illustrated in Fig. 3. 

Finally, the term xy~  reflects the changes of the force in one 
variable due to a simultaneous changes in the two others. The 
terms which are of order higher than one in ~ have been omitted, 
in accordance with the small-yaw assumption. Also neglected is 
the term ya. The behavior of R~ in y must be nearly quadratic in 
y and a general lack of symmetry in this direction should be ade- 
quately described by the linear term in y. The polynomial thus 
takes the form (several polynomials will be discussed further and 
they are denoted by different  subscripts, for example, P~t, P~,  
etc.) 

Px~ = axl x + axe x 2 q- ax, x 3 + ax4Y + ax~y 2 + ax6~/ 

+ axvxy + axsxey + a~xy  z + axaoX~ + ax~X°@ + axx~y~P 

+ ax~ya~P + ax~4Xy~ 
(]) 

/ I x 
Fig. 3 Surge force contributions due to term xy  2 

Py Force component 
This force is analogous to Px because of the system orthogonality. 

Specifically, x 3 is dropped and y3 is included to yield the following 
form 

Pv~ = ay~x + ay2x z + a~3y + at~4y ~ + avsy 3 + au6 ~ 

+ ayyxy + aysxey + aygxye + ayloX~l' + avuxa~p + a~lzY~ 
+ ay~y2~ + av.xy ~ (9,) 

PC, Force component 
The linear terms x, y and ~ are always present. The yaw mo- 

ment  sign is symmetr ic  in the xy space along the diagonal direc- 
tions; therefore the term xy is needed and it is expected that this 
component will dominate. There may be nonlinearities in the x- 
and y-directions separately, and they are described by the linear 
and quadratic terms in x and y; hence the need for terms x 2 and 
y2. The term xy just described results in ant isymmetric  contri- 
butions. The yaw moment  may lack symmetry,  and thus the 
variations of xy with x,y and ff have to be allowed for; hence the 
terms x2y, xy ~ and xy~. Finally, the terms x~/, x2ap, y~l,, and y2~ 
are needed to reflect the system stiffness changes due to the arbi- 
trary rotation o~ the frame axes relative to the anchors. The terms 
omitted are the higher orders of ~/, and the cubic terms x a and y.3. 
The former are omitted, as before, because of the small-yaw mo- 
tion, and the latter because the nonlinearity and asymmetry in x 
and y separately should be adequately represented by x,x 2 and 
y,y2 alone. The expression for the moment  becomes therefore 

P~p~ = a ~ x  + a~zx 2 + al~ay + a~4y e + a~5~p + a~6xy 
+ aff7x2y + a¢sxy 2 + a~gxff + aC,~oXZ~P + affuy@ 

+ akl2y2~ + a~13xy ~ (a) 

Other candidate polynomials 
Several other candidates are evaluated in order to verify the 

preceding selection. One set of these contains all terms possible 
under expansion up to the third order, including the terms non- 
linear in lp These are denoted P~2, Pyz and P 2 They are in- 
cluded to illustrate the validity of the small-yaw assumption: 

Pk2 = ak~x q- ak2x 2 + ak3x 3 q- ak4y + aksy 2 q- ak6Y 3 

+ ak.z~ + aks~ 2 + akg~ 3 + ak~oXY + al, nxZy + ak~xy ~ 
+ al,~ax~P + a~4xe~p + a~q~x~ ~ + alq6Y~: + a~tyye~P 

+ a~y~p e + a~oxy ~ k = x,y ,~ (4) 

The next set of polynomials is similar to the one derived in the 
foregoing, but with all cross-terms of the third order dropped: 

Px~ = axi + ax~x z + axaX 3 + ax4Y q- CtxsY 2 + a x ~  

+ axyXy + axsX~P + axgy~ 

Nomenclature 

akl =/th term coefficient in kth polyno- 
mial 

A~ = cross-sectional area of ith segment 
b = unstretched length of mooring line 

on sea bottom 
b s = stretched length of mooring line on 

sea bottom 
Ci = stretch factor of suspended ith seg- 

ment 
C) = stretch factor of ith segment portion 

on sea bottom 
D = total horizontal span of mooring 

line 
E~ = Young's modulus of ith segment 
F~ - proof load o{ ith segment 

H = horizontal tension in mooring line 
J = number of mooring lines 

L/= vertical tension at lower end of ith 
segment 

N = number of segments in mooring 
line 

P(x,y,ff) = polynomial approximating a moor- 
ing force component 

Q~ = temporary variable 
R = vertical reaction at anchor 

R(x,yAb) = exact mooring force component 
si = unstretched length of ith segment 
s~ = stretched length of ith segment 
t =touchdown point (where mooring 

