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Intracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex
network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochon-
dria, and myofibrils. In this study, we present a mathematical model of intracellular Ca
cycling and numerical and computational methods for computer simulations. The model
consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a
myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine recep-
tor channels, with individual channels simulated stochastically using a variant of Gillespie’s
method, modified here to handle time-dependent transition rates. Both the SR domain and
the myoplasm domain in each CRU are modeled by 5 × 5 × 5 voxels to maintain proper Ca
diffusion. Advanced numerical algorithms implemented on graphical processing units were
used for fast computational simulations. For a myocyte containing 100 × 20 × 10 CRUs, a
1-s heart time simulation takes about 10 min of machine time on a single NVIDIA Tesla
C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca
alternans, are shown.

Keywords: calcium cycling, ventricular myocyte, mathematical modeling, graphical processing unit computing

1. INTRODUCTION
Calcium (Ca) signaling is fundamental to many biological func-
tions (Berridge et al., 2000). In cardiac myocytes, Ca cycling is reg-
ulated by a diffusively coupled network of Ca release units (CRUs),
which plays a central role in cardiac excitation-contraction cou-
pling and heart rhythms (Bers, 2002; Lakatta et al., 2010). The ele-
mentary Ca cycling event is a Ca spark (Cheng et al., 1993; Cheng
and Lederer, 2008). Ca sparks are discretized Ca release events
due to random and collective openings of the ryanodine recep-
tor (RyR) channels clustered in a CRU. A typical cardiac myocyte
includes about 10,000–20,000 CRUs, and the spatial arrangement
of CRUs varies widely across different myocyte types and changes
in diseased conditions (Franzini-Armstrong et al., 1999; Soeller
and Cannell, 1999; Chen-Izu et al., 2007; Soeller et al., 2007; Wei
et al., 2010). The mathematical modeling of subcellular Ca cycling
presents many numerical challenges that are unique to the Ca
subsystem.

One challenge is the fact that Ca concentration gradients
between the myoplasmic space and other intra and intercellular
subspaces are extremely large. Ca concentrations outside the cell
in the extracellular space are roughly 1.8 mM, but prolonged expo-
sure to high Ca concentrations in the myoplasm are toxic to the
cell. Thus, intracellular Ca is highly buffered (Bers, 2002) and
the cell expends energy through membrane pumps to maintain
a steady state free Ca level of about 0.1 μM in the myoplasm.
However, high Ca levels are necessary (and need to be accessed
quickly) in order to interact with the myofibrils and cause con-
traction. The cell’s solution is an intracellular storage space called
the sarcoplasmic reticulum (SR). Steady state levels of free Ca

in the SR are in the range of 1 mM, about the same order of
magnitude of Ca concentration that exists outside the cell in the
extracellular space, and around four orders of magnitude larger
than in the myoplasm. The large concentration gradient results
is an extremely high Ca flux whenever a Ca channel opens to
connect the myoplasm to the SR or extracellular spaces. This is
optimal for cellular function since a large amount of Ca enters
the myoplasm quickly, as is necessary for contraction. But this
causes problems for numerical simulation as the high fluxes cause
the differential equations to be numerically stiff, requiring a very
small time step. In addition, there exist multiple time scales in the
various fluxes, and Ca is released into subspaces of the myoplasm
which have extremely small volumes, presenting further numerical
challenges.

Another challenge is that the dynamics of subcellular Ca are
spatially dependent. Unlike other ionic concentrations, such as
sodium (Na) and potassium (K), for which whole-cell aver-
ages provide reasonable approximations, subcellular Ca release
is locally controlled through Ca-induced Ca release (CICR). This
becomes especially important when trying to understand arrhyth-
mogenic phenomena such as delayed afterdepolarizations which
are triggered by Ca waves. To gain insight into the initiation of Ca
waves through local Ca releases and to understand the complex
wave dynamics that ensue, any realistic mathematical model of
Ca dynamics must include the underlying spatial structure of the
Ca signaling network. This implies that instead of ordinary dif-
ferential equations (ODEs) one must resort to partial differential
equations (PDEs) in order to capture the spatial diffusion of Ca in
both the myoplasm and the SR spaces.
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A third major challenge is that subcellular Ca release is inher-
ently stochastic. A CRU consists of 50–200 RyR channels and 5–10
L-type Ca channels (LCCs) (Soeller et al., 2007; Bers, 2008). The
small number of channels involved means that averages do not
well approximate the dynamics governed by the law of mass action.
This suggests that instead of deterministic differential equations,
one should use continuous-time discrete-state Markov models,
which are notorious for their cost to solve numerically. Further-
more, the transition rates are typically dependent on state variables
such as Ca concentrations in the myoplasm and SR, and are
thus implicitly time-dependent, further adding to the difficulty
in numerical simulation.

Despite the challenges in modeling cardiac Ca cycling and
excitation-contraction coupling, mathematical, and computa-
tional models have been developed at many scales using different
mathematical and computational means (Luo and Rudy, 1994;
Jafri et al., 1998; Greenstein and Winslow, 2002; Sobie et al., 2002;
Shiferaw et al., 2003; Wang et al., 2005; Izu et al., 2006; Groff and
Smith, 2008; Restrepo et al., 2008; Williams et al., 2008, 2011; Huer-
tas et al., 2010; Ramay et al., 2010; Rovetti et al., 2010; Wasserstrom
et al., 2010), including: (1) low-dimensional deterministic mod-
els described by ODEs; (2) single CRU models with stochastically
simulated individual RyRs; (3) ODE models with stochastically
simulated individual RyRs coupled to a common myoplasmic
pool; (4) high-dimensional deterministic models described by
PDEs and stochastically simulated CRU firing (fire-diffusion-
fire type models), and (5) coupled CRU network models with
stochastically simulated individual RyRs. As the complexity of
the model increases, the computational demands also increase
tremendously due to the aforementioned issues. However, most
of the above models have been implemented on central process-
ing units (CPUs) and have used direct numerical methods for
the simulation of stochastic channel openings. These numerical
methods limit the use of highly resolved spatial discretizations
and scale of simulations (for example, to simulate 20,000 CRUs in
a whole-cell with accurate spatial diffusion of Ca). Therefore, the
development of computationally efficient models and advanced
numerical algorithms is important.

