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We present an analysis of the classic Alcubierremetric based on conformal gravity, rather than standard general relativity.emain
characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, that is, effective superluminal
motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in
the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular,
the resulting warp drive does not require the use of exotic matter. erefore, if conformal gravity is a correct extension of general
relativity, superluminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar
travel.

1. Introduction

In 1994, Alcubierre introduced the so-called Warp Drive
Metric (WDM), within the framework of general relativity
(GR), which allows in principle for super-luminal motion,
that is, faster-than-light travel [1]. is superluminal propul-
sion is achieved, respectively, by expanding and contracting
the space time behind and in front of a spaceship, while the
spacecra� is le� inside a locally �at region of space time,
within the so-called warp bubble.

In this way, the spaceship can travel at arbitrarily high
speeds, without violating the laws of special and general
relativity, or other known physical laws. Furthermore, the
spacecra� and its occupants would also be at rest in �at space
time, thus immune from high accelerations and unaffected
by special relativistic effects, such as time dilation. Enormous
tidal forces would only be present near the edge of the warp
bubble, which can bemade large enough to accommodate the
volume occupied by the ship.

However, Alcubierre [1] was also the �rst to point out that
this hypothetical solution of Einstein’s equations of GRwould
violate all three standard energy conditions (weak, dominant,
and strong; see [2–4] for de�nitions). In particular, the
violation of the weak energy condition (WEC) implies that
negative energy density is required to establish the Alcubierre
WDM, thus making it practically impossible to achieve this

type of super-luminal motion, unless large quantities of
exotic matter (i.e., with negative energy density) can be cre-
ated. Since our current knowledge of this type of exoticmatter
is limited to some special effects in quantum �eld theory
(such as the Casimir effect), it is unlikely that the Alcubierre
WDM can be practically established within the framework of
general relativity.

Following Alcubierre’s seminal paper, many other studies
appeared in the literature, either proposing alternatives to
the original warp drive mechanism ([5, 6]) or re�ning and
analyzing in more detail the original idea ([7–19]). However,
all these studies were conducted using standardGR and could
not avoid the violation of theWEC,meaning that some exotic
matter would always be required for faster-than-light travel.
Similar issues also exist in other well-knownGR solutions for
super-luminal motion, such as space-time wormholes [20].

Einstein’s general relativity and the related “Standard
Model” of cosmology have been highly successful in describ-
ing our universe, from the solar system up to the largest
cosmological scales, but recently these theories have also led
to a profound crisis in our understanding of its ultimate com-
position. From the original discovery of the expansion of the
universe, which resulted in standard big bang cosmology,
scientists have progressed a long way towards our current
picture, in which the contents of the universe are today
described in terms of two main components, dark matter
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(DM) and dark energy (DE), accounting for most of the
observed universe, with ordinary matter just playing a minor
role.

Since there is no evidence available yet as to the real
nature of dark matter and dark energy, alternative gravi-
tational and cosmological theories are being developed, in
addition to standard explanations of darkmatter/dark energy
invoking the existence of exotic new particles also yet to be
discovered. In line with these possible new theoretical ideas,
conformal gravity (CG) has emerged as a nonstandard exten-
sion of Einstein’s GR, based on a possible symmetry of the
universe: the conformal symmetry, that is, the invariability of
the space-time fabric under local “stretching” of the metric
(for reviews see [21, 22]). is alternative theory has been
reintroduced in recent years (following the original work by
Weyl [23–25]), leading to cosmological models which do not
require the existence of DM and DE ([26–32]).

At the quantum level conformal gravity, as well as other
theories with higher derivatives, was thought to be affected
by the presence of “ghosts,” leading to possible instabilities of
the quantum version of the theory. However, recent studies
[26] have shown that CG as a quantum theory is both
renormalizable and unitary, thus providing a solution to the
ghost problem.

In view of a possible extension of Einstein’s general rela-
tivity into conformal gravity, in this paper we have recon-
sidered the Alcubierre WDM, basing it on CG rather than
standard GR. In Section 2, we review the fundamental prin-
ciples of CG and the calculation of the stress-energy tensor
in this gravitational theory. In Section 3, we consider the
Alcubierre metric in CG and compute the energy density for
different shaping functions of the metric.

In particular, we will show that for certain shaping func-
tions, the Alcubierre metric in the context of conformal
gravity does not violate the weak energy condition, as was
the case of the original solution. is analysis continues
in Section 4, where we study other energy conditions and
estimate the total energy required for this CG warp drive.
Finally, in Section 5, we conclude that if CG is a correct
extension of GR, super-luminal motion via an Alcubierre
metric might be a realistic possibility, thus enabling faster-
than-light interstellar travel without requiring exotic matter.

2. Conformal Gravity and
the Stress-Energy Tensor

Weyl in 1918 ([23–25]) developed the “conformal” general-
ization of Einstein’s relativity by introducing the conformal
(or Weyl) tensor, a special combination of the Riemann
tensor 𝑅𝑅𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆, the Ricci tensor 𝑅𝑅𝜇𝜇𝜇𝜇 = 𝑅𝑅

𝜆𝜆
𝜇𝜇𝜇𝜇𝜇𝜇, and the curvature

(or Ricci) scalar 𝑅𝑅 𝑅 𝑅𝑅𝜇𝜇𝜇𝜇 [33] as follows:

𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 = 𝑅𝑅𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 −
1
2
󶀢󶀢𝑔𝑔𝜆𝜆𝜆𝜆𝑅𝑅𝜇𝜇𝜇𝜇 − 𝑔𝑔𝜆𝜆𝜆𝜆𝑅𝑅𝜇𝜇𝜇𝜇 − 𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅𝜆𝜆𝜆𝜆 + 𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅𝜆𝜆𝜆𝜆󶀲󶀲