line leaves bottom) 
T = axial tension in mooring line 

u, = horizontal span of unstretched ith 
segment 

u~ = horizontal span of stretched/th seg- 
ment 

U~ = vertical tension of upper end of ith 
segment 

v~ = vertical span of unstretched ith seg- 
ment 

v s, = vertical span of stretched ith seg- 
ment 

w, = unit wet weight of unstretehed ith 
segment 

w ~, = unit wet weight of stretched ith seg- 
ment 

x,y,~ = surge, sway, and yaw components 
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PUs = aulx ~- aY2 x2 ~- aYaY 
q- ay4Y 2 q- ausy 3 + au6~ + ayTx!t + ausxt}' + augY~ 

Pea = a¢lx + a¢2 x2 + a~ay + a¢4y 2 + a¢5¢ + a~6xY 
+ a~7x ~ + a+sY~p (5) 

The next set is the simplest; it contains only those terms which 
assure the correct signs of the forces and the basic nonlinearities 
in the principal directions x and y: 

ZPx4 = axlx + ax2 x2 q- axaX a + ax4y + ax5Y 2 A- axt~ 

Pug = au~x + auz xa + aysy A- au4y 2 + aysg a + ay6~ (6) 

P~4 = actx + a¢2 x2 + a¢3Y + a¢4Y 2 + a¢sxY + a~6~ 

Finally, a polynomial PC is evaluated which contains only the 
linear terms and a single lowest-order cross-term xy which is 
necessary for the sign symmetry of the yaw moment: 

P¢5 = a¢~x + a¢2y + a~a~,, + a¢4xy (7) 

Approximation procedure 
The polynomial coefficients are determined by the least-square 

fit, using the Monte-Carlo method for specifying the data points. 
In the numerical examples quoted here, 80 equations are formed 
for up to 19 unknowns, separately for each force component (recall 
that the maximum number of terms in a polynomial of the third 
order is 19). Nine of the 80 data points are distributed along the 
boundaries of the x, y and ~-space; one point represents zero force 
at zero motions and the remaining 70 points are distributed in the 
interior of the x, y, t~-space using a computer random number 
generator having a uniform probability distribution. 

A typical mooring case is used for the numerical calculations. 
A Series 60, C8 = 0.80 ship displacing 48 117 tonnes (47 155 long 
tons) is assumed moored with eight identical mooring lines in 
333-m-deep (1092 ft) water. The mooring lines have a symmetric 
spread pattern of 22.5 deg/45 deg. They include a 300-m (984 
ft) upper segment of 21.3-kg/m (14.3 lb/ft) wire rope, and a lower 
chain segment of the weight of 97 kg/m (65 lb/ft). The weather 
is applied from the direction 15 deg off the bow, thus causing a 
typical lack of symmetry of the force components upon the shift 
of the vessel Oxyz origin. The pretension of the lines is made 
relatively large in order to cause a high stiffness of the system and 
thus to introduce relatively large nonlinear behavior of the forces. 
The ship shift from the undisturbed position to the origin turned 
out to be rather small, above 2 percent of water depth in the x- 
direction, 0.5 percent in y, and 0.5 deg rotation. These small 
motions reflect the high mooring stiffness. 

The bounds imposed on x, y and ~ within which the approxi- 
mations are sought and tested are found from practical consider- 
ations. The motions of moored platforms used in the oil industry 
are usually limited to 4 to 8 percent of water depth in the radial 
direction in the horizontal plane. Motions of about 15 percent 
depth are often regarded as unsafe, and beyond which there is a 
danger of entanglement of the lee mooring lines with each other 
and with underwater obstacles. Thus the range of x and y is taken 
a s  

I x I . . . .  = I Y l .... = 15 percent water depth 

The range of the variable ~ is taken as 

Iff] < 1 deg 

This reflects the small-yaw assumption and applies to many of the 
practical cases. 