Here we present a recently developed three-dimensional (3D)
spatially distributed Ca cycling model in which CRUs are locally
coupled by Ca diffusion throughout the myoplasmic (Myo) and
sarcoplasmic reticulum (SR) domains, improved from our pre-
vious CRU network model (Rovetti et al., 2010). The Ca cycling
model has been coupled to the action potential (AP) model of
the rabbit ventricular myocyte (Mahajan et al., 2008), allow-
ing for the study of excitation-contraction coupling. The major
improvements to the Ca cycling model from Rovetti et al. (2010)
include: (1) 100 × 20 × 10 CRUs which corresponds to the num-
ber of CRUs in a typical myocyte and the Myo and SR spaces
are modeled as true 3D spaces. (2) The phenomenological LCC
model (Rovetti et al., 2010) has been replaced by a 7-state model
based on experimental patch-clamp data obtained in isolated rab-
bit ventricular myocytes (Mahajan et al., 2008). In addition, we
used a time-dependent version of Gillespie’s method for the fast
computation of the stochastic opening of the RyRs and LCCs. All
numerical algorithms were implemented using graphical process-
ing units (GPUs). These advanced numerical and computational

methods allow us to use highly resolved Myo and SR spaces for
accurate Ca diffusion. We first present the mathematical details of
the model, and then the advanced numerical algorithms we devel-
oped and/or employed for their solution. Finally we show how
these algorithms are implemented using GPUs and the computa-
tional efficacy is discussed. Simulation results of Ca cycling and
excitation-contraction coupling are shown as examples.

2. MATERIALS AND METHODS
2.1. MATHEMATICAL MODEL
A ventricular myocyte is composed of a spatially distributed com-
plex network of consisting of the SR,mitochondria,and myofibrils,
among other organelles, as in Figure 1A. A t-tubular system
(Figure 1B) facilitates effective communication of this network
with the extracellular space. Ca diffuses in both the Myo and
the SR, the latter of which is an interconnected network inside
the cell distinguished as junctional SR (jSR) and network SR
(Figure 1A). A unifying cardiac excitation-contraction picture is
illustrated in Figure 1C (Bers, 2002). In a normal action potential
(see Figure 1D), voltage-dependent opening of the LCCs brings
Ca into the dyadic space (DS), a very small space between the LCC
cluster and jSR (shaded area in Figure 1C). Elevated Ca concentra-
tions in the vicinity of the LCCs causes their inactivation. The RyR
channels open stochastically and their open probability is sensitive
to Ca in the DS, a process called CICR. Therefore, the RyR chan-
nels can be triggered by Ca entry from the LCCs, high Myo and SR
Ca, and Ca diffusing from neighboring CRUs. Ca entered from the
LCCs and released from the SR diffuses to the myofibrils to signal
contraction and participates in many other signaling processes in
the myocytes. Ca is pumped back into the SR by the sarcoplasmic-
endoplasmic reticulum Ca ATPase (SERCA) pump, and extruded
by Na-Ca exchange (NCX). Ca is also uptaken by mitochondria
through the mitochondrial uniporter and released from mito-
chondria via NCX in the mitochondrial membrane and opening of
other channels, such as the mitochondrial permeation transition
pore. LCC and NCX couple Ca and voltage bi-directionally, but all
other currents also affect this coupling either indirectly via their
effects on voltage or directly via Ca regulation of the ion channels.

Modeling the complete detailed structure and Ca signaling of a
myocyte is much too complicated and challenging, even using the
most advanced computational technologies. Instead of modeling
the complex detailed structure of the cell, we used a simpli-
fied approach in which we model the cell using a two-domain
structure, the Myo and SR domains (see Figure 2). We assume
Ca freely diffuses throughout Myo and SR domains, which is
mathematically modeled by the diffusion equation. In computer
simulation, the Myo and SR domains are discretized depending
upon the spatial accuracy desired (see Section 2). The Myo and
SR domains are coupled via SR release and uptake. Each CRU
contains a Myo space, a SR space, a jSR which is diffusively con-
nected to the SR, and a DS which is diffusively connected to
the Myo. Extracellular Ca enters the DS through voltage-gated
LCCs, which open stochastically and are simulated by a Markov
model (see Figure 3). Ca is released from the jSR through its
associated cluster of RyRs to the DS. The RyRs also open sto-
chastically and are simulated using a Markov model in which
activation and inactivation of RyRs are regulated by Ca in the
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FIGURE 1 | (A) Detailed intracellular structure in a cardiac myocyte (Katz, 2011). (B) T-tubule network of a rat ventricular myocyte (Soeller and Cannell, 1999). (C)

Illustration of cardiac excitation-contraction system. (D) A typical action potential and Ca transient.

FIGURE 2 |The spatially distributed Ca cycling model. (A) Plot of a 3D
coupled CRU network. (B) Detailed illustration of a CRU.

FIGURE 3 |The Markov models for LCCs and RyRs. (A) 7-state LCC
model. (B) 4-state RyR model.

DS (see Figure 3). Ca is either extruded from the cell via the
Na-Ca exchanger, or taken back up into the SR via the SERCA
pump.

To couple the Ca cycling to voltage dynamics, we assume that
the voltage is uniform across the cell membrane. The ionic currents

are taken from the Mahajan model (Mahajan et al., 2008), except
the Ca related currents which are computed through summing the
local Ca currents from the spatial Ca cycling model. The Ca cycling
parameters are mainly based on Rovetti et al. (2010) with modifi-
cations to account for the 3D geometry (see Tables 1–5). The para-
meters for the ionic currents used in the AP model and transition
rates used in the LCC model are from Mahajan et al. (2008).

2.1.1. Ca cycling model
The time evolution of the concentration of Ca in the 3D Myo and
SR domains is modeled using a system of reaction-diffusion equa-
tions. Reaction terms come in two types: continuous flux terms
couple the two domains and extrude Ca from the Myo domain.
Flux terms at discrete locations couple the two domains via the
CRUs through a jSR compartment and a DS compartment.