+
1
6
𝑅𝑅 󶀢󶀢𝑔𝑔𝜆𝜆𝜆𝜆𝑔𝑔𝜇𝜇𝜇𝜇 − 𝑔𝑔𝜆𝜆𝜆𝜆𝑔𝑔𝜇𝜇𝜇𝜇󶀲󶀲 ,

(1)

where𝐶𝐶𝜆𝜆
𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥 is invariant under the local transformation of

the following metric:

𝑔𝑔𝜇𝜇𝜇𝜇 (𝑥𝑥)⟶󵰅󵰅𝑔𝑔𝜇𝜇𝜇𝜇 (𝑥𝑥) = 𝑒𝑒
2𝛼𝛼𝛼𝛼𝛼𝛼𝑔𝑔𝜇𝜇𝜇𝜇 (𝑥𝑥) = Ω

2 (𝑥𝑥) 𝑔𝑔𝜇𝜇𝜇𝜇 (𝑥𝑥) .
(2)

e factor Ω(𝑥𝑥𝑥 𝑥𝑥𝑥 𝛼𝛼𝛼𝛼𝛼𝛼 determines the amount of local
“stretching” of the geometry, hence the name “conformal” for
a theory invariant under all local stretchings of the space-time
(see [22] and references therein for more details).

is conformally invariant generalization of GR was
found to be a fourth-order theory, as opposed to the standard
second-order general relativity, since the �eld equations
originating from a conformally invariant Lagrangian contain
derivatives up to the fourth order of the metric, with respect
to the space-time coordinates. Following the works done by
Bach [34], Lanczos [35], and others, CGwas ultimately based
on the following Weyl or conformal action (In this paper we
adopt a metric signature (−, +, +, +) and we follow the sign
conventions of Weinberg [33]. In this section we will leave
fundamental constants, such as 𝑐𝑐 and 𝐺𝐺, in all equations, but
later we will use geometrized units (𝑐𝑐 𝑐𝑐 , 𝐺𝐺 𝐺𝐺 ), or c.g.s.
units when needed.):

𝐼𝐼𝑊𝑊 = −𝛼𝛼𝑔𝑔 󵐐󵐐𝑑𝑑
4𝑥𝑥󶀡󶀡−𝑔𝑔󶀱󶀱1/2𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝐶𝐶

𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆, (3)

or on the following equivalent expression, differing from the
previous one only by a topological invariant:

𝐼𝐼𝑊𝑊 = −2𝛼𝛼𝑔𝑔 󵐐󵐐𝑑𝑑
4𝑥𝑥󶀡󶀡−𝑔𝑔󶀱󶀱1/2 󶀤󶀤𝑅𝑅𝜇𝜇𝜇𝜇𝑅𝑅

𝜇𝜇𝜇𝜇 −
1
3
𝑅𝑅2󶀴󶀴 , (4)

where 𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝜇𝜇𝜇𝜇) and 𝛼𝛼𝑔𝑔 is the gravitational coupling con-
stant of conformal gravity (see [21, 36–38].) (In these cited
papers, 𝛼𝛼𝑔𝑔 is considered a dimensionless constant by using
natural units.Working with c.g.s. units, we can assign dimen-
sions of an action to the constant 𝛼𝛼𝑔𝑔 so that the dimensional-
ity of (5) will be correct.) Under the conformal transforma-
tion in (2), the Weyl tensor transforms as 𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 →󵰉󵰉𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 =
𝑒𝑒2𝛼𝛼𝛼𝛼𝛼𝛼𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 = Ω2(𝑥𝑥𝑥𝑥𝑥𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆, while the conformal action 𝐼𝐼𝑊𝑊
is locally conformally invariant, the only general coordinate
scalar action with such properties.

Bach [34] introduced the gravitational �eld equations in
the presence of a stress-energy tensor (We follow here the
convention [21] of introducing the stress-energy tensor 𝑇𝑇𝜇𝜇𝜇𝜇
so that the quantity 𝑐𝑐𝑐𝑐00 has the dimensions of an energy
density.) 𝑇𝑇𝜇𝜇𝜇𝜇 as

𝑊𝑊𝜇𝜇𝜇𝜇 =
1
4𝛼𝛼𝑔𝑔

𝑇𝑇𝜇𝜇𝜇𝜇, (5)

as opposed to Einstein’s standard equations as

𝐺𝐺𝜇𝜇𝜇𝜇 = 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 𝑅𝑅

8𝜋𝜋𝜋𝜋
𝑐𝑐3

𝑇𝑇𝜇𝜇𝜇𝜇, (6)

where the “Bach tensor”𝑊𝑊𝜇𝜇𝜇𝜇 [34] is the equivalent in CG of
the Einstein curvature tensor𝐺𝐺𝜇𝜇𝜇𝜇 on the le-hand side of (6).
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𝑊𝑊𝜇𝜇𝜇𝜇 has a very complex structure and can be de�ned in
a compact way as [39]

𝑊𝑊𝜇𝜇𝜇𝜇 = 2𝐶𝐶
𝛼𝛼
𝜇𝜇𝜇𝜇
𝛽𝛽
;𝛽𝛽𝛽𝛽𝛽 + 𝐶𝐶

𝛼𝛼
𝜇𝜇𝜇𝜇
𝛽𝛽𝑅𝑅𝛽𝛽𝛽𝛽, (7)

or in an expanded form as ([37, 40])

