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Improving the performance of single chip image
capture devices

Barbara E. Marino
Loyola Marymount University
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E-mail: bmarino@lmu.edu

Robert L. Stevenson
University of Notre Dame

Laboratory for Image and Signal Analysis
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Notre Dame, Indiana 46556

Abstract. Single chip charge-coupled devices (CCDs) coupled with
filters for isolating red, green, and blue color content are commonly
used to capture color images. While this is more cost effective than
multiple chip systems, best results are obtained when full RGB color
information is obtained for every point in an image. The process of
color subsampling in a single chip system degrades the resulting
image data by introducing artifacts such as blurry edges and false
coloring. We propose an algorithm for enhancing color image data
that were captured with a typical single chip CCD array. The algo-
rithm is based on stochastic regularization using a Markov random
field model for the image data. This results in a constrained optimi-
zation problem, which is solved using an iterative constrained gra-
dient descent computational algorithm. Results of the proposed al-
gorithm show a marked improvement over the original sampled
image data. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1560643]

1 Introduction

The capture of color image information for digital process-
ing requires the measurement of at least three color spectral
bands at all points of the image using a color scanner or
camera. Typically, color is measured using a combination
of filters and light-sensitive elements, such as charge-
coupled devices~CCDs!, to measure the red, green, and
blue content of the image. Optimally this is done by alter-
nately isolating each color primary and measuring the in-
tensity of each color at each point in the image. This is
done using either a single CCD array with multiple expo-
sures through different color filters or by using multiple
CCD arrays with different color filters. Since multiple CCD
systems are expensive and multiple exposures are often not
practical, single chip CCD systems have been developed.
Individual elements of the CCD array are each coupled
with a filter for measuring the color content of one of the
primaries. These individual filters are arranged in a mosaic

pattern over the array, which effectively samples the image
data since each element in the CCD array can only measure
one color.

Since the different spectral bands are no longer being
sampled at the same physical location, color artifacts are
often introduced. These artifacts are most noticeable at
edge locations where the edges in each of the color prima-
ries do not correlate with each other. This introduces blurry
edges and false coloring. The artifacts can be greatly im-
proved by processing the image after it has been captured.1

Researchers have proposed a wide variety of methods to
reduce these artifacts. Ozawa and Takahashi,2,3 and Sug-
iura, Asakawa, and Fujino4 examined this problem as it
pertains to digital video cameras. Omori and Ueda5 deter-
mined a corrected, high-resolution image using multiple
images of the same object, shifted in phase. Messing and
Sezan6 used multiple images captured by a camera operat-
ing in burst mode to produce a single high resolution im-
age.

This problem as it pertains to digital still cameras has
been examined from many different perspectives. Go,
Sohn, and Lee7 investigated an interpolation scheme based
on neural networks. Sakamoto, Nakanishi, and Hase,8 and
Toi9 explored algorithms as suitable and optimal for spe-
cific platforms.

One prominant artifact produced from single chip image
capture is the false coloring introduced when the edges of
objects appear misaligned in different spectral bands. To
compensate for this, researchers have proposed algorithms
that employ cross-channel correlation. This research in-
cludes the work of Hur and Kang,10 Kimmel,11 and Kuno
and Sugiura.12 These methods are simple, noniterative
weighted interpolation schemes.

We propose an interative algorithm for improving the
results of single chip color image capture. The algorithm is
based on stochastic regularization using a Gaussian image
model with a deterministic line process to realign the edge
information. The image model is used in a maximuma
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posteriori estimation technique, resulting in a constrained
optimization problem. This is optimized using an iterative
constrained gradient descent computational algorithm.

Section 2 describes the forward process of capturing an
image using a single chip CCD array. The estimation tech-
nique and the proposed algorithm used in the enhancement
process are introduced in Sec. 3. Section 4 presents the
results of testing the proposed algorithm, and Sec. 5 sum-
marizes the results of this work.

2 Color Image Capture Using a Single Chip CCD
Array

As mentioned in the previous section, color image data can
be measured using a single chip CCD array. The layout of a
typical single chip CCD array is shown in Fig. 1.13 The
letters R, G, and B represent the filter associated with each
particular CCD element given its spatial location in the
array. An element labeledR is coupled with a filter that
enables the element to isolate and measure the red content
of the image at that particular location. Similarly, G ele-
ments measure green information and B elements measure
blue information.