The system of equations for the evolution of Ca in the cell is

βm (cm)
∂cm

∂t
= Dm∇2cm + Jm , (1)

βs (cs)
∂cs

∂t
= Ds∇2cs + Js , (2)

βd (cd)
dc (i)

d

dt
= J (i)

d , (3)

βj
(
cj
) dc (i)

j

dt
= J (i)

j , (4)

where cm(x, y, z, t ) and cs(x, y, z, t ) are the local Ca concentrations

in the Myo and SR, respectively, and c (i)
d and c (i)

j are the Ca con-

centration in the ith DS and ith jSR, respectively. The Myo and
SR domains have diffusion coefficients Dm and Ds. We assume Ca
is buffered in the Myo (βm), SR (βs), DS (βd), and jSR (β j) by

www.frontiersin.org May 2012 | Volume 3 | Article 114 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Nivala et al. Computational model of calcium cycling

Table 1 | Parameter values for diffusion and buffering equations.

Symbol Definition Value

Dm Diffusion coefficient of Ca in myoplasm 0.3 μm2 ms−1

Ds Diffusion coefficient of Ca in SR 0.3 μm2 ms−1

vm Local volume element for myoplasm 0.04 μm3*

vs Local volume element for network SR 0.0016 μm3*

Bsr Concentration of SR-bound buffer

(myoplasm)

7.0 μM

Ksr Dissociation constant of SR-bound buffer

(myoplasm)

0.3 μM

Bcd Concentration of calmodulin buffer

(myoplasm)

15.0 μM

Kcd Dissociation constant of calmodulin buffer

(myoplasm)

13.0 μM

B′
sr Concentration of SR-bound buffer (dyadic

space)

47.0 μM

K ′
sr Dissociation constant of SR-bound buffer

(dyadic space)

0.6 μM

B′
cd Concentration of calmodulin buffer (dyadic

space)

24.0 μM

K ′
cd Dissociation constant of calmodulin buffer

(dyadic space)

7.0 μM

Bcal Concentration of calsequestrin buffer (SR) 140.0 μM

Kcal Dissociation constant of calsequestrin buffer

(SR)

650 μM

B′
cal Concentration of calsequestrin buffer (jSR) 140.0 μM

K ′
cal Dissociation constant of calsequestrin buffer

(jSR)

650 μM

*Dependent upon spatial discretization.

Table 2 | Parameter values for jSR and DS fluxes.

Symbol Definition Value

gjsr Flux rate from network to junctional SR 1.0 ms−1

gds Flux rate from dyadic space to myoplasm 240.5 ms−1

vd Volume of a single dyadic space 1.26·10−3 μm3

vj Volume of a single junctional SR 0.1 μm3

both calmodulin and SR-bound proteins in the Myo and DS, and
calsequestrin in the SR and jSR (Shannon et al., 2004). We also
assume that such buffering occurs rapidly enough to be modeled
with instantaneous capacity functions (Wagner and Keizer, 1994)

βm (c) = 1 + Bsr Ksr

(c + Ksr )
2 + Bcd Kcd

(c + Kcd)2 , (5)

βd (c) = 1 + B′
sr K ′

sr(
c + K ′

sr

)2 + B′
cd K ′

cd(
c + K ′

cd

)2 , (6)

βs (c) = 1 + Bcal Kcal

(c + Kcal)
2 , (7)

βj (c) = 1 + B′
cal K

′
cal(

c + K ′
cal

)2 . (8)

Table 3 | Parameter values for SERCA (uptake), NCX, and background

leak fluxes.

Symbol Definition Value

vup Maximum pump rate of SERCA 0.32 μM ms−1

kup Half-maximal activation constant for

SERCA

1.0 μM

v 2 Adjustable pump rate constant of

NCX

0.4 μM ms−1

η NCX voltage sensitivity constant 0.35

F Faraday’s constant 96.5 C mmol−1

R Gas constant 8.314 J M−1 K − 1

T Temperature 310 K

[Ca]0 External [Ca] 1.80 mM

[Na]0 External [Na] 136 mM

KmCaact Allosteric Ca inactivation constant 0.11 μM

KmCao External Ca sensitivity constant 1.30 mM

KmNao External Na sensitivity constant 87.5 mM

KmCai Internal Ca sensitivity constant 3.59 μM

KmNai Internal Na sensitivity constant 12.3 mM

ksat NCX saturation constant 0.27

gbg Rate of background membrane leak 0.0003·10−5 μM ms−1

gSRleak Rate of SR leak 4.0·10−6 ms−1

Table 4 | Parameter values for LCCs.

Symbol Definition Value

PCa Single-channel LCC flux rate 1.826·10−3 μm3 ms−1

βCa Ca partition coefficient 0.341

a1 LCC rate constant (I to C) 3.23 μs−1

a2 LCC rate constant (C to O) 0.30 ms−1

b1 LCC rate constant (C to I) 0.154 μM−1 ms−1

b2 LCC rate constant (O to C) 1.0 ms−1

nL Number of L-type Ca channels per

dyadic space

10

Table 5 | Parameter values for RyR channels.

Symbol Definition Value

k+
a Opening rate coefficient (C to O/R to I) 0.005 μM−2 ms−1

k−
a Closing rate coefficient (O to C/I to R) 1.0 ms−1

k+
b Inactivation rate coefficient (C to R/O to I) 0.00075 μM−1 ms

k−
b Recovery rate coefficient (R to C/I to O) 0.003 ms−1

gryr Single-channel RyR flux rate 0.000205 μm3 ms−1

nR Number of RyR channels per dyadic

space

100

The terms Jm, Js, J (i)
d , and J (i)

j represent the net current for each Ca

space and are specified below. In order to account for the different
volumes of the Myo, DS, SR, and jSR, the magnitudes of various
fluxes between spaces are rescaled by the ratio of the appropriate
volume elements vm, vd, vs, and vj, the local volumes of the Myo,
DS, SR, and jSR respectively.
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Myoplasm flux. Ca enters and leaves the Myo due to uptake,
exchange, and background leak fluxes, with net flux

Jm = −Jup − JNCX + Jbg + JSrleak

+ vd

vm

∑
i

δ
(

x − x(i), y − y(i), z − z (i)
)

J (i)
ds (9)

The proteins mediating the SR uptake, NCX, and cell background
and SR leak fluxes are generally found distributed evenly through-
out their respective regions, thus we model the corresponding
fluxes as spatially continuous functions of position.