𝑊𝑊𝜇𝜇𝜇𝜇 = −
1
6
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅

;𝜆𝜆
;𝜆𝜆 +

2
3
𝑅𝑅;𝜇𝜇𝜇𝜇𝜇 + 𝑅𝑅𝜇𝜇𝜇𝜇

;𝜆𝜆
;𝜆𝜆

− 𝑅𝑅𝜇𝜇
𝜆𝜆
;𝜈𝜈𝜈𝜈𝜈 − 𝑅𝑅𝜈𝜈

𝜆𝜆
;𝜇𝜇𝜇𝜇𝜇 +

2
3
𝑅𝑅𝑅𝑅𝜇𝜇𝜇𝜇

− 2𝑅𝑅𝜇𝜇
𝜆𝜆𝑅𝑅𝜆𝜆𝜆𝜆 +

1
2
𝑔𝑔𝜇𝜇𝜇𝜇 𝑅𝑅𝜆𝜆𝜆𝜆𝑅𝑅

𝜆𝜆𝜆𝜆 −
1
6
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅

2,

(8)

involving derivatives up to the fourth order of themetric with
respect to space-time coordinates.

erefore, in conformal gravity, the stress-energy tensor
is computed by combining together (5) and (8) as

𝑇𝑇𝜇𝜇𝜇𝜇 = 4𝛼𝛼𝑔𝑔𝑊𝑊𝜇𝜇𝜇𝜇 = 4𝛼𝛼𝑔𝑔 󶀤󶀤−
1
6
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅

;𝜆𝜆
;𝜆𝜆 +

2
3
𝑅𝑅;𝜇𝜇𝜇𝜇𝜇 + 𝑅𝑅𝜇𝜇𝜇𝜇

;𝜆𝜆
;𝜆𝜆

− 𝑅𝑅𝜇𝜇
𝜆𝜆
;𝜈𝜈𝜈𝜈𝜈 − 𝑅𝑅𝜈𝜈

𝜆𝜆
;𝜇𝜇𝜇𝜇𝜇 +

2
3
𝑅𝑅𝑅𝑅𝜇𝜇𝜇𝜇

− 2𝑅𝑅𝜇𝜇
𝜆𝜆𝑅𝑅𝜆𝜆𝜆𝜆 +

1
2
𝑔𝑔𝜇𝜇𝜇𝜇 𝑅𝑅𝜆𝜆𝜆𝜆𝑅𝑅

𝜆𝜆𝜆𝜆

−
1
6
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅

2󶀴󶀴 .
(9)

is form of the tensor will be used in the following sections,
in connection to the Alcubierre metric, to compute the
energy density and other relevant quantities.

For this purpose, we have developed a special Mathe-
matica program which enables us to compute all the tensor
quantities of both GR and CG, for any given metric. In
particular, this program can compute the conformal tensor
𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 in (1), the Bach tensor𝑊𝑊𝜇𝜇𝜇𝜇 in (8), or the stress-energy
tensor 𝑇𝑇𝜇𝜇𝜇𝜇 in (9) by performing all the necessary covariant
derivatives. Given the complexity of these types of compu-
tations, we have tested extensively our program against the
results for 𝐶𝐶𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 and 𝑊𝑊𝜇𝜇𝜇𝜇 computed by Kazanas and
Mannheim in [38] for different metrics, obtaining a perfect
agreement.

3. Alcubierre Metric, Shaping Functions, and
theWeak Energy Condition

e original Alcubierre metric [1] considered a spaceship
traveling along the 𝑥𝑥-axis, with motion described by a
function𝑥𝑥𝑠𝑠(𝑡𝑡𝑡 and spaceship velocity 𝑣𝑣𝑠𝑠(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑠𝑠(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Using
the 3+1 formalism of GR, themetric was written in Cartesian
coordinates as (𝑐𝑐 𝑐𝑐 )

𝑑𝑑𝑑𝑑2 = −𝑑𝑑𝑑𝑑2 + 󶁡󶁡𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑠𝑠(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠)𝑑𝑑𝑑𝑑󶁱󶁱
2 + 𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑2, (10)

where 𝑟𝑟𝑠𝑠 is the distance from the spaceship position as

𝑟𝑟𝑠𝑠 (𝑡𝑡) = 󵀆󵀆󶁡󶁡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠(𝑡𝑡𝑡󶁱󶁱
2 + 𝑦𝑦2 + 𝑧𝑧2, (11)

and 𝑓𝑓𝑓𝑓𝑓𝑠𝑠) is a “form function” or “shaping function” which
needs to have values 𝑓𝑓𝑓𝑓   and 𝑓𝑓𝑓  𝑓, respectively, inside
and outside the warp bubble, while it can have an arbitrary
shape in the transition region of the warp bubble itself.

e original shaping function used by Alcubierre was

𝑓𝑓 󶀡󶀡𝑟𝑟𝑠𝑠󶀱󶀱 =
tanh 󶁡󶁡𝜎𝜎 󶀡󶀡𝑟𝑟𝑠𝑠 + 𝑅𝑅󶀱󶀱󶁱󶁱 − tanh 󶁡󶁡𝜎𝜎 󶀡󶀡𝑟𝑟𝑠𝑠 − 𝑅𝑅󶀱󶀱󶁱󶁱

2 tanh (𝜎𝜎𝜎𝜎)
, (12)

where 𝑅𝑅 𝑅 𝑅 basically indicates the radius of the spherical
warp bubble, while 𝜎𝜎 𝜎𝜎  relates to the bubble thickness,
which decreases with increasing values of 𝜎𝜎. In the following,
we will refer to the function in (12) as the “Alcubierre shaping
function” (ASF).