Notice that there are as many green elements as red and
blue combined. Single chip color CCDs are designed this
way, since green appears brighter to the human visual sys-
tem ~HVS! than other colors.14 Green therefore carries
more visually important information than red or blue. Dur-
ing the image capture process, the values measured by the
two green elements in the same 232 block are averaged to
produce a single value of green.

Measuring color information in this way effectively sub-
samples the color data by a factor of 2 in each dimension,
resulting in one value of each of the color primaries for
each 232 block of pixels in the original image. A more
traditional technique for subsampling is accomplished by
averaging the values of each color primary in the block. For
the purpose of this discussion we refer to this traditional
means of subsampling as proper subsampling.

Let X represent a full resolutionM3N color image in
RGB space, whereXPVMN, V5@0,1#.3 Let Y represent the
results of properly subsamplingX by a factor of 2 in each
direction,YPVMN/4. A color pixel at the~i, j! pixel location
of the subsampled imageY is denoted by a vector in 3-D
space,Y i , j , wherer, g, andb are the color elements of that
vector. That is,

Y i , j5F r
g
b
G

i , j

, ~1!

wherer, g, bP@0,1#.
For notational convenience a pixel in the full resolution

imageX i , j is defined to contain the pixel values of the 2
32 sampling block of a CCD array, see Fig. 2. In this case
the vectorX i , j contains four elements for each of the pri-
maries,

X i , j5@R0,0 R0,1 R1,0 R1,1 G0,0 G0,1 G1,0 G1,1 B0,0 B0,1 B1,0 B1,1# i , j
t ,
~2!

where the values of the elements of this vector are also
contained in the interval@0, 1#.

The forward process of obtaining a properly subsampled
imageY from a full resolution imageX is given by,

Y i , j5F 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

GX i , j5SXi , j .

~3!

A matrix SO , which subsamples the complete original image,

Y5 SOX, ~4!

can be appropriately formed from the template matricesS.
Improper subsampling achieved by capturing an image

using a single chip CCD array is given by the equation

Y i , j*

5F 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
GX i , j5S* X i , j .

~5!

Again, a matrix can be appropriately formed to describe the
process of improperly subsampling the complete image,

Y* 5SO* X, ~6!

whereY* represents the results of improperly subsampling
X.

Fig. 1 Single chip CCD array.

Fig. 2 Subsampling.
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3 Bayesian Estimation and the Enhancement
Process

The enhancement process involves estimatingY from Y* .
Let the estimate of the properly sampled color image data
be represented byŶ. This estimation problem is ill posed,
since there is no unique solution. One method of estimating
a unique, and thus well-posed solution is through Bayesian
estimation.

To determine the estimateŶ of the properly sampled
color image dataY, from the improperly sampled dataY* ,
a maximuma posteriori~MAP! technique is used. Employ-
ing this technique, the estimateŶ can be written

Ŷ5arg max
YPVMN/4

log Pr~YuY* !. ~7!

Using Bayes rule,

Pr~YuY* !5
Pr~Y* uY!Pr~Y!

Pr~Y* !

5
Pr~Y* uX!Pr~XuY!Pr~Y!

Pr~Y* !

5
Pr~Y* uX!Pr~YuX!Pr~X!

Pr~Y* !
, ~8!

which gives the estimation the form,

Ŷ5arg min
YPVMN/4

$2 log Pr~YuX!2 log Pr~Y* uX!

2 log Pr~X!%. ~9!

The full resolution imageX is introduced into the esti-
mation problem, since we have a good model for Pr(X).
The conditional densities are based on our knowledge of
the subsampled image given the original image data. Since
the sampling process is known for both the proper and im-
proper cases, these conditional densities are known exactly,

Pr~YuX!5H 0, YÞSO ~X!

1, Y5 SO ~X!
, ~10!

Pr~Y* uX!5H 0, Y* ÞSO* X

1, Y* 5SO* X
. ~11!

To model the image data, a Markov random field~MRF!
is assumed with the Gibbs density function

Pr~X!5
1

Z
expF2

1

l (
cPC

r~dc
t X!G , ~12!

where Z is a normalizing constant,l is the regularizing
parameter,c is a local group of pixels called cliques,C is
the set of all cliques throughout the image,dc is a coeffi-
cient vector for cliquec, and r~•! is a function of the
cliques, which is further defined later.

A MAP estimate for this estimation problem can be
found by solving the following minimization problem:

Ŷ5SOFarg min
XPZ

H (
cPC

r~dc
t X!J G , ~13!

whereZ is defined as the set of all possible images that
solve the forward problem, i.e.,

Z5$XPVMN:Y* 5SO* X%. ~14!

