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The collective behaviors of coupled, stochastically excitable elements subjected to global periodic

forcing are investigated numerically and analytically. We show that the whole system undergoes a period-

doubling bifurcation as the driving period decreases, while the individual elements still exhibit random

excitations. Using a mean-field representation, we show that this macroscopic bifurcation behavior is

caused by interactions between the random excitation, the refractory period, and recruitment (spatial

cooperativity) of the excitable elements.

DOI: 10.1103/PhysRevLett.103.044102 PACS numbers: 05.45.Xt, 64.60.Ht, 89.75.�k

Collective behaviors that arise from coupled oscillators
have been a long-term interest in nonlinear dynamics [1–
3]. The most widely studied model is the Kuramoto model,
in which periodic oscillators with randomly distributed
frequencies are globally coupled [4,5]. These coupled
oscillators can be synchronized to a single frequency,
resulting in periodic behaviors and other complex non-
random dynamics. In a recent study [6], a new type of
coupled oscillator system has been developed, in which the
individual oscillators are described by a three-state model
whose period varies randomly from cycle to cycle.
Synchronization and phase transitions have been studied
in ensembles of such coupled oscillators [7–9].

On the other hand, in many physical or biological sys-
tems, the individual elements that compose the whole
system may not be spontaneously oscillatory, but rather
are excitable. In such cases, the individual elements ‘‘fire’’
(become excited) at random times following an external
stimulus, and summate to produce the macroscopic dy-
namics of the whole system. For example, whereas isolated
cortical neurons fire very irregularly in response to a
depolarizing, constant current stimulus [10,11], in situ in
the brain the integrated behavior of neuronal spikes is
reliable and precise, forming spatiotemporal patterns.
Within muscle cells, the elementary events underlying
excitation-contraction coupling are calcium sparks
[12,13], caused by the random excitation in time and space
of subcellular calcium release units (CRUs). These micro-
scopic events summate to give rise to highly reproducible
macroscopic whole-cell calcium dynamics. For example,
calcium alternans, a period-2 behavior of the whole cell,
has been widely observed in cardiac muscle [14,15] and
has been linked to lethal cardiac arrhythmias [16]. Yet the
underlying mechanisms are not completely understood.

In this Letter, we investigate the macroscopic dynamics
of a system of locally coupled excitable elements (such as
the CRUs in a cardiac cell) subjected to external periodic
forcing (e.g., cardiac pacemaking). We use the three-state
oscillator model by Prager et al. [6] with modifications to
describe the random excitation and refractoriness of the
excitable elements. We show that a macroscopic period-2
behavior emerges via a period-doubling bifurcation due to
the interactions of the randomly firing elements at the
microscopic level.
A model of coupled randomly excitable elements.—

The excitable element is modeled by a three-state cycle
[Fig. 1(a)] similar to the one developed by Prager et al. [6]:
A ! B ! C ! A. In state A, the element is fully recovered
from any previous excitation, and is available to transit to
state Bwith rate constant p. State B is the excited state with
a fixed dwell time �B ¼ 20 in this study. State C is the
refractory state with dwell time (refractory period)

�C ¼ T0½1þ �þ ð1� �Þ��; (1)

where � is a uniform random number between 0 and 1, and
� ðj�j � 1Þ determines the variability of the refractory
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FIG. 1. (a) A schematic plot of the three-state model. See text
for details. (b) The firing probability versus stimulus strength s.
T0 ¼ 150 and � ¼ 0:025.
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period. In Eq. (1), when � ¼ 1, the refractory period is
fixed, i.e., �C ¼ 2T0. Otherwise, the refractory period is
random with a minimum value �Cmin ¼ T0ð1þ �Þ.
Therefore, as � decreases, the refractory period decreases,
but its variance increases. Denoting the excitation status of
an element as u, we map the excited state B to u ¼ 1 and

all other states to u ¼ 0. The rate constant p is set to p ¼
se��ðt mod TÞ with driving period T and stimulus strength s
[17]. The firing probability for an isolated element as a
function of the stimulus strength s is shown in Fig. 1(b),
which saturates at large s as expected.

In a two-dimensional array, the excitable elements are
coupled to their nearest neighbors by modifying p to

pði; jÞ ¼ se��ðt mod TÞ þ �
cði; jÞk

cði; jÞk þ ðc0Þk
; (2)

where cði; jÞ ¼ uði� 1; jÞ þ uðiþ 1; jÞ þ uði; j� 1Þ þ
uði; jþ 1Þ counts the number of excited neighbors. All
elements in the array are subjected to the same periodic
forcing. The default parameter set used in this study, if not
explicitly stated, is: T0 ¼ 150, s ¼ 0:012, � ¼ 0:025, � ¼
1, � ¼ 0:1, c0 ¼ 1:5, and k ¼ 10 [18]. We summarize the
state of the whole system with the macroscopic variable

xðtÞ ¼ 1

N0

X

i;j

uði; j; tÞ; (3)

where N0 ¼ N2 is the total number of elements in the
array.