We will show that the particular form of the shaping
function can play an important role in the energy conditions
for the WDM. In our analysis we tested several different
functions obeying the general requirements for 𝑓𝑓 outlined
above. In addition to the Alcubierre function above, in this
paper we will also use the following:

𝑓𝑓 󶀡󶀡𝑟𝑟𝑠𝑠󶀱󶀱 =
󶀂󶀂
󶀊󶀊
󶀚󶀚

1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
; 𝑟𝑟𝑠𝑠 < 𝑅𝑅𝑅

0; 𝑟𝑟𝑠𝑠 > 𝑅𝑅𝑅
(13)

where 𝑚𝑚 is a positive integer. Since this particular function
for 𝑚𝑚 𝑚𝑚  is used by Hartle to illustrate the warp drive in
his textbook [20], we will refer to the function in (13) as the
“Hartle shaping function” (HSF).

e top panels in Figure 1 illustrate the differences
between the Alcubierre shaping function (top le panel, for
𝜎𝜎 𝜎 𝜎 as used originally byAlcubierre) and theHartle shaping
function (top right panel, for 𝑚𝑚 𝑚𝑚 ). All functions in this
�gure are computed for a �xed value of 𝑅𝑅 𝑅𝑅  and at time 𝑡𝑡 𝑡
0, when the spaceship is located at the origin. All quantities
shown in the different panels are plotted as a function of the
𝑥𝑥 coordinate of the spaceship motion and of the transverse
cylindrical coordinate 𝜌𝜌𝜌  󵀆󵀆𝑦𝑦2 + 𝑧𝑧2. Similar coordinates will
also be used in the other �gures. (e cylindrical coordinate
𝜌𝜌𝜌  󵀆󵀆𝑦𝑦2 + 𝑧𝑧2 should be considered as non-negative and all
quantities in the �gures plotted only for 𝜌𝜌 𝜌 𝜌. However, for
illustrative purposes and also to follow similar �gures in the
literature (such as those in [1, 11, 12]), we decided to let 𝜌𝜌 run
on negative values in all �gures, except in the last one, where
we restrict 𝜌𝜌 𝜌 𝜌 for a correct energy calculation.)

e expansion/contraction function 𝜃𝜃 of the volume
elements behind/in front of the spaceship was also computed
by Alcubierre as [1]

𝜃𝜃 𝜃𝜃𝜃 𝑠𝑠 (𝑡𝑡)
󶁡󶁡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠 (𝑡𝑡)󶁱󶁱

𝑟𝑟𝑠𝑠

𝑑𝑑𝑑𝑑 󶀡󶀡𝑟𝑟𝑠𝑠󶀱󶀱
𝑑𝑑𝑑𝑑𝑠𝑠

(14)

and is illustrated for 𝑣𝑣𝑠𝑠 = 1 (in geometrized units, i.e., 𝑣𝑣𝑠𝑠 = 𝑐𝑐
in traditional units) in Figure 1(b), for the two different
shaping functions. Again, the choice of the parameters 𝑅𝑅,
𝜎𝜎, and 𝑚𝑚 is the same as in the top panels in the �gure. e
expansion 𝜃𝜃 for the ASF is the same as Figure 1 in [1], while
the corresponding 𝜃𝜃 for the HSF is slightly different but still
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F 1: Results for the two different shaping functions (le column ASF, right column HSF), computed with parameters 𝑣𝑣𝑠𝑠 = 1, 𝑅𝑅 𝑅𝑅 ,
𝜎𝜎 𝜎 𝜎, 𝑚𝑚 𝑚 𝑚, 𝛼𝛼𝑔𝑔 = 1, 𝑡𝑡 𝑡 𝑡. (a) Alcubierre and Hartle shaping functions. (b) Expansion of the volume elements 𝜃𝜃. (c) Energy density 𝑇𝑇00

computed with general relativity. (d) Energy density 𝑇𝑇00 computed with conformal gravity. �e �E� is veri�ed in the case shown in the
bottom right panel.



ISRN Astronomy and Astrophysics 5

shows expansion of the normal volume elements behind the
spaceship and contraction in front of it.

e weak energy condition ([2–4]) requires that
𝑇𝑇𝜇𝜇𝜇𝜇𝑡𝑡

𝜇𝜇𝑡𝑡𝜈𝜈 ≥ 0 for all timelike vectors 𝑡𝑡𝜇𝜇. Alcubierre has also
shown that for the Eulerian observers in the warp drive
metric, and for their 4-velocity 𝑛𝑛𝜇𝜇, the following relation
holds [1]:

𝑇𝑇𝜇𝜇𝜇𝜇𝑛𝑛𝜇𝜇𝑛𝑛𝜈𝜈 = 𝑇𝑇
00 = −

1
8𝜋𝜋

𝑣𝑣2𝑠𝑠𝜌𝜌
2

4𝑟𝑟2𝑠𝑠
󶀥󶀥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑠𝑠

󶀵󶀵
2
, (15)

which implies that the energy density 𝑇𝑇00 is negative every-
where for any choice of the shaping function𝑓𝑓 and, therefore,
the WEC is violated (also the dominant energy condition,
DEC, and the strong energy condition, SEC, are violated in
the analysis based on GR [1]).

is violation of the WEC in GR is illustrated in
Figure 1(c), where 𝑇𝑇00 is calculated using (15) for both
shaping functions. Although the results in the two panels
are slightly different, they obviously show negative energy
densities and therefore a complete violation of the WEC.

e situation is different if we compute the energy density
𝑇𝑇00 in the framework of CG, following (9), setting 𝛼𝛼𝑔𝑔 = 1
for simplicity, and using the completely contravariant form
of the stress-energy tensor, instead of the covariant one. As
seen in the bottom row of Figure 1, the energy density in
CG is completely different from the one calculated within the
framework of GR. In the bottom le panel 𝑇𝑇00 is computed
with the ASF and the resulting function is in part positive and
in part negative, thus still violating the WEC.