Criteria for evaluating polynomials 
The various polynomials are evaluated using the criteria of the 

maximum relative error and the total root-mean-square (rms) error 

of the approximated surface as well as the behavior of that surface 
in variable ~. The space of x, y and ~ is defined exactly as that 
used for fitting the polynomials. The matrix of points at which 
the errors are computed now contains 30 points in x, 30 in y, and 
3 in t~, all equidistant and all centered about x = y = ~ = 0. The 
errors are defined as follows: 

e ..... k = max let ..... k] X100 percent (8) 
/ = 1 , 2  .~30 

m = 1.,2 . 30  

n=1,2,3  

l 30  eTran,k 1 / 2  erms.k = 2-~1__~1 ~ ~ ° X100percent (9) 
m = l  n = l  

k = x ,~ ,~  

where elmn,k is the individual relative error 

Rk(x~,y,n,¢,,) - t 'k(xt,V,,,,¢n) (10) 
el . . . . .  k = Rk(xl,Ym,~n) 

The criterion "behavior in ~," is included in view of the assumed 
linearity of the forces in ~. It is a check of whether the approxi- 
mated forces decrease or increase with ~/where the exact forees 
do. The results for all polynomials are presented in Table 1. The 
polynomials Pkl, Pk2 and Pk~, k = x, y, if, are also shown graphi- 
cally in Figs. 4-6 together with the exact forces, all for the value 
of ~ of 0 deg. The forces are shown as "'floating surfaces" relative 
to the reference plane corresponding to zero force. Three num- 
bers are listed on the graphs at each corner of the reference plane. 
They represent the force values corresponding to the value of 
of -1 ,  0, and 1 deg, respectively, from top to bottom, for inspecting 
the behavior of the polynomials in variable ~. All forces are 
plotted with the signs reversed, for a better clarity of the graphs. 
In other words, the graphs show the reactions from the vessel onto 
the mooring system. 

Evaluation of polynomials 
It is evident from Table 1 that the polynomials Fkz which contain 

all terms under the third-order expansion are not the best. This 
shows that the terms which are of higher orders in ~ are not 
needed. The polynomials Pxl and Pyl, which were derived from 
physical considerations, clearly give the best fit. A comparison 
of these two with Pxa and Py3 confirms that the third-order cross- 
terms are indeed necessary. A comparison of Px3 and Pu~ with Px4 
and Py4 gives apparently conflicting results. The presence of the 
second-order cross-terms has helped Px but worsened Pw This 
is a consequence of the fact that in this particular example the 
steady vessel shift along y to the frame origin is very small, while 
along x it is comparatively large. In the reversed situation, how- 
ever, the necessity of having those terms would then be more ev- 
ident. The graphs of the P~ and Pu components confirm that the 
polynomials Pxl and Pu~ give a proper qualitative fit. Notice in 
particular the curvatures of the surfaces along the edges. Also 
qualitatively good are the all-term polynomials P~2 and Pu2. The 
polynomials with the third-order cross-terms dropped, P~3 and Pu3, 
have an improper qualitative behavior, as can be best observed at 
the edges of the surfaces. Also, the latter two polynomials do not 
represent properly the behavior in ~ (see the force values in Figs. 
4-6). The polynomial forces decrease in ~ where the exact forces 
increase, and vice versa. In conclusion, the polynomials Pxl and 
PUl are the best, as expected from physical considerations of their 
terms. 

The approximations of the yaw moment are much worse than 
those of the Rx and [Iu forces. None of the polynomials has the 
rms error smaller than 100 percent. This would suggest that the 
order of the polynomials considered is too low. 

As before, the all-term polynomial P~2 is inadequate; it is in fact 
the worst of all those considered. This again is an encouraging 
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Table 1 Errors of polynomials 