The stochastic transition from state A to state B is
simulated using the methods of Gillespie [19] and Clay
and DeFelice [20] with a time step of dt ¼ 0:001.
Specifically, after an excitable element transitions to state
A from C, a random dwell time �A is chosen using ln� ¼
�R�A

0 pðtÞdt, where � is a random number uniformly

distributed in (0,1] generated at the moment of transition.
After staying at A for duration �A, the element transitions
to B. The dwell time in state B is fixed; the dwell time in
stateC is also random, but chosen by the simpler method of
Eq. (1).

Numerical simulation.—In a simulation of a 200� 200
array of coupled randomly excitable elements, the whole
system is almost periodic (period 1) with small fluctuations
when the driving period T is long [Fig. 2(a)]. If the system
is driven at a higher frequency, a period-2 behavior
emerges in the beat-to-beat alternation of the macroscopic
variable [Fig. 2(b)]. However, for both cases, the individual
elements do not themselves exhibit periodic behavior, but
rather fire randomly (Fig. 2). As shown in the snapshots in
Fig. 2(c), the spatial pattern of the random firing is unique
at each beat. (Note the lack of complete uniformity, with
random clusters forming.)

As T decreases, the state of the system bifurcates from
period 1 to period 2 and then reverses back to period 1
[Fig. 3(a)]. The range of T in which the period-2 behavior
occurs depends on the coupling strength � between neigh-
boring elements [Figs. 3(b) and 3(c)]. As � increases,
period 2 occurs in a narrower range of higher driving rates.

The dependence of the period-2 behavior on the stimulus
strength s is shown in Fig. 3(d) and 3(e). If the external
stimulus is either too weak or too strong, no period-2
behavior is observed [Fig. 3(d)]. Note that the period-2
behavior occurs over a much wider range of coupling
strength � for smaller stimulus strength s [Fig. 3(e)]. In
other words, for high cooperativity, period-2 behavior
tends to occur at low stimulus strength. In this case, the
excited elements are sparsely distributed. Because of
strong coupling, an excited element can easily recruit its
neighbor to fire, which can lead to a sequential firing
cascade and thus localized wave propagation in the array.
[The dashed lines in Figs. 3(b) and 3(e) mark the critical
coupling strength above which a planar wave starting at
one end can propagate throughout the whole array.] This is
similar to experimental observations in cardiac myocytes
in which local calcium-induced calcium waves are in-
volved in the genesis of whole-cell calcium alternans
[14,21]. More generally, this analysis links alternans dy-
namics to wave dynamics in networks of coupled excitable
elements.
Besides excitability, refractoriness also plays an impor-

tant role in the genesis of period-2 behavior. In Fig. 3(f),
we show x versus � for T ¼ 160. The bifurcation occurs
when � is close to �0:1 (or �Cmin close to 135). As �
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FIG. 2 (color online). (a) Shown are the stimulus [se��ðtmod TÞ,
top], three example traces (u) of individual elements (middle),
and the macroscopic state variable x (bottom) vs time for T ¼
185. (b) Same as (a) but for T ¼ 165. (c) Snapshots of spatial
array taken at the peaks of four consecutive beats (marked as #1,
#2, #3, and #4) for T ¼ 165. The black pixels are for u ¼ 1 and
white for u ¼ 0.
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increases to 0.1, x becomes very low in one cycle, and high
in the next cycle, indicating that the refractory period is so
long that most of the elements fire every other cycle.

A mean-field representation.—To understand how the
microscopic events interact collectively to create the mac-
roscopic dynamics, we formulated a discrete-time mean-
field representation of the macroscopic state variable x.
Assume that during a cycle, � is the probability of an
element being excited by an external stimulus (a primary
event); � is the probability of being excited by an excited
neighbor due to coupling (a secondary event); and � is the
probability of an excited element remaining in the refrac-
tory state during the next beat. If, for the kth beat, Nk out of
N0 total elements are excited, then for the (kþ 1)th beat,
Na ¼ N0 � �Nk elements are available for excitation, and
the number of primary excitation events for the (kþ 1)th
beat is�Na. The number of secondary events is a fraction f
of the remaining available elements, i.e., ð1� �ÞNaf.
Therefore, the total number of excited elements at the
(kþ 1)th beat is

Nkþ1 ¼ �Na þ ð1� �ÞNaf

¼ ðN0 � �NkÞ½�þ ð1� �Þf�: (4)

The task now is to determine f and its dependence onNk

and the other parameters. The specific form of f also
depends on how the elements are coupled. Here, we pro-
pose an explicit form of f for a 2D array with four-nearest-
neighbor coupling. For simplicity, we also assume that a

recruited element cannot further recruit its own neighbor-
ing elements. The derived function f is (see [22] for de-
tailed explanation)

fðNkÞ ¼ 1� ½1� ��ð1� �Nk=N0Þ�4: (5)