Let

X̂5arg min
XPZ

H (
cPC

r~dc
t X!J . ~15!

From Eq.~13! we see thatX̂ can first be computed and then

used to determineŶ as follows,

Ŷ5SO X̂. ~16!

The derivation of this minimization problem has been
sparse. It is desired only to summarize well-known results.
For further information, the reader is referred to Refs. 15
and 16.

The quality of the resulting estimate ofX̂ depends on the
form of r~•! anddc . The functionr~•! and the coefficients
in dc are set based ona priori assumptions about the image
data. Thea priori assumption that is incorporated into this
work is that image data are basically smooth, however,
edge information must be maintained and realigned.

For the first part of the assumption, the coefficients indc

are set so thatdc
t X provides a measure of smoothness. This

is done by using finite difference approximations to a first-
order derivative as the image data smoothness measure. At
pixel Xi , j the four discrete directional derivatives approxi-
mate a rotationally symmetric operator within a 333 pixel
grid and are given as

di , j ,0
t X5 X i , j2X i 11,j

di , j ,1
t X5 X i , j2X i 11,j 11

~17!
di , j ,2

t X5 X i , j2X i , j 11

di , j ,3
t X5 X i , j2X i 21,j 11 .

The second part of the assumption can be acted on by
exploiting the correlation between the color channels to de-
termine the true edges in the image. At locations where true
edges have been determined, no smoothing is done to en-
sure the edges are maintained.

These criteria can be met by using the convex quadratic
correlator function with a line process, defined as

r~a!5H 0, if an edge is detected

a2, otherwise
. ~18!

When a correlated edge is not detected, the quadratic
term produces a least squares fit to the data, smoothing out
the false edges. When an edge is detected, no cost is asso-
ciated with this term, aligning and preserving the true
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edges. Note that the convexity ofr~•! ensures that the mini-
mization remains convex and the results stable.16,17

A strong correlation exists between the individual color
planes of a full color image. An edge of an object is often
present and aligned in more than one color plane. Images
that have been subsampled using a single chip CCD array
lose this correlation due to the physical separation of the
individual elements in the array.

Let a detected edge be defined as a location where the
directional derivative is greater than some threshold,

di , j ,m
t X.T, ~19!

whereT is the value of that threshold. Let a potential edge
be defined as a location where a true edge may have been
originally located based on the presence of a detected edge.
The process of correlated edge detection is accomplished
by first detecting the edges present in each of the color
planes, determining the location of potential edges, and fi-
nally determining the actual edges by matching up the cor-
related potential edges.

Consider the problem of locating edges in the direction
di , j ,0

t X. Figure 3 illustrates how potential edge locations
follow from the location of detected edges. The RGB cubes
represent the 232 sampling blocks of the CCD array with
the sampling locations for each of the primary colors indi-
cated.

The location of potential edges follows naturally from
the knowledge of the forward process and the location of
the detected edges. If an edge is detected in the red or blue
color planes, the actual edge could have been located at any
point, since that particular color plane was last sampled. In
the green color plane, identifying potential edges is a little
more challenging. This is because the green value of a pixel
is the average of two sample points. If an actual edge is
located in the center of a 232 sampling block, the edge is
smoothed and replaced by a two-step edge.

The final step of correlated edge detection is to recon-
struct the actual edge information given the potential edges.

Figure 4 shows that potential edges from all the color
planes line up at the location of the actual edge.

It is not always the case, however, that edges contain
edge information in all color planes. It may be that an ac-
tual edge only exists in one color plane. Therefore, a
method of determining actual edge location is needed,
which is independent of the number of color planes that
contain potential edges. To include these cases, the actual
edge is said to exist at the location with the highest number
of potential edges. In the case of a tie, the actual edge is
said to exist at the location it was detected,~i, j!.

The previous development describes a method for iden-
tifying correlated edges in the directiondi , j ,0

t X. The detec-
tion of edges in the other directions follows a similar de-
velopment.

The necessary motivation now exists to introduce the
functional form using a Markov random field model and
the quadratic correlator functionr~•!. The proposed expo-
nential kernel of the modified Gaussian Markov random
field ~GMRF! image model is

V@X#5 (
cPC

Vc~X!5(
i

(
j

(
m50

3

r~di , j ,m
t X!, ~20!

whereV@X# is a function of the fully specified imageX. To
find the MAP estimateX̂, the convex functionalV@X# must
be minimized subject to the constraintXPZ.

A steepest descent projection technique was selected to
minimize the functional in Eq.~20!. This constrained opti-
mization method performs a steepest descent step at each
iteration.

