
Mathematics, Statistics and Data Science 
Faculty Works Mathematics, Statistics and Data Science 

1989 

Efficient Multiple-Precision Evaluation of Elementary Functions Efficient Multiple-Precision Evaluation of Elementary Functions 

David M. Smith 
Loyola Marymount University, dsmith@lmu.edu 

Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac 

 Part of the Mathematics Commons 

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation 
Smith, David M., "Efficient Multiple-Precision Evaluation of Elementary Functions" (1989). Mathematics, 
Statistics and Data Science Faculty Works. 1. 
https://digitalcommons.lmu.edu/math_fac/1 

This Article is brought to you for free and open access by the Mathematics, Statistics and Data Science at Digital 
Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in 
Mathematics, Statistics and Data Science Faculty Works by an authorized administrator of Digital 
Commons@Loyola Marymount University and Loyola Law School. For more information, please contact 
digitalcommons@lmu.edu. 

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math
https://digitalcommons.lmu.edu/math_fac?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/math_fac/1?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


MATHEMATICS OF COMPUTATION 
VOLUME 52, NUMBER 185 
JANUARY 1989, PAGES 131-134 

Efficient Multiple-Precision Evaluation 
of Elementary Functions 

By David M. Smith 

Abstract. Let M(t) denote the time required to multiply two t-digit numbers using 
base b arithmetic. Methods are presented for computing the elementary functions in 
O(tI/3M(t)) time. 

1. Introduction. In [2] Brent shows that the elementary functions can be com- 
puted with t digits of precision using base b arithmetic in O(M(t) log t) operations. 
M(t) represents the time required to perform one t-digit multiplication. These are 
the fastest known methods asymptotically, but because the algorithms are compli- 
cated, for precisions of no more than a few thousand digits there are more efficient 
algorithms. 

For commonly used precisions the best methods currently in use run in 
O(t1/2M(t)) time [1], [3]. At these precisions, M(t) = 0(t2), although faster meth- 
ods exist for high precision [4]. This paper presents similar algorithms for which 
the running time has been improved to O(t1/3M(t)). Because this improvement 
is fairly simple, the resulting algorithms are faster than those in [3] even at low 
precision. 

2. Exponential and Related Functions. Function computations can often 
be speeded up by using various identities to reduce the size of the argument prior 
to summing a series, and then reversing the reduction at the end. The exponential 
identity 

exp(x) = exp(x/2k)2k 

can be used as follows. Compute y = x/2k using a few divide by integer operations, 
then sum the series for exp(y), then do k squarings to recover exp(x). Brent uses 
this technique in [3] to obtain an algorithm with speed 0(t1/2M(t)). 

Since the power series for exp(x) consists of terms which are closely related, 
the next term can be obtained from the previous term by one division by a small 
integer and one O(M(t)) operation to get the next power of x. The operations 
with integers and the addition of the terms are all 0(t), so reducing the number of 
multiplications is important. The direct sum 

x2 x3 xn 
expr(u) e + 1 + -1 + by + - i e+ 

require's (n -1) multiplications, (n -1) divisions by an integer, and n additions. 

Received June 25, 1987; revised February 18, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65D15. 

@1989 American Mathematical Society 
0025-5718/89 $1.00 + $.25 per page 

131 



132 DAVID M. SMITH 

The sum can be rearranged as j concurrent sums 

1 + x I/j! + 3/(2j)! +... 

+x [1 +xi/(j+ 1)! +... 

+ x2 [1/2! + xi/(j + 2)! + 

+ x3 [1/3! + xi/(j + 3)! + 

+ xi- [1/(j - 1)! + xj/(2j - 1)! + 

To add the next term to each of these sums So, Si,... , Sjpl requires one multi- 
plication to get the next power of xi, j divisions by an integer, and j additions. 
The original xi term can be obtained in O(logj) multiplications using a binary 
exponentiation method [4]. Then the polynomial Sj_ 1 xi- ' + + Si x + So is eval- 
uated as (.. (Sj_1x + Sj 2))x +. + S1)x + So, which takes (j-i1) multiplications 
and (j - 1) additions. For high precision this means the number of multiplications 
needed to compute exp(x) is about n/j + j and the number of O(t) operations is 
the same as for the direct sum. Because the j sums must be stored separately, this 
algorithm uses more space than the 0(t1/2M(t)) algorithm. Although the actual 
order of the operations is different here, the idea behind the arrangement above is 
similar to one given by Paterson and Stockmeyer [5]. 

To estimate the time for this algorithm, assume that the argument is about 1 in 
magnitude, base b arithmetic with t digits is used, and k halvings are done before 
the j sums are computed. The original argument x is assumed to lie in some fixed, 
bounded interval, and the number of terms n needed from a Taylor series is assumed 
to be a single-precision integer. The value of n is determined by the equation 

(2-k)n -t 
n! 

Using Stirling's approximation for n! provides an approximation for the number 
of terms in the series which must be taken: 

t log b 
log t + k log 2' 

Including the k squarings needed to reverse the argument reduction, the total 
work, W, is estimated by the number of multiplications: 

W t log b + j + k 
j(log t + k log 2) 

Choosing j and k to minimize W gives 

j = t1/3(log b/ log 2)1/3, 

k = t1/3(log b/ log 2)1/3 - log t/ log 2. 