Combining Eqs. (4) and (5), one can obtain the steady state
of the system [Fig. 4(a)] and study its stability. Linearizing
Eq. (4) at its steady state, one obtains the eigenvalue as

	 ¼ ���� ð1� �Þ�½fðNsÞ þ ðN0 � �NsÞf0�; (6)

where Ns is the steady state and f0 ¼ df=dNk. The
condition for the steady state to become unstable leading
to period-doubling is 	 <�1. A bifurcation diagram
[Fig. 4(a)], and a phase diagram [Fig. 4(b)] obtained by
iterating Eq. (4) demonstrates that period-2 behavior oc-
curs at a combination of intermediate primary excitation
rate �, high cooperativity �, and large � (equivalent to
long refractory period), agreeing with the numerical
simulation.
To determine whether the mechanism of period-

doubling in the mean-field representation agrees with the
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FIG. 4. (a) Number of excited elements vs � using Eq. (4).
N0 ¼ 106, � ¼ 0:98, and � ¼ 0:9. Dashed line is the unstable
fixed point. (b) The period-2 region in �-� parameter space for
� ¼ 0:98. (c) First-return map calculated from the coupled
(1000� 1000) array for � ¼ 1 (open circles) and � ¼ 0:2
(closed circles). (d) The slopes of the two curves in (c).
(e) Plot of Eq. (4) for � ¼ 0:8 (dashed line) and � ¼ 0:2 (solid
line). � ¼ 0:75 and � ¼ 0:98. (f) The slopes of the two curves
in (e).
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mechanism of period-doubling in the coupled excitable
elements, we calculate the first-return map of the simulated
coupled system and compare it with the theoretical equa-
tion [Eq. (4)]. We generate the map as follows. Initially, all
the elements are in state A. We deliver two stimuli of
period T and measure the number of excited elements
during both the first stimulus (Nk) and the second stimulus
(Nkþ1). We vary s for the first stimulus so that Nk varies,
but fix s ¼ 0:012 for the second one. Setting T ¼ 160, we
plot Nkþ1 vs Nk for two different coupling strengths �
[Fig. 4(c)], one causing period 2 (� ¼ 1) and the other
not (� ¼ 0:2). The slope of the first-return map is between
�1 and 0 for � ¼ 0:2 [Fig. 4(d)]. For � ¼ 1, the slope
decreases below �1 and then increases. This same feature
also exists in the theoretical iterated map Eq. (4) as shown
in Figs. 4(e) and 4(f).

Conclusions and discussion.—In this study, we use both
numerical simulation and a mean-field representation to
show that a period-doubling bifurcation can occur in a
system of coupled stochastically excitable elements sub-
ject to global periodic forcing. The required factors under-
lying this bifurcation mechanism are the randomness of
firing, the refractory period, and the recruitment of neigh-
boring elements (spatial cooperativity). Note that although
the refractory period and the cooperativity were explicitly
varied to demonstrate their roles in the bifurcation, the
randomness factor was not explicitly tested. However, it
is straightforward to understand that randomness plays a
crucial role in the genesis of this bifurcation, by the follow-
ing reasoning. Random excitation results in a spatially
random distribution of excited elements. For a high exci-
tation rate in the previous cycle, the excitation rate will be
low in the next cycle, since most of the elements which
were excited in the previous cycle are still refractory.
Therefore, the elements available to become excited are
not only very low in number, but also randomly and
sparsely distributed among a large number of refractory
elements. Since the probability of two available elements
being nearest neighbors is therefore low, the secondary
excitation rate due to recruitment is low (small f).
Conversely, if the excitation rate in the previous cycle is
low, then most of the elements will be recovered and
available for excitation in the next cycle. The chance of
two available elements being nearest neighbors is high, and
thus the secondary excitation rate is also high (large f).
Therefore, due to the interaction of refractoriness and
random excitation, a nonlinear function f emerges, which
is key for the instability. This instability cannot occur if the
recovered elements are not randomly distributed. If one
assumes that the recovered elements are in a single patch of
the spatial domain instead of randomly distributed among
nonrecovered ones, then no matter whatNa is, f is constant
[e.g., for a 2D array, one can analytically derive f ¼ 1�
ð1� ��Þ4]. Since f � 1, then according to Eq. (6), j	j ¼
�½�þ ð1� �Þf�< 1, and no instability can occur.

Finally, we would like to point out the model studied
here may be widely applicable to many systems, especially

biological systems composed of thousands of randomly
excitable elements, such as the cells in neural tissue and
muscle. In heart cells, this work forms a theoretical foun-
dation for understanding how the subcellular spatial orga-
nization of CRUs leads to collective behaviors such as
calcium alternans and calcium waves due to the interaction
between the ‘‘three R’s’’: Random firing, Refractoriness,
and Recruitment of CRUs.
This work is supported by NIH/NHLBI P01 HL078931,

a grant from the China Scholarship Council (X. C.), and the
Laubisch and Kawata Endowments.
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