Denote the image estimate at then-th iteration asX(n).
The 0 iteration,X(0), can be initialized using an expansion
of the subsampled image dataY* by replicating the sample
values throughout the sampling neighborhood.

To update the image estimateX(n) in each iteration, a
step in a particular directionv(n) is taken, wherev(n) is of
the same size asX(n). A common choice for this direction is
the negative of the gradient direction, where the gradient
direction can be found as,

u~n!5H ]V@X~n!#

]X~n! J . ~21!

The direction of descent must then be mapped onto the
constraint space to confine the update to the constraint of

Fig. 3 Detected and potential edges.

Fig. 4 Correlated edges.

Marino and Stevenson

212 / Journal of Electronic Imaging / April 2003 / Vol. 12(2)



Fig. 5 Enhancement of color squares captured using single chip CCD arrays: (a) original image, (b)
properly subsampled image, (c) improperly subsampled image, and (d) image enhanced using pro-
posed algorithm.
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Fig. 6 Expansion of Fig. 5: (a) original image, (b) properly subsampled image, (c) improperly sub-
sampled image, and (d) image enhanced using proposed algorithm.
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Fig. 7 Enhancement of color eggs captured using single chip CCD arrays: (a) original image, (b)
properly subsampled image, (c) improperly subsampled image, and (d) image enhanced using pro-
posed algorithm.
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Fig. 8 Expansion of Fig. 7: (a) original image, (b) properly subsampled image, (c) improperly sub-
sampled image, and (d) image enhanced using proposed algorithm.

Marino and Stevenson
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Eq. ~14!. Since the matrix defining the forward process is
known, this projection matrix can be found as18

vi , j52@ I 2S* t~S* S* t!21S* #ui , j , ~22!

vi , j52

l

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1
2 2

1
2 0 0 0 0 0

0 0 0 0 0 2
1
2

1
2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

m
ui , j .

~23!

Now that the projection operator has been defined, the
magnitude of the direction taken can be determined. Let

X~n11!5X~n!1a~n!v~n!, ~24!

where the scalara (n) represents the size of the step taken in
the directionv(n). For fast convergence, a value fora (n)

should be selected that gives the optimal step size toward
the global minimum of the functional. This can be done by
approximating the functional with a truncated Taylor series
and selecting the step size that minimizes this approxima-
tion in the selected direction of descent.19

The process of determining descent direction, projecting
onto the constraint space, and calculating the step size is
repeated until the problem converges on a solution.

4 Experimental Results

This section demonstrates the value of the proposed algo-
rithm through two representative examples. Figure 5 shows
the results of subsampling and enhancing the image of an
array of colored squares. Four images are shown: the origi-
nal image, the properly and improperly subsampled images,
and the enhanced image. In addition to the full size images,
an expanded view of a single color block from each image
is included to show greater detail~see Fig. 6!. The original
image was subsampled according to the processes of prop-
erly and improperly subsampling an image, discussed in
Sec. 2. Notice the introduction of false colors along the
edges in the improperly subsampled image. The enhanced
image obtained from applying the algorithm proposed in
this work shows an improvement in the quality of the
edges. The artifacts such as the false colors due to uncor-
related edge information have been greatly reduced.

The example given in Fig. 7 shows the results of sub-
sampling and enhancing the image of a bowl of colored
eggs. Again four images are shown. An expanded view of
the center of the image is shown in Fig. 8. Notice the in-
troduction of false colors particularly along the top and
bottom edges of the bowl. Also, false colors are present

along the boundaries of the blue eggs in the subsampled
image. These artifacts have been greatly reduced in the en-
hanced image.

Table 1 quantifies the experimental results. The SNR of
the improperly subsampled image is compared to that of
the results achieved using the proposed enhancement algo-
rithm. In the case of both test images, a gain of approxi-
mately 1 dB is achieved.

5 Conclusion

The physical separation of the individual elements in a
single chip CCD array cause the edges in the RGB color
planes to become misaligned. This introduces artifacts such
as false coloring along the edges of an image. Enhancing
subsampled color image data is a useful step in producing a
better quality image for viewing. We propose an enhance-
ment algorithm based on stochastic regularization using a
Gaussian image model with a deterministic line process to
realign and maintain the edge information. The resulting
computational algorithm involves an iterative constrained
gradient descent, which requires a correlation operator to
realign the edge information. Results show that the algo-
rithm works well to reduce, and often eliminate, the visible
effects of this type of image capture.
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