px I x x 2 x 3 y y2 

2 3 2 
px 2 x x x y y 

2 3 2 
Px3 x x x y y 

2 3 2 
Px4 x x x y y 

2 
PYl x X - y y 

PY2 x X 2 x 3 Y y2 

x x 2 y2 
i Py3 - y 

2 2 
PY4 x X - y y 

2 2 
P~I x X - y y 

2 3 2 
P~2 x X x y y 

X 2 2 
P$3 x - y y 

2 2 
P~4 x X - y y 

P~5 x y 

Polynomial 

Terms Present 

xy x2y xy2! x$ x2~ 

3 ~2 ~3 y ~ xy x2y xy 2 x~ x2~ 

xy - - x~ 

3 y ~ xy x2y xy 2 x~ x2~ 

y3 ~ ~2 ~3 x~ x2y xy 2 x~ x2~ 

y3 ~ xy - x~ - 

3 
y 

2 2 
- ~ xy x y xy x$ 

3 ~2 ~3 2 2 
y ~ xy x y xy x~ 

- ~ x y  - ,  x ~  

- ~ xy - - 

xy 

y~ 

x$ 2 y~ 

y~ 

x$ 2 

y~ 

y~ 

y~ 

x25 y~ 

x25 x~ 2 y$ 

_ _ y~ 

Error, % Behaviour 

lema J in erm s 

y2~ - xy~ 2.0 30.3 OK 

y2~ y~2 xy~ 14.9 767.2 OK 

- - 139.6 6958.0 NO 

- - 181.7 9319.O NO 

y25 - xy~ 0.6 6.3 OK 

y2~ y~2 xy~ 0.6 6.4 OK 

- 12.1 133.6 NO 

- 6.1 29.1 NO 

y2~ xy~ 258.7 12570.0 OK 

y2~ y~2 xy~ 467.6 23720.0 OK 

- 129.2 6291.O OK 

- 113.5 4628.0 OK 

- 1BI 8579.O NO 

conclusion as it confirms the assumption that no higher powers of 
are needed. A comparison of the errors between P~I, P~3 and 

P~4 suggests that the fit improves when the third- and second-order 
cross-terms, other than xy, are excluded (xy is necessary for rep- 
resenting the proper symmetries of the yaw moment sign). A 
comparison of P¢4 with P~s demonstrates that the nonlinearities 
and asymmetries of the moment in x and y separately can be strong 
and therefore the quadratic terms x 2 and y2 are indeed necessary. 
Thus the choice must be made between P~l, P~3, and P~4. The 
plots of the surfaces are rather inconclusive, indicating an adequate 
qualitative behavior. It should be recalled at this point that the 
yaw moment of the particular example considered here is rather 
symmetric because the mooring system is symmetric and also 
because the steady rotation of the vessel to the frame origin hap- 
pened to be very small. This obviously gave the apparent result 
that the cross-terms are not needed. In the general case, however, 
this may not be so. It is again stressed that for the present purpose 
it is more important to have a proper qualitative than quantitative 
approximation. The former would lead to the physically correct 
(if not very accurate numerically) solutions of equations of motion; 
therefore a qualitative analysis of the system characteristics could 
then be performed, On the other hand, a polynomial which 
happens to give a good quantitative fit in some cases, but does not 
reflect the physical characteristics of the system, has to be regarded 
as inadequate. For these reasons the originally derived polynomial 
P~1 is chosen. 

Further testing of chosen polynomials 
The chosen polynomials Pkl are further tested in five different 

orientations of the frame origin relative to the anchors. Table 2 
presents the motion components from the undisturbed vessel po- 
sition to the frame origin and the resultant rms and maximum 
errors of the approximations. The same vessel/mooring system 
with the same original stiffness is used as before. In other words, 
the five sets of motions represent five static weather loads of 
variable strength and direction. Note that all five sets have higher 
motions than those used in the previous numerical example. 

Motion simulation tests 
The last test of the polynomials is presented in the form of a 

comparison between two motion simulations, one with the exact 
mooring forces and the other with the forces being approximated 
by the polynomials. Both simulations were performed using the 
technique and the numerical data of reference [4]. Figures 7 and 
8 present the two sets of simulations. The surge and sway motions 
are shown in percent of water depth, and the yaw is shown in de- 
grees, Table 3 lists the rms values of the motions computed from 
the random records, as well as the errors of the polynomials for this 
case. A visual inspection of Figs. 7 and 8 indicates that the ap- 
proximate motions seem to be identical to the exact ones. This is 
supported by the numerical values of the motion rms in Table 8. 
The maximum-motion rms error, that of yaw motion, is only 4.6 
percent. This high degree of accuracy occurred because the 
polynomials happened to be rather well fitted in this particular 
example, as the values of erms and emax indicate. The relatively 
large fitting error of the yaw moment apparently did not greatly 
affect the motions. This example illustrates that the polynomial 
approximation can indeed be of high quality in specific cases. 

Conclusions 
The fixed composition of the terms in the polynomials results 

in satisfactory accuracy in specific cases and a poor accuracy in 
some other cases, and it is not possible to predict the error a priori. 
This large variation of the errors is caused by the fact that some 
of the terms can either improve or worsen the approximation, 
depending on the specific case. Therefore, in order to achieve a 
fixed accuracy, the composition of terms would have to vary from 
one specific case to another. 