The SERCA uptake pump is modeled to be driven solely by the
Myo Ca with the simple Hill function

Jup = vup
c2

m

c2
m + k2

up
(10)

with a maximum velocity vup and a half-maximal concentra-
tion kup.

The Ca flux through the NCX pump, JNCX, known to be a
reversible flux sensitive to both Myo Ca and membrane voltage, is
modeled following the physiological model of Weber et al. (2001):

JNCX = v2

(
e

ηVF
RT [Na]2

i [Ca]o − e
(η−1)VF

RT [Na]3
o cm

)
Denom1Denom2

, (11)

Denom1 =
(

1 + ksat e
(η−1)VF

RT

)(
1 +

(
KmCaact

cm

)3
)

, (12)

Denom2 = KmCao [Na]3
i + K 3

mN ao
cm + K 3

mN ai
[Ca]o

×
(

1 + cm

KmCai

)
+ KmCai [Na]3

o

(
1 + [Na]3

i

K 3
mN ai

)

+ [Na]3
i [Ca]o + [Na]3

o cm , (13)

where V is the net membrane potential and [Na]i is the intracel-
lular Na concentration, both of which are dynamic variables (see
Section 2). The symbols [Ca]o and [Na]o represent the extracellu-
lar Ca and Na concentrations, respectively, which are assumed to
be constant.

A background Ca leak flux Jbg is driven by the membrane poten-
tial and Myo and external Ca concentrations in the form of the
Nernst equation taken from Luo and Rudy (1994)

Jbg = −gbg
F

2RT

(
V − log

(
[Ca]o

cm

))
. (14)

It has been shown experimentally that there is little to no voltage
drop across the SR membrane and the Myo, therefore a passive Ca
leak flux JSRleak out of the SR and into the Myo is modeled by a
simple diffusive current dependent upon the Ca gradient

JSRleak = gSRleak (cs − cm) . (15)

The ionic flux J (i)
ds between the local Myo and the ith DS, defined

below, is a spatially discrete flux, present only at position (x(i),
y(i), Z (i)).

SR flux. Ca enters and leaves the network SR due to uptake, leak,
and diffusion, with net value

Js = vm

vs

(
Jup − JSRleak

)− vj

vs

∑
i

δ
(

x − xi , y − yi , z − z i
)

J (i)
jsr .

(16)

The equation for the spatially discrete jSR flux J (i)
jsr is given below.

Junctional SR flux. The net flux of Ca for the ith jSR is

J (i)
j = J (i)

jsr − vd

vj
J (i)
ryr , (17)

in which J (i)
ryr is described below, and

J (i)
jsr = gjsr

(
cs

(
x(i), y(i), z (i)

)
− c (i)

j

)
(18)

gives a first-order refilling of Ca form the network SR to the jSR
with refilling rate gjsr.

Dyadic space flux. The net flux of Ca for the ith DS, including
the fluxes through the RyRs and LCCs, is

J (i)
d = −J (i)

ds + J (i)
lcc + J (i)

ryr . (19)

The flux from the DS to the local Myo is dependent on the local
Ca gradient with flux rate gds:

J (i)
ds = gds

(
c (i)

d − cm

(
x(i), y(i), z (i)

))
. (20)

Ca flux into the DS, via either the LCC or RyR channel, is the major
route of entry of Ca into the Myo. Due to the fact that this entry
is governed by a small number of interacting ion channels in each
DS, we represent the opening of both types of channels as simple
Markov models, as described below.

L-type Ca channel model. Each DS contains a cluster of LCCs.
The kinetics of each channel are represented with a 7-state Markov
model, developed in Mahajan et al. (2008) based on experimental
data from rabbit ventricular myocytes (see Figure 3). It includes 4
inactive states (I2Ca, I1Ca, I2Ba, I1Ba), 2 closed states (C2, C1), and
one open state (O). The transition rates are dependent upon the
membrane potential V and the Ca concentration in the local DS,
as opposed to an averaged Ca concentration in the submembrane
space as in the original model (Mahajan et al., 2008). There are nL

LCCs in a single DS, and we assume that each channel operates

independently of the others. Let N (i)
L ∈ {0, 1, . . . , nL} be a stochas-

tic variable indicating the number of LCCs in the open state (O)
at any given time in the ith DS. Then the total current through
all open LCCs in the ith DS is given by the voltage-dependent
Goldman-Hodgkin-Katz equation

i(i)
lcc = N (i)

L PCa
4F 2

RT
V

ĉ (i)
d exp

( 2FV
RT

)− βCa(Ca)o

exp
( 2FV

RT

)− 1
, (21)
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where ĉ (i)
d is the Ca concentration in the ith dyadic space (in units

of nM). The current i(i)
lcc is converted to the flux J (i)

lcc , with units of
μM/ms, through

J (i)
lcc = −i(i)

lcc

2Fvd
. (22)

The dynamics of the stochastic variable N (i)
L are described in

Section 4.

RyR channel model. Each jSR contains a cluster of RyR chan-
nels, facing the DS. The kinetics of each channel are represented
with a 4-state Markov model, adapted from Stern et al. (1999; see
Figure 3). The model describes the channel as having closed (C),
open (O), inactivated (I), and refractory (R) states. The transition
rates for the two horizontal components (C to O, and R to I) are

equivalent, with forward rate k+
a (c (i)

d )2 dependent on the square
of the DS Ca, and constant reverse rate k−

a . Similarly, the transi-
tion rates for the two vertical transitions (O to I, and C to R) are
equivalent, with forward rate k+

b c (i)
d and reverse rate k−

b . In this
model the RyR open probability is regulated explicitly by the Ca
concentration in the DS.