Letting j and k be the nearest integers to these values gives an algorithm with 
0(tl/3) multiplications, and it follows that exp(x) can be computed in 0(t1/3M(t)) 
time. 

Logarithms can be computed in 0(t1/3M(t)) time using Newton iteration and 
the exponential function. Starting with an approximation generated in single or 



MULTIPLE-PRECISION EVALUATION OF ELEMENTARY FUNCTIONS 133 

double precision, the precision is doubled at each iteration until the desired multiple- 
precision accuracy is obtained. Since only the last iteration is done at full precision, 
computing the logarithm takes only slightly longer than the exponential function. 

Power functions and hyperbolic functions can be computed from formulas involv- 
ing exponential and/or logarithm functions, so they are also obtained in O(t1/3M(t)) 
time. 

3. Trigonometric Functions. For sin(x) the argument can first be reduced to 
lie between 0 and 7r/4 using various identities. Then this value is further reduced by 
dividing by 3k, and then the Taylor series is added as j sums in a manner similar to 
exp(x). After summing the series, sin(x) is recovered by k iterations of the formula 

sin(3a) = sin(a) (3 - 4 sin2 (a)). 

This requires two full multiplications for each of the k steps, the reduced argu- 
ment is about 3-k, and the sine series has only half as many terms as the exponential 
series. The total number of O(M(t)) operations done in computing sin(x) is about 

t log b ++k 
2j(log t + k log 3) 

Minimizing W gives 

j = t1/3(logb/log 3)1/3, 

k = 2 t1/3 (log b/ log 3)1/3 - log t/ log 3, 

so the sine is computed in O(t1/3M(t)) time. Because the sum has only n/2 terms, 
and reversing the argument reduction takes longer than for the exponential, the 
algorithm does less argument reduction than for exp(x). 

The other trigonometric functions can be computed from sin(x) and identities. 
Inverse trigonometric functions can be done using Newton iteration and sin(x). 
This gives all the trigonometric functions in O(t1/3M(t)) time. 

4. Results Using Fast Multiplication. If a multiplication algorithm can 
be used which is much faster that 0(t2), then the time taken for all the 0(t) 
operations becomes large enough to change the best values of j and k. There are 
0(n) additions and integer divisions, with n = 0(t/k), so the time for exp(x) could 
then be estimated by 

( tlogb 2+j+kM(t)+2t 

and a similar expression would apply to sin(x). If M(t) = o(t4/3) with j and k 
still 0(tl/3) as above, then the time spent on multiplications is o(t5/3), while the 
additions and integer divisions take 0(t5/3) time. 

Minimizing T gives different choices for j and k when M(t) = o(t4/3). In this 
case the best values are j = 0( 4VM(t)) and k = 0(t/ M(t)), and the algorithm 
runs in 0(tVM(t)) time. So if a very fast multiplication algorithm is used, fewer 
concurrent sums are needed and more argument reduction is done. 

5. Conclusion. The formulas for j and k above are approximations which would 
be modified slightly in a program for computing the elementary functions using 
multiple-precision arithmetic. 



134 DAVID M. SMITH 

The O(t) operations cannot be ignored completely at low precision, and some 
guard digits are needed during the computation so that the final result can be 
rounded correctly to t digits. During the summing of the series many of the oper- 
ations can be done at less than full precision. 

These factors mean that a program which implements these O(tI/3M(t)) algo- 
rithms efficiently will use constants in the formulas for j and k which have been 
chosen to take these details into account. 

Tests comparing such a program with Brent's MP package [3] have been made. 
Using a large base for the arithmetic, the O(t1/3M(t)) versions are 10-20% faster 
for t = 10 and increase to 2-3 times as fast for t = 250. These algorithms are 
now the fastest known methods using multiple-precision arithmetic with low to 
moderate precision for computing the elementary functions. 

Mathematics Department 
Loyola Marymount University 
Los Angeles, California 90045 

1. R. P. BRENT, "The complexity of multiple-precision arithmetic," in Complexity of Com- 
putational Problem Solving (R. S. Anderssen and R. P. Brent, eds.), Univ. of Queensland Press, 
Brisbane, 1976, pp. 126-165. 

2. R. P. BRENT, "Fast multiple-precision evaluation of elementary functions," J. ACM, v. 23, 
1976, pp. 242-251. 

3. R. P. BRENT, "A Fortran multiple-precision arithmetic package," ACM Trans. Math. Soft- 
ware, v. 4, 1978, pp. 57-70. 

4. D. E. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed., 
Addison-Wesley, Reading, Mass., 1981. 

5. M. S. PATERSON & L. J. STOCKMEYER, "On the number of nonscalar multiplications 
necessary to evaluate polynomials," SIAM J. Comput., v. 2, 1973, pp. 60-66. 


	Efficient Multiple-Precision Evaluation of Elementary Functions
	Digital Commons @ LMU & LLS Citation