However, the bottom right panel shows 𝑇𝑇00 computed
with the HSF and in this case the energy density is completely
non-negative, showing that the WEC is veri�ed and no
exotic matter is needed to establish the warp drive. (In
this panel of Figure 1 (and also in the other �gures) we
show a step discontinuity at the edge of the warp bubble,
common to all our CG solutions. ese discontinuities can
bemathematically replaced by appropriate delta functions, as
described by the equations used in the Appendix to model
the Hartle shaping function. However, these delta functions
do not need to be included in the physical solutions for 𝑇𝑇00
in CG shown in the �gures. erefore, these energy densities
are completely non-negative and they fully determine the
expansion of the volume elements required for the warp drive
effect.) is non-negative energy density plot in the bottom
right panel of Figure 1 is the main result of our paper as it
shows that—if CG is the correct extension of GR—it might
be possible to establish a warp drive without having to use
negative energy (mass), thus overcoming the main difficulty
of the warp drive mechanism.

e explicit expression of 𝑇𝑇00 in CG, computed with
our Mathematica program, is rather cumbersome and is
reproduced in (A.1) of the Appendix. Here we present just
the graphical computation of 𝑇𝑇00 in Figure 1, or in the other
�gures in this paper. We have tested the validity of these
results by running the program in several different ways,
including computing the stress-energy tensor for a simpli�ed
three-dimensional Alcubierre metric (coordinates 𝑥𝑥, 𝑦𝑦, and
𝑡𝑡 only), always obtaining consistent results. e differences

in the two plots at the bottom of the �gure can be attributed
to the different shaping functions and their derivatives up
to the fourth order. All these derivatives enter the complex
expression of 𝑇𝑇𝜇𝜇𝜇𝜇 in CG, as in the master equation (9), and
their interplay ultimately determines the shape of 𝑇𝑇00, or of
the other components, in a way which is hard to predict
before the actual computation is performed.

In Figure 2, we analyze the dependence of the energy
density 𝑇𝑇00 on the spaceship velocity 𝑣𝑣𝑠𝑠. In this case we
consider only the Hartle shaping function for 𝑚𝑚 𝑚𝑚  and
𝑅𝑅 𝑅𝑅 , and we compute 𝑇𝑇00 in CG (𝛼𝛼𝑔𝑔 = 1) for speeds
ranging from the subluminal 𝑣𝑣𝑠𝑠 = 0.25𝑐𝑐 to the super-luminal
𝑣𝑣𝑠𝑠 = 3.00𝑐𝑐 (for 𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐 we obtain the same function
as in the bottom right panel of Figure 1). e shape of the
energy density function is about the same for speeds up to
𝑣𝑣𝑠𝑠 = 1.50𝑐𝑐, although the function values increase with speed.
For higher velocities, the function develops two “downward
lobes” which eventually become negative for speeds 𝑣𝑣𝑠𝑠 ≳
2.50𝑐𝑐. is implies that the WEC is veri�ed for speeds up to
𝑣𝑣𝑠𝑠 ≈ 2.50𝑐𝑐, while at higher velocities exotic matter would be
required to sustain the warp drive.

is apparent “speed limit” at about 𝑣𝑣𝑠𝑠 ≈ 2.50𝑐𝑐 might
be raised or overcome completely by adopting a different
shaping function, instead of the HSF used here, but this
analysis would go beyond the scope of this work. We do
not ascribe any physical signi�cance to this new speed limit,
which is probably just an arti�cial product of the shaping
functions used in this analysis.

In any case, the results reported in Figure 2 show that a
warp drive in CG with positive energy density is possible for
a wide range of spaceship velocities; therefore, if CG is the
correct extension of GR, the Alcubierre warp drive might be
a viable mechanism for super-luminal travel.

In Figure 3, we present the other components of the
stress-energy tensor. ese were computed with the same
Mathematica program, following (9) with 𝛼𝛼𝑔𝑔 = 1, leading
to even more complex expressions than the one for 𝑇𝑇00 (we
will omit to report these expressions for brevity). To simplify
the computation, we used the covariant components 𝑇𝑇𝜇𝜇𝜇𝜇
and adopted cylindrical coordinates around the 𝑥𝑥-axis,
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   𝑡, instead of the Cartesian coordinates
of the original Alcubierre metric. e results in the different
panels are labeled accordingly. We recall that the stress-
energy tensor is symmetric,𝑇𝑇𝜇𝜇𝜇𝜇 = 𝑇𝑇𝜈𝜈𝜈𝜈, and only the nonzero
components are illustrated in this �gure, under similar
conditions used before (CG with HSF and parameters𝑚𝑚 𝑚𝑚 ,
𝑅𝑅 𝑅𝑅 , 𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐).

e shapes of the other components of 𝑇𝑇𝜇𝜇𝜇𝜇 are more
complex than the one of 𝑇𝑇00, but they can all be determined
analytically, either in covariant or contravariant form, using
our program. If this exact form of the stress-energy tensor
could be established in the region surrounding the spacecra,
warp drivemotion would be feasible within the framework of
conformal gravity.