There are nR RyR channels in a single jSR, and we assume

that each channel operates independently of the others. Let N (i)
R ∈

{0, 1, . . . , nR} be a stochastic variable indicating the number of RyR
channels in the open state (O) at any given time in the ith DS. We
model the total flux flowing through the RyR cluster as dependent
on the Ca gradient between the local jSR and DS given by

J (i)
ryr = N (i)

R

gryr

vd

(
c (i)

j − c (i)
d

)
, (23)

where gryr is the single RyR channel flux rate. The dynamics of the

stochastic variable N (i)
R are described in Section 4.

2.1.2. Ca and voltage coupling
We couple the above Ca cycling model with voltage by using the
ionic current formulation of the rabbit ventricular myocyte model
by Mahajan et al. (2008). The voltage, assuming it is uniform across
the cell membrane, is described by the differential equation

Cm
dV

dt
= INa + Ito,f + Ito,s + IKr + IKs + IK 1 + INaK + Istim

+ Ilcc + INCX + Ibg , (24)

where Cm is the cell membrane capacitance. The currents INa,
Ito,f, Ito,s, IKr, IKs, IK1, INaK, and Istim are assumed to be uniform
across the cell membrane and are taken directly from their for-
mulation in Mahajan et al. (2008). The current IKs depends on
Ca and, for simplicity, we use the average whole-cell Ca which we
compute directly from the spatial Ca cycling model. The currents
Ilcc, INCX, and Ibg represent the average LCC, NCX, and Ca back-
ground currents, respectively. We compute these from the local
LCC,NCX,and background fluxes in the Ca cycling model through

Ilcc = α/Ncru
∑

i J
(i)
lcc , INCX = α/Ncruvcru ∫ ∫ ∫ JNCX dxdydz , and

Ibg = α/Ncruvcru ∫ ∫ ∫ Jbg dxdydz , where vcru is the cytosolic vol-
ume (in units of μm3) of a single CRU and Ncru is the total number
of CRUs. Here the fluxes in equations (21) and (11) are converted
to currents by the conversion factor α = −aFvcell/Cm, where a is
the ionic charge of the current carrier, vcell is the volume of the
myocyte in μl, and F is Faraday’s constant.

2.2. NUMERICAL ALGORITHMS
To integrate the reaction-diffusion system described by equation
(1), we use an operator splitting scheme, described in Qu and
Garfinkel (1999), applying first the flux terms and then the dif-
fusion terms. The remaining state variables in the model are
the stochastic ion channel states which are updated using Gille-
spie’s method (Gillespie, 2007), a new formulation of which is
introduced here to handle time-dependent rates. We use the
first-order forward Euler method to integrate the fluxes and dif-
fusion (adapted to the multiple time scales involved). For the
AP model, we first employ the standard Rush-Larson method
(Rush and Larsen, 1978) to the quasi-linear ODEs before apply-
ing the Euler step. We choose this brute force approach because
of its ease of implementation on GPUs. This is due to the
fact that forward Euler is explicit and thus easily parallelized
in an efficient manner. More complex implicit methods (see
Strang, 1968; Qu and Garfinkel, 1999), for instance) are typi-
cally used in a non-GPU setting, however, for most problems
the speed gained through implementation on a GPU typically
outweighs the speed gained from a larger time step allowed
by a higher-order method (Sato et al., 2009). For example, we
found that the implicit second-order accurate Crank-Nicholson
method (Haberman, 2004) allowed for a much larger time step
than that imposed by the stability condition of the forward Euler
discretization, and was thus much faster on a normal CPU. How-
ever, this method involves the inversion of a tridiagonal matrix
which does not lend itself to an efficient parallelization, thus,
the explicit method of forward Euler remains faster in the GPU
setting.

2.2.1. Flux and diffusion
For a time step of size �t, the Ca fluxes are updated according to
the rule

cm → cm + �tβm(cm)−1Jm , (25)

cs → cs + �tβs(cs)
−1Js , (26)

c (i)
d → cd + �tβd(cd)−1Jd , (27)

c (i)
j → cj + �tβj

(
cj
)−1

Jj . (28)

Assuming a uniform spatial discretization (x, y, z) = (i�x, j�x,
k�x), and defining

F x− = c i−1,j ,k − c i,j ,k , F x+ = c i+1,j ,k − c i,j ,k , (29)

F
y
− = c i,j−1,k − c i,j ,k , F

y
+ = c i,j+1,k − c i,j ,k , (30)

F z− = c i,j ,k−1 − c i,j ,k , F z+ = c i,j ,k − c i,j ,k+1, (31)

Frontiers in Physiology | Computational Physiology and Medicine May 2012 | Volume 3 | Article 114 | 6

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Nivala et al. Computational model of calcium cycling

the spatial diffusion step is applied to cm and cs according to

c i,j ,k → c i,j ,k + Dm�t

�x2
βm

(
c i,j ,k

)−1
(F x− + F x+ + F

y
−

+ F
y
+ + F z− + F z+), (32)

with c = cm, cs, respectively. We found a mesh spacing of
�x = 0.2 μm to provide a good realization of Ca diffusion.

There exist multiple time scales in the reaction-diffusion system
described by equation (1): time scales associated with the spatially
dependent Ca fluxes, time scales associated with Ca diffusion, time
scales associated with the spatially independent ionic concentra-
tions and membrane potential in the AP model, and time scales
associated with the stochastic opening and closing of the RyR and
L-type Ca channels. Thus, we would like our numerical integra-
tion scheme to take advantage of the multiple time scales involved.
We choose a global time step �tg equal to the largest time scale
involved, and introduce the smaller time steps (which are evenly
divisible into the global time step �tg):

Ca Fluxes → �tJ = �tg

mJ
, (33)

Ca Diffusion → �tD = �tg

mD
, (34)

AP → �tAP = �tg

mAP
, (35)

for some integers mJ, mD, and mAP. During each global time step,
we update the AP variables mAP times, apply the Ca flux mJ times
according to equation (25), and apply the Ca diffusion mD times
according to equation (32), with each smaller time step nested
within the next larger time step. The time step associated with
the stochastic Ca channels is more complicated and is discussed in
Section 4. The fastest time scale involved in the Ca fluxes is the flux
into the DS, which we are able to eliminate using a quasi-steady
state approximation (see Section 3 below). We find that taking a
global time step of �tg = 0.01 ms and mAP = 1, mD = 1, and mJ = 1
provide stable and fairly accurate results, while mAP = 1, mD = 2,
and mJ = 10 provide very accurate results while maintaining rea-
sonable simulation times (see Section 3 for performance details).
Note: not only does the size of the Ca diffusion time step depend
on �x, but so does the size of the Ca flux time step since the local
volume elements for the Myo and SR, vm and vs, depend upon the
spatial discretization.