The order of the polynomials must be kept low in order to assure 
that the monotonic behavior of the exact forces is reflected in the 
approximation. This turns out sometimes to be too restrictive in 
terms of accuracy. Thus again, in order to achieve a desired ac- 
curacy, the order of the polynomials would have to be raised, and 
to assure that the monotonic behavior is preserved the approxi- 
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Fig. 4 Exact surge force arid polyno- Fig. 5 Exact sway force and polynomials Fig. 6 Exact yaw moment and polyno- 
mials Px,, Px2, and Px3 Pyl, Py2, and Py3 mials P¢1, P~2, and P~3 

mation would have to be performed by a trial-and-error process 
individually for each specific case of the exact forces. 

The polynomials that have been derived do assure the correct 
qualitative behavior in the general case. Thus the solution of the 
equations of motion could in theory be attempted, leading we 
would hope to a result being correct at least in the qualitative sense. 
The accuracy of such a solution, !however, would vary greatly from 
case to case. Also, the polynomials are of such a complex form that 
the analytical solutions would constitute a major task. 

It would thus be impractical to proceed with the solutions 
knowing a priori that the accuracy of the results may not be, in 
general, satisfactory. Whereas in order to achieve a high degree 
of accuracy it would be necessary to derive the composition of the 
polynomial terms individually in each specific case, there would. 
be a different set of equations of motion in each case and they 
would have to be solved individually. This of course would be 
impractical since the number of weather and stiffness cases that 
have to be evaluated in a typical mooring design is large. 
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The"behaviour in ~" is not listed in Table 2 as it is correct in all 

five cases. 

Table 2 Chosen polynomials in different 
load conditions 

cJ - " 

VV v.vvvvvvvvvv v  vVVVVV-VV -v  

Fig. 7 Simulated motions with exact 
mooring forces 
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Fig. 8 Simulated motions with mooring 
forces approximated by polynomials 

It is concluded therefore that the only practical way of analyzing 
the nonlinear dynamics of moorings is to perform the calculations 
in a time-domain simulation where the mooring forces, given 
numerically only, can be utilized directly, as demonstrated in 
[4]. 

The present calculations were peformed on the ICL2970 com- 
puter. The fitting of one polynomial takes about 120 seconds(s) 
of computer time. One simulation yielding the motion spectral 
accuracy of about 25 deg of the chi-squared distribution takes 
about 800 s. The linear solution of the motions in the frequency 

domain takes 50 s. (The computing time on the CDC7600 ma- 
chine is approximately 2 to 5 percent of the time on the ICL2970.) 
It is evident from these time values that the simulations are quite 
expensive computationally but, in view of the foregoing conclu- 
sions, they seem to be the only practical method available. 
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Appendix 
Calculation of total mooring restoring forces 

Let a mooring line consist of N segments (N > 1), with the first 
segment latching onto the anchor. Each segment is described by 
the following known parameters: 

• wi = unit  weight in water of inelastic segment, uh > 0 
• si = unstretched length 
• Fi = proof load 
• Ai = cross-sectional area 
• Ei = Young's modulus 

Figure 9 illustrates the line geometry. 
The elementary catenary equations for a segment in an arbitrary 

loading condition an be shown to be 

H 
u, =--In[(U, + x / ~ +  H2)/(L, + ~ +  He)] (11) 

, , ,  = ± [ G G -  + u~  - GET;. + H~] 

where 

u, = horizontal span of suspended ith segment 
vi --- vertical span of suspended ith segment 
H = horizontal tension in line 
U, - vertical tension in segment at end closer to vessel 
L,. = vertical tension in segment at end closer to anchor 

Let the touchdown point of the mooring line be denoted by t, not 
necessarily coinciding with the end of any segment. The un- 
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stretched length of the line on the sea bottom, b, is then 
t 

b = Y] si (12) 
i= l  

The vertical forces at the segment ends are obtained by summing 
the line weight from point t upward: 

i--1 
L~ = E sjwi + R (13) 

j=t 

Ui = Li q- siwi 

where R is the vertical reaction at the anchor, unknown yet. It 
should be noted that when R > 0, b = 0, and when R = 0, b ~> 0. 
It is assumed that the sea bottom is flat and horizontal. Then any 
portion of the line on the bottom is entirely supported by the bot- 
tom, and the only tension it experiences is H. 