We alsowant to point out thatwe set the spaceshipmotion
in the positive direction of the 𝑥𝑥-axis (setting 𝑣𝑣𝑠𝑠 = +1.00𝑐𝑐),
and this is re�ected in the symmetry, or lack thereof, of the
components of 𝑇𝑇𝜇𝜇𝜇𝜇. While some components, such as 𝑇𝑇00
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F 2: Energy density 𝑇𝑇00 computed with conformal gravity and the Hartle shaping function. Parameters used are 𝑅𝑅 𝑅 𝑅,𝑚𝑚 𝑚 𝑚, 𝛼𝛼𝑔𝑔 =1 ,
𝑡𝑡 𝑡𝑡 , and variable 𝑣𝑣𝑠𝑠 = 0.25𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐𝑐𝑐. e energy density becomes in part negative for 𝑣𝑣𝑠𝑠 ≳ 2.50𝑐𝑐, so the �E� is veri�ed for speeds up to
about 𝑣𝑣𝑠𝑠 ≃ 2.50𝑐𝑐.
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F 3: Stress-energy tensor components 𝑇𝑇𝜇𝜇𝜇𝜇, in cylindrical coordinates (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 𝑡𝑡, computed with conformal gravity and the
Hartle shaping function. Parameters used are 𝑣𝑣𝑠𝑠 = 1, 𝑅𝑅 𝑅𝑅 ,𝑚𝑚 𝑚 𝑚, 𝛼𝛼𝑔𝑔 = 1, and 𝑡𝑡 𝑡 𝑡.
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(or 𝑇𝑇00), 𝑇𝑇01 = 𝑇𝑇10, 𝑇𝑇11, 𝑇𝑇22, 𝑇𝑇33, appear to be symmetric
under the exchange 𝑥𝑥 𝑥 𝑥𝑥𝑥, the other components, 𝑇𝑇02 =
𝑇𝑇20 and 𝑇𝑇12 = 𝑇𝑇21, are not symmetric under this exchange
and, therefore, these components must contain information
about the spaceship direction ofmotion.is argument over-
comes the objection addressed in [12] that since 𝑇𝑇00 is
symmetric about the 𝑥𝑥𝑠𝑠 = 0 plane, there is uncertainty in
where the space-time is expanded/contracted, thus making
it impossible for the spaceship to know in which direction
of the 𝑥𝑥-axis, positive or negative, to move. Rather, Figure 3
shows that a “bias” towards one of the two possible directions
is induced by some components of 𝑇𝑇𝜇𝜇𝜇𝜇.

Figure 4 illustrates one last dependence of the energy
density𝑇𝑇00 on the parameters used. In this case, we set𝑅𝑅 𝑅𝑅 ,
𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐 and consider the Hartle shaping function as in
(13), while varying the integer parameter 𝑚𝑚. In addition to
our standard value, 𝑚𝑚 𝑚 𝑚, we have also tried values from
𝑚𝑚 𝑚𝑚  to𝑚𝑚 𝑚𝑚𝑚 , as shown in the �gure.

In general, increasing the 𝑚𝑚 value increases the internal
volume of the warp bubble, where space time is �at, and
therefore decreases the thickness of the bubble wall where
the space-time distortion takes place, in a way similar to that
of the 𝜎𝜎 parameter in the original Alcubierre warp drive.
However, increasing 𝑚𝑚 also increases the energy required to
establish the warp drive (as we checked by integrating the
functions in Figure 4). erefore, it appears to be convenient
to use a low value for this parameter. As shown in the different
panels of the �gure, the �rst value, 𝑚𝑚 𝑚𝑚 , does not work
since it does not leave a �at space-time volume inside the
bubble, while 𝑚𝑚 𝑚𝑚  seems to create a very small volume
inside the bubble.erefore, intermediate values such as𝑚𝑚 =
4–6 would appear to be more adequate to establish the warp
drive. Meanwhile, the solution for 𝑚𝑚 𝑚𝑚𝑚  would require
much more energy and would not give any advantage, except
reducing the thickness of the warp bubble. We also checked
that changing the value of𝑚𝑚 does not have a strong effect on
the “speed limit” of 𝑣𝑣𝑠𝑠 ≈ 2.50𝑐𝑐, reported above for the case
𝑚𝑚 𝑚 𝑚.us, this value of the parameter seems to be the most
adequate for this type of solutions.

4. Other Energy Conditions andWarp Drive
Energy Estimate

In the previous section, we have discussed at length the
weak energy condition (WEC) for the conformal gravity
Alcubierre warp drive. We have seen that, if the Hartle
shaping function is used, this condition is not violated for a
wide range of spaceship velocities, including super-luminal
speeds. In this section, we will brie�y analyze the other
main energy conditions and estimate the energy necessary to
establish the warp drive in CG.

e dominant energy condition (DEC) is reported in the
literature ([2–4]) as𝑇𝑇00 ≥ |𝑇𝑇𝜇𝜇𝜇𝜇| for any𝜇𝜇,𝜈𝜈, or equivalently as
assuming the WEC plus the additional condition that 𝑇𝑇𝜇𝜇𝜇𝜇𝑡𝑡𝜇𝜇
is a nonspacelike vector, that is, 𝑇𝑇𝜇𝜇𝜇𝜇𝑇𝑇

𝜈𝜈
𝜆𝜆𝑡𝑡
𝜇𝜇𝑡𝑡𝜆𝜆 ≤ 0. It is easy to

see that using as a vector 𝑡𝑡𝜇𝜇 the 4-velocity 𝑛𝑛𝜇𝜇 of the Eulerian

observers [1], the previous condition for the DEC becomes
𝑇𝑇0𝜆𝜆𝑇𝑇

0𝜆𝜆 ≤ 0.
Figure 5 illustrates the violation of the DEC for our

standard solution (AWD with HSF and 𝑚𝑚 𝑚 𝑚, 𝑅𝑅 𝑅𝑅 ,
𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐). e plotted function 𝑇𝑇0𝜆𝜆𝑇𝑇

0𝜆𝜆 is not negative
everywhere, as required by the DEC, but shows a violation
for the central portion of the warp bubble. Even if this energy
condition appears to be violated, this does not notably affect
the feasibility of our CG warp drive. We recall that the DEC
is usually related to the standard perfect �uid stress-energy
tensor, 𝑇𝑇𝜇𝜇𝜇𝜇 = (𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝜌𝜇𝜇𝑈𝑈𝜈𝜈 +𝑝𝑝 𝑝𝑝𝜇𝜇𝜇𝜇, where here 𝜌𝜌 and 𝑝𝑝 are
the �uid density and pressure, while𝑈𝑈𝜇𝜇 is the �uid 4-velocity.
In this context, the DEC requires 𝜌𝜌 𝜌𝜌 𝜌𝜌𝜌, but this condition
is not required in general by all classical forms of matter
[3]; therefore, its violation in our case is not particularly
signi�cant.