2.2.2. Boundary conditions
We assume that Ca cannot diffuse past the cell membrane, and
thus impose first-order no flux boundary conditions. For a rec-
tangular cell 0 ≤ x ≤ Nx, 0 ≤ y ≤ Ny, 0 ≤ z ≤ Nz this amounts to

the conditions F x− = 0 if x = 0, F x+ = 0 if x = Nx, F
y
− = 0 if y = 0,

F
y
+ = 0 if y = Ny, F z− = 0 if z = 0, and F z+ = 0 if z = Nz.

2.2.3. Quasi-steady state approximation
Due to the small volume of the DS, fluxes into this space are typ-
ically large and thus numerically costly to integrate. This can be
seen directly by letting Vd → 0 in the flux equation for the DS. A

standard way to overcome this issue (Murray, 2002) is to assume
that the DS equilibrates on a much faster time scale than that of the
other fluxes, known as a quasi-steady state approximation. Thus,
instead of numerically integrating the equation for the DS, one
sets the DS flux equal to zero

J (i)
d = 0, (36)

which can be analytically solved for the DS concentration c (i)
d .

2.2.4. Ion channel kinetics
The state variables NR and NL, representing the number of RyRs
and LCCs in the open state for a single CRU, are modeled as
continuous-time discrete-state Markov process. In what follows
we drop the index i (which denoted the ith CRU) with the
understanding that the algorithm is independently executed for
each CRU.

Each dyadic space is treated as a single-pool element, thus,
each ion channel (of a given type) in the same CRU experiences
the same dyadic space environment. Therefore, each channel in a
cluster has identical transition rates and we can treat each chan-
nel type as a group, tracking only the number of channels in each
possible state (Gillespie, 2007). Let Ns represent the number of
states in the underlying Markov model with Nt possible transi-
tions between states. Furthermore, let λjk with l ≤ j, k ≤ Ns, j �= k,
denote the transition rate between state j and state k, and let Nj be
the number of channels in the jth state.

Direct stochastic simulation method. The most direct method for
the simulation of the above Markov process is to assume a suffi-
ciently small time step dt such that at most one transition will take
place during time dt, i.e., there exists exactly one j and one k such
that Nj → Nj − 1 and Nk → Nk + 1 or no change takes place. One
then partitions the unit interval into Nt − 1 partitions of length
Njλjkdt and one partition of length 1 − 	Njλjkdt, where Njλjkdt
represents the transition probability from state j to state k during
time dt. Finally, one chooses a number uniformly distributed on
the unit interval to determine which transition takes place.

There are two problems with the above method. First, it requires
the choice of a small time step dt, which must be small enough to
handle the fastest time scale involved. For time-dependent rates
this is inefficient since it does not allow one to take advantage of
possible time periods for which the transition rates are low. For
example, the local Ca concentrations during a Ca spark can be as
much as 200 times higher than during periods of inactivity, thus,
the Ca dependent transition rates (some of which depend on the
square of the Ca concentration in the dyadic space) can vary by 4
orders of magnitude. In Rovetti et al. (2010), a modified version of
the direct method was introduced which allows for a variable time
step during a single global time step, however, the method still
requires one to chose a small time scale, and thus still suffers from
the second problem which affects the efficiency of every direct
method: it only converges to the appropriate statistics in the limit
dt → 0. Therefore, we would like to use a better approach known
as Gillespie’s method. Gillespie’s method is exact in the sense that
it does not require the choice of a small time step dt, yet it repro-
duces the appropriate statistics exactly. However, the classic version
of Gillespie’s method only applies to time-independent processes.
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Below we introduce a modification of Gillespie’s method to
handle time-dependent transition rates in an efficient manner
based on an integral formulation. A similar method based on the
integral approach was first used to simulate single-channel kinetics
in the Hodgkin and Huxley model of nerve membrane ion con-
ductances (Clay and DeFelice, 1983). Here we provide an explicit
algorithm for the integral approach along with a new formula-
tion which makes use of the total transition rate to calculate the
wait time to the first transition, as opposed to keeping track of
the state of each channel separately. In the setting of subcellular
Ca modeling, other (non-direct) methods have been implemented
to account for time-dependent transition rates (see, for instance,
Restrepo et al., 2008; Williams et al., 2008).

Time-adaptive Gillespie’s method. Suppose the above Markov
chain with time-dependent total transition rate λ(t ) = 	Niλij is
in a given state at time t = 0, and let T be the random variable
representing the wait time from t = 0 to the first transition out
of the current state. Then it is straight forward to show that the
wait time T is exponentially distributed with probability density
function

p (t ) = λ exp

(
−
∫ t

0
λ (τ) dτ

)
. (37)

It follows from the standard inversion generating method of Monte
Carlo theory (Gillespie, 2007) that one can generate a realization
of T satisfying the above density function by selecting a random
number r that is uniformly distributed on the unit interval, and
solving the equation

∫ T

0
λ(τ)dτ = − ln(r) (38)

for T. For time-independent transition rates the above can be
explicitly solved for T

dλ

dt
= 0 ⇒ T = − ln (r)

λ
, (39)

the classic wait time in Gillespie’s method for time-independent
rates.