Let u~, v~,, w~, s~, and b s denote the stretched values of ui, vi, 
wi, si, and b, respectively. The elongation of the ith segment 
being in a catenary shape is, from Hook's law 

'S Asi = ~ r (s )  ds 

i f  AiEi x / (Li  + swi) 2 + H z ds 1{  
2A~Ei (L~ + swi) [H 2 + (Li + swi)2] 1/~ + H 2 In 

L~ + swi + [H 2 + (Li + swi)2]l/2 I 

Wi J 

Substituting the segment ends for the integral limits 

Li, S = 0 
L, + swi = U,, s =s i  

the integral takes the form ,{ 
Ui + ~  

+ H 2- In Li + 

Denoting the quantityin the brackets by Q~, putting Asi = s~ - 
si, and rearranging the terms yields the ratio of the stretched length 
of the segment to the unstretehed length, Ci: 

c ~ = ~ = 1 +  G >/1 (14) 
si AiEiwisi 

For the segment (or a part of it) resting on the bottom, the stretch 
factor, denoted C~, is available directly from the Hook law: 

c ~, -- Hs---z (15) 
AiEi 

The condition of continuity 

w~ ds s = w ds 

together with equation (14) requires that 

w ~, = w d C ~  

Utilizing this result, the spans and length of the stretched segment 
can be written as products of the unstretched quantities and the 
stretch factors 

ul = Ciu~ 

v~ = Civi (16) 

sl  = Cis~ 

b s = ~ Cbi s~ 
/=1 

Equations (11)-(16) constitute a set of nonlinear algebraic equa- 

tions with transcendental functions. They are solved numerically 
by iterations. The two mutually exclusive domains where solutions 
are possible are 

b>~O,R = 0  

and 

b = 0 ,  R > 0  

The iterations in the first domain first assume a value for b, then 
H is iterated until the stretched vertical spans of the segments 
converge to the known vertical distance between the anchor and 
the vessel fairlead. Similarly in the second domain, R is assumed 
and H is iterated until the vertical span converges. The inde- 
pendent variable b is varied first, in the range between the value 
corresponding to the mooring line being almost vertical at the 
fairlead and zero. Then the independent variable R is varied 
between zero and the value corresponding to the proof-load of the 
weakest segment. Next, the results are organized in the order of 
increasing horizontal span of the entire mooring line. The result 
of these operations is a systematic series of the mooring line pa- 
rameters, all given as functions of the line span, D: 

H(D),  u~(D), v~(D), U,(D), L,(D),  
i = 1 . . . . .  N, b~(D) and R(D) 

The series covers the entire range of the loading conditions of the 
mooring line. The series is named the Catenary Table and is used 
in computing the mooring restoring forces acting on the vessel, as 
described in the following. 

The preceding solution is a valid subject with the following 
limitations: 

• The line segments are heavier than water and no buoyant or 
neutrally buoyant segments are present. 

• The bottom is flat and horizontal. 
• No submerged buoys or hung weights are attached to the 

mooring line. 
• No surface-floating spring buoys are attached to the line. 
• The segments obey the Hook law, thus nonlinearly stretchable 

synthetic ropes are not allowed. 
An extension of the present solution, in which all of the foregoing 

constraints are eliminated, is given in reference [1] for both the 
catenary mooring line and the so-called tension-moor line. 

Components of mooring restoring forces 
The total horizontal mooring restoring force acting on the vessel 

is the vectorial sum of the horizontal tensions in all the mooring 
lines. The horizontal tensions are extracted from the Catenary 
Table by interpolation on the horizontal spans of the individual 
mooring lines. Let there be J lines in the mooring system. The 
spans Dj, j = 1 , . . .  , J, can be found from simple geometry from 
the vessel position (x,y,~;), the anchor positions defined in the 
equilibrium frame (Ax,,Av,), and from the fairlead coordinates in 
the body frame (F~xj, iff~j),'as follows: 

D j ( x , v , ¢ )  = [(.ax, - Fx,)  2 + (A~, - GIp]~/~- 

e~, = x + e~j cos¢  - r~j  s i n e  

Fvj = y + F~ i sine + rb j  cos~, j ----- 1 . . . . .  J 

The restoring forces can now be written in the form 

Rv(x,y,ff) j j=i ' ' (sin/ 

R¢(x,y ,¢)  = ~ nj(Dj(x,v,¢)) [Fbxi cosej - F~i sine/] 
j = l  

where t2 i is the jth line direction in the body frame of the 
vessel .  

24 JOURNAL OF SHIP RESEARCH 


	Polynomial Approximations to Mooring Forces in Equations of Low-Frequency Vessel Motions
	Digital Commons @ LMU & LLS Citation

	tmp.1476294779.pdf.bAoX_