�n the contrary, our standard solution also veri�es the
strong energy condition (SEC) which states that 𝑇𝑇𝜇𝜇𝜇𝜇𝑡𝑡

𝜇𝜇𝑡𝑡𝜈𝜈 ≥
(1/2)𝑇𝑇𝜆𝜆𝜆𝜆𝑡𝑡

𝜎𝜎𝑡𝑡𝜎𝜎 for all timelike vectors 𝑡𝑡𝜇𝜇. Again, using the Eule-
rian 4-velocity vector in place of 𝑡𝑡𝜇𝜇, the previous condition
is equivalent to 𝑇𝑇00 + (1/2)𝑇𝑇𝜆𝜆𝜆𝜆 ≥ 0. Since the scalar 𝑇𝑇𝜆𝜆𝜆𝜆
is identically zero for all our solutions, as checked using our
Mathematica program, the SEC is equivalent to 𝑇𝑇00 ≥ 0,
which is the WEC already veri�ed in Section 3.

Finally, we want to estimate the energy necessary to
establish our CG warp drive, under reasonable conditions.
For this purpose, in Figure 6 we computed once again the
energy density 𝑇𝑇00 for our AWD with the Hartle shaping
function (𝛼𝛼𝑔𝑔 = 1, 𝑚𝑚 𝑚 𝑚, 𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐), but this time for
𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅  cm = 100m, a reasonable radius for a warp bubble
enclosing our spaceship.

Figure 6 illustrates this solution, plotted only for 𝜌𝜌 𝜌
󵀆󵀆𝑦𝑦2 + 𝑧𝑧2 ≥ 0, as this is the correct interval for the transverse
coordinate 𝜌𝜌. e cylindrical symmetry of this solution can
also be better appreciated in this type of plot. We then
followed the procedure outlined in [8, 11], to integrate the
local energy density over the proper volume, in cylindrical
coordinates at time 𝑡𝑡 𝑡𝑡  over all space, obtaining the total
energy 𝐸𝐸 as

𝐸𝐸 𝐸𝐸𝐸 𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐
3𝑥𝑥󵀆󵀆󶙡󶙡𝑔𝑔󶙡󶙡𝑇𝑇00 = 󶀢󶀢1.86 × 1010𝛼𝛼𝑔𝑔󶀲󶀲 erg, (16)

where 𝑔𝑔𝑔  Det|𝑔𝑔𝑖𝑖𝑖𝑖| is the determinant of the spatial metric
on the constant time hypersurface. Since we assume that the
spaceship is traveling at constant velocity, 𝑣𝑣𝑠𝑠 = 1.00𝑐𝑐, the
total energy is also constant with time. In the last equation, we
reinstated a factor of 𝑐𝑐 to obtain the correct dimensions (see
Section 2) and also inserted an overall multiplicative factor
𝛼𝛼𝑔𝑔, which corresponds to the conformal gravity coupling
constant in (9).is factor is necessary since our computation
of 𝑇𝑇00 in Figure 6 was done assuming 𝛼𝛼𝑔𝑔 = 1.

erefore, we need to know the CG value for 𝛼𝛼𝑔𝑔 in order
to complete our energy estimation. Unfortunately, the value
of this coupling constant is not well determined yet.e only
value in the literature is reported by Mannheim [30] as

𝛼𝛼𝑔𝑔 = 3.29 × 1082 erg s, (17)
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F 4: Energy density 𝑇𝑇00 computed with conformal gravity and the Hartle shaping function. Parameters used are 𝑣𝑣𝑠𝑠 = 1, 𝑅𝑅 𝑅𝑅 , 𝛼𝛼𝑔𝑔 = 1,
𝑡𝑡 𝑡𝑡 , and variable𝑚𝑚 � ��1�. In all cases, the �EC is veri�ed.

since this coupling constant has the dimensions of action.
Inserting this value for 𝛼𝛼𝑔𝑔 in (16), we obtain the energy
estimate as

𝐸𝐸 𝐸 𝐸𝐸𝐸𝐸 𝐸 𝐸𝐸92 erg = 6.81 × 1071 𝑔𝑔

= 3.42×  1038𝑀𝑀⊙,
(18)

where we also converted this energy into equivalentmass and
compared our result with the solar mass𝑀𝑀⊙ = 1.99 × 10

33 g.
e estimate in (18) would imply that an enormous

amount of (standard) mass or energy is needed to establish
our warp drive at a velocity equal to the speed of light, with
a reasonable size for the warp bubble. However, the CG
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shows a violation for the central portion of the warp bubble.
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F 6: Energy density 𝑇𝑇00 computed with conformal gravity and
the Hartle shaping function, plotted for 𝜌𝜌 𝜌 𝜌. Parameters used are
𝑣𝑣𝑠𝑠 =1 , 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅, 𝑚𝑚 𝑚 𝑚, 𝛼𝛼𝑔𝑔 =1 , and 𝑡𝑡 𝑡𝑡 . Integrating this
local energy density over all space, we obtain an estimate for the total
energy 𝐸𝐸 required to establish the warp drive.

value of 𝛼𝛼𝑔𝑔 is not well established, since the number in
(17) represents only an estimate of the macroscopic value of
this coupling constant. is does not need to be the same
as the microscopic value associated with the fundamental
theory, which could be reduced by a factor of 𝑁𝑁, where 𝑁𝑁
could be the number of occupied baryonic states in a galaxy

(𝑁𝑁 𝑁 𝑁𝑁68), or possibly the number of baryons in the universe
(𝑁𝑁 𝑁 𝑁𝑁80) [41].

erefore, our estimate could be reduced by many orders
ofmagnitude.Moreover, the energy necessary to establish the
warp drive might also be decreased by using a more efficient
shaping function, an analysiswhichwe leave for a future study
on the subject.