The above method is exact in the sense that no approximations
have been made in the derivation of equation (38), thus, T exactly
follows the statistics given by the probability density function in
equation (37). In practice, however, the total transition rate λ is an
implicit function of time through its dependence on other time-
dependent state variables, and we must numerically approximate
the integral in equation (38) in order to solve for T. Therefore,
assume that we are using a global time step of size �t to numeri-
cally integrate the Ca fluxes in our operator splitting scheme. Over
a time step of length �t we can treat λ(t ) as a constant and use
the normal Gillespie algorithm to calculate the wait time to the
next transition. Let tloc represent the local time during a single
global time step �t (see Figure 4). For tloc < �t, we continue to
update the local time step according to Gillespie’s algorithm using
equation (39). Once we the local time exceeds �t we must then
numerically integrate equation (38).

FIGURE 4 | Adaptive time step for Gillespie’s Method with

time-dependent rates.

The details of the algorithm are as follows:

1. Draw a random number r uniformly distributed on the unit
interval and let Lr = −ln(r).

2. Set tloc = 0. Numerically solve equation (38), which is equiva-
lent to evaluating the quantity

m = Lr − λ (t ) �t . (40)

If m ≤ 0 then a transition occurs during the current global time
step after a local time step of length

T = Lr

λ (t )
. (41)

Let tloc = T and proceed to Step 4. Otherwise proceed to Step 3.
3. Since m > 0, the local wait time is greater than the global time

step �t. On the next global time step continue to numerically
solve equation (38), which is equivalent to letting

m → m − λ (t ) �t . (42)

If m ≤ 0 then a transition occurs during the current global time
step after a local time step of length

T = m + λ (t ) �t

λ (t )
. (43)

Let tloc = T and proceed to Step 4. Otherwise repeat the current
step.

4. Calculate the individual transition probabilities Niλij and the
total transition probability λ = 	Niλij. Partition the interval
[0,λ] into Nt partitions of length Niλij. Draw a random num-
ber s uniformly distributed on the interval [0, λ]. Make the
transition corresponding to where s falls. Go to the next step.

5. Draw a random number r uniformly distributed on the unit
interval and calculate

T = − ln (r)

λ (t )
. (44)

If tloc + T < �t then let tloc → tloc + T and go back to Step 4.
Otherwise, integrate what remains in the interval by letting

Lr = − ln (r) − (�t − tloc ) λ (t ) , (45)

and start at Step 2 on the next global time step.

There are many advantages to the above method. For exam-
ple, there may be times for which a transition does not take place
for multiple global time steps, thus this method is numerically
efficient.
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2.3. GPU COMPUTATION
2.3.1. Hardware
The integration of the complete mathematical model was done
on GPUs. We performed simulations on single NVIDIA Tesla
C2050 high-performance Fermi-based GPGPU supporting ECC
and double precision. Four Tesla cards were installed in a system
with two quad-core 2.53 GHz Intel Xeon processors and 16 GB of
RAM. The programs were written in C++ using the CUDA API
and we used the GNU C++ compiler version 4.4.3 and NVIDIA
CUDA version 4.0.

For the implementation of the model we started from the basic
approach outlined in our previous study on the use of GPU to
simulate cardiac tissue.

2.3.2. Single precision versus double precision
One potential problem with previous generations of GPU cards
was that they could only handle single precision problems.
The single precision did not pose any problem in our previ-
ous study on cardiac tissue simulation, apart from some mea-
sures that had to be introduced to avoid the singularity in
the Goldman-Hodgkin-Katz equation, whenever this expression
was used to coumpute the equilibrium potential of an ion
channel.

In the subcellular Ca cycling model however it can hap-
pen in some special cases, e.g., when very accurate results are
required, that the time step becomes too small for single preci-
sion computation. In these cases we used the double precision

capability of the Fermi-based GPUs. We found the use of double
precision to increase simulation time by approximately 20%.

2.3.3. Coupling to the action potential model
To couple the subcellular Ca cycling model to the action potential
model in Mahajan et al. (2008), we have to compute the aver-
age of the various Ca fluxes and Ca concentrations (see Sec. 2.2)
for each time step of the AP model. When this averaging is per-
formed on the CPU the simulation time is completely dominated
by this computation (>86% of the simulation time is spent in
computing the averages). We therefore used the parallel reduction
algorithm provided in NVIDIA’s CUDA SDK (Harris, 2007) to
compute the averages on the GPU. The ODEs of the AP model
are evaluated on the CPU. Taking advantage of the fact that
the CPU can compute parallel to GPU computations, the actual
solution of the AP model does not add to the simulation time,
therefore the simulation time taken by the AP model (see below;
Sec. 4) is equal to the execution time of the parallel reduction
algorithm.

2.3.4. Performance
One second of simulated subcellular Ca cycling with uniform
time step equal to 0.01 ms, including computation of the whole-
cell action potential model, took 466.8 s to run on a single Tesla
C2050. In Figure 5 we tested the accuracy and speed of the sim-
ulations with respect to different time steps. We took a uniform
time step equal to 0.0001 ms as the benchmark (smaller time steps

FIGURE 5 | Comparison of various time discretization schemes. (A) Average
whole-cell Ca concentrations for four different time discretization schemes [see
(C) for details of schemes]. (B) Corresponding voltage traces. (C) Errors and

simulation speeds for each of the time discretization schemes. Note: double
precision is necessary when using a time step equal to 0.0001 ms, which
slows the simulation time by 20% when compared to single precision.
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produced virtually no change in the results) to which we com-
pared the accuracy and simulation speed with respect to other
time step schemes. We found that for all time steps smaller than
0.01 ms the steady state Ca concentration was extremely accu-
rate, to within 0.001% of the benchmark steady state. However,
depending upon the time step used, the accuracy in the peak Ca
concentration during depolarization varied. We found that tak-
ing a uniform time step of 0.001 gave highly accurate results to
within 3% of the benchmark peak Ca concentration while the
speed increased by a factor of 10. Taking a time step of 0.01 ms
produced results that were within 18% of the benchmark peak Ca
concentration while the speed increased by a factor of 94. Tak-
ing advantage of the multiple time scales that exist within the
system, we found that taking an AP time step of 0.01 ms, a dif-
fusion time step of 0.005 ms, and a Ca flux time step of 0.001 ms
gave accurate results (within 5% of the benchmark peak Ca con-
centration) while maintaining a reasonable simulation speed (17
times speed up from benchmark). For all time steps tested we
found the voltage to be nearly identical to the benchmark except
for sleight variations in the AP duration due to the differences in
peak Ca transients (see Figure 5B). It should be noted that for
time steps on the order of 0.0001 ms the use of double precision is
required, which causes a 20% reduction in speed. For all time steps
greater than or equal to 0.001 we found single precision to be ade-
quate, though we used double precision for the time comparisons
above.

Contrary to our 2D and 3D cardiac tissue simulations (Sato
et al., 2009), the diffusion part of the problem was no longer the
absolute bottleneck, with the simulation time spread over diffu-
sion, reaction, and the whole-cell current computation. In our Ca
cycling simulations, 50% of the simulation time was spent in the
(intracellular) reaction part, of which 70% computing the Ca flux
and 30% updating the Ca channels; 31% of the total time was spent
in the diffusion computation and 15% in the whole-cell current
computation (due to the parallel reduction algorithm), including
the computation of whole-cell Ca concentration by reduction. The
remaining 4% was spent in data transfer. Figure 6 shows a com-
parison between the 2D cardiac tissue simulation reported in Sato
et al. (2009) and our new subcellular Ca dynamics simulations.

For the cardiac tissue simulations reported in Sato et al. (2009)
we were able to speed up the simulations considerably by using tex-
ture memory for large two-dimensional problems (by up to 27%
for 1000 × 1000 cells). For our subcellular calcium simulations
however the use of texture memory only sped up the simulations

FIGURE 6 | Ratio of the execution time of different parts of the code of

the subcellular Ca cycling model, compared to our implementation of

cardiac tissue simulation on a GPU (Sato et al., 2009).

by about 2.5%. The explanation is that the individual dimensions
(500 × 100 × 50) of the subcellular calcium simulations are too
small for texture memory to be efficient.

3. RESULTS
We implemented the 3D Ca cycling model with 100 × 20 × 10 =
20,000 identical CRUs (500 × 100 × 50 grid points), simulating the
CRU network corresponding to a complete cardiac myocyte with
dimensions of 100 μm × 20 μm × 10 μm. Using this model, we
were able to generate well-known features of Ca and AP dynamics
of cardiac myocytes. For example, we could replicate the well-
known Ca signaling hierarchy (Cheng and Lederer, 2008; Weiss
et al., 2011): Ca quarks, Ca sparks, macrosparks (clusters of Ca
sparks), and Ca waves (see Figure 7). Under pacing, we were able
to reproduce the transition from regular Ca transients and AP
durations at slow pacing cycle lengths to Ca and AP duration
alternans during rapid pacing, see Figure 8 (parameter values can
be found in the Tables 1–5).

4. DISCUSSION
In this manuscript, we presented a mathematical model of
Ca cycling and its coupling to membrane voltage, as well as
numerical algorithms for effective computer simulation. Our
model is spatially detailed, simulating a CRU network that
represents a ventricular myocyte. Using this model, we are
able to recapitulate the well-known Ca signaling hierarchy and
excitation-contraction coupling dynamics. With advanced numer-
ical algorithms and computational technologies, we can perform
simulations at the cellular scale, while maintaining a fine spatial

FIGURE 7 | Ca signaling hierarchy reproduced by the Ca cycling model.

At t = 0 ms there are quarks (q), sparks (s), and clusters of sparks (c),
commonly referred to as macrosparks. The cluster of sparks (c) at t = 0 ms
eventually evolves into a Ca wave (w) by t = 120 ms. Note that it is a
random process, as not all clusters of sparks evolve into Ca waves.
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FIGURE 8 | Average whole-cell Ca concentration and voltage

superimposed on linescans of subcellular Ca. (A) Slow pacing resulting
in spatially uniform Ca release and consistent Ca release from beat to beat.
(B) Rapid pacing resulting in spatially non-uniform Ca release and alternans.

resolution at the intracellular scale, with reasonable computational
speed.

However, we would like to note that there are several limita-
tions. (1) Our model is a CRU network arranged in a regular 3D
grid, which is much simpler than the real structure of a ventric-
ular myocyte. (2) Mitochondria and myofibrils, which are also
spatially distributed in the cell, play important roles in Ca cycling
dynamics (O’Rourke and Blatter, 2009), but are not included in

the model. (3) We used a RyR model that includes dyadic space
Ca dependent inactivation, which may not be physiologically cor-
rect (Liu et al., 2012). Different RyR models (Sobie et al., 2002;
Restrepo et al., 2008; Chen et al., 2009) have been developed for
simulating Ca sparks and whole-cell Ca dynamics. Although our
model can reproduce Ca alternans and the well-known Ca signal-
ing hierarchy in general, different RyR models may affect specific
predictions of Ca dynamics. (4) The formulation of certain Ca
fluxes may need to be improved. For example, the explicit SR leak
term, such as equation (15), may not be needed since there is evi-
dence that random RyR openings are sufficient to account for SR
leak in real myocytes (Williams et al., 2011). (5) The RyR dis-
tribution inside a cell is heterogeneous (Baddeley et al., 2009),
and new Ca dynamics may emerge due to the heterogeneous
firing properties of the CRUs. To overcome these limitations,
our model needs to be improved through corroboration with
experimental data and the incorporation of more physiological
details.

Nonetheless, our present study has developed advanced math-
ematical and computational methods, which can be used to effec-
tively simulate spatially detailed Ca cycling and its coupling to
membrane voltage over long time scales. We hope to further
improve the model and the computational algorithms to allow
for the study of intracellular Ca cycling in a tissue-scale environ-
ment, and eventually contribute to the development of multi-scale
modeling approaches to cardiac excitation-contraction coupling
and arrhythmias (Hunter and Nielsen, 2005; Bassingthwaighte and
Chizeck, 2008; Qu et al., 2011), a grand challenge in biological
modeling.
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