5. Conclusions

In this paper, we have analyzed in detail the Alcubierre
warp drive mechanism within the framework of conformal
gravity. We have seen that a particular choice of the shaping
function (Hartle shaping function, instead of the original
Alcubierre one) can overcome the main limitation of the
AWD in standard general relativity, namely, the violation of
the weak energy condition.

In fact, we have shown that for a wide range of spaceship
velocities, the CG solutions do not violate the WEC, and,
therefore, the AWDmechanism might be viable, if CG is the
correct extension of the current gravitational theories. All the
components of the stress-energy tensor can be analytically
calculated, using aMathematica programbased on conformal
gravity. us, a warp drive can, at least in principle, be fully
established following our computations.

We have also checked two other main energy conditions:
the SEC is always veri�ed, while the DEC is violated, at least
in the case we considered. Finally, we estimated the energy
needed to establish a reasonable warp drive at the speed of
light. is energy depends critically on the value of 𝛼𝛼𝑔𝑔, the
CG coupling constant, which is not well known. erefore,
this estimate will need to be re�ned in future studies.

Appendix

Energy Density Expression in
Conformal Gravity

We present here the expression for the energy density 𝑇𝑇00
in conformal gravity, computed using our Mathematica
program. is is the general form of 𝑇𝑇00 for any shaping
function 𝑓𝑓𝑓𝑓𝑓𝑠𝑠] and its derivatives, up to the fourth order. e
energy density is a function of coordinates 𝑡𝑡, 𝑥𝑥, 𝜌𝜌 𝜌 󵀆󵀆𝑦𝑦2 + 𝑧𝑧2,
and, therefore, it has a cylindrical symmetry around the 𝑥𝑥-
axis. e distance 𝑟𝑟𝑠𝑠 is de�ned in (11), 𝑣𝑣𝑠𝑠 is the spaceship
velocity, and 𝛼𝛼𝑔𝑔 is the conformal gravity coupling constant:

𝑇𝑇00 = 𝛼𝛼𝑔𝑔
𝑣𝑣𝑠𝑠
2

3𝑟𝑟𝑠𝑠6
󶀢󶀢−4𝑟𝑟𝑠𝑠𝑣𝑣𝑠𝑠

2𝜌𝜌2 󶀢󶀢6󶀡󶀡𝑥𝑥 𝑥𝑥𝑥 𝑠𝑠𝑡𝑡󶀱󶀱
2 + 5𝜌𝜌2󶀲󶀲 󶀲󶀲−1 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶁱󶁱

× 𝑓𝑓′󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱
3 + 4𝑟𝑟4𝑠𝑠 𝑣𝑣𝑠𝑠

2 󶀢󶀢󶀢󶀢𝑥𝑥 𝑥𝑥𝑥 𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

× 𝑓𝑓′󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱
4 + 𝑓𝑓′󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

2

× 󶀢󶀢−24󶀡󶀡𝑥𝑥 𝑥𝑥𝑥 𝑠𝑠𝑡𝑡󶀱󶀱
4 + 3 󶀢󶀢1 + 5𝑣𝑣𝑠𝑠

2󶀲󶀲

× 󶀡󶀡𝑥𝑥 𝑥𝑥𝑥 𝑠𝑠𝑡𝑡󶀱󶀱
2𝜌𝜌2 + 󶀢󶀢27 + 10𝑣𝑣𝑠𝑠

2󶀲󶀲 𝜌𝜌4
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+ 𝑣𝑣𝑠𝑠
2 󶀢󶀢5𝜌𝜌2 󶀢󶀢3󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2 + 2𝜌𝜌2󶀲󶀲

× 󶀡󶀡−2 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶀱󶀱

× 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 − 4𝑟𝑟𝑠𝑠
2󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2

× 󶀢󶀢4󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

× 󶀡󶀡−1 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶀱󶀱 𝑓𝑓
′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 󶀳󶀳󶀳󶀳

− 2𝑟𝑟𝑠𝑠𝑓𝑓
′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 󶀢󶀢16󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2 − 8𝜌𝜌2

+ 󶀢󶀢−60󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
4

+ 󶀢󶀢−97 + 5𝑣𝑣𝑠𝑠
2󶀲󶀲 󶀲󶀲𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2𝜌𝜌2

+ 󶀢󶀢−37 + 3𝑣𝑣𝑠𝑠
2󶀲󶀲 𝜌𝜌4󶀲󶀲 𝑓𝑓′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

+ 𝑟𝑟𝑠𝑠 󶀢󶀢4 󶀢󶀢−4 + 𝑣𝑣𝑠𝑠
2󶀲󶀲

× 󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
4 + 3 󶀢󶀢−9 + 𝑣𝑣𝑠𝑠

2󶀲󶀲

×󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2𝜌𝜌2 − 11𝜌𝜌4󶀲󶀲

× 𝑓𝑓(3) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 + 𝑣𝑣𝑠𝑠
2𝑓𝑓󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

2

× 󶀢󶀢𝜌𝜌2 󶀢󶀢5󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

× 𝑓𝑓′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 + 𝑟𝑟𝑠𝑠󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2

× 󶀢󶀢4󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

×𝑓𝑓(3) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶀲󶀲 + 2𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

× 󶀢󶀢−8󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 4𝜌𝜌2 + 𝑣𝑣𝑠𝑠

2

× 󶀢󶀢−𝜌𝜌2 󶀢󶀢5󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

× 𝑓𝑓′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 − 𝑟𝑟𝑠𝑠󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2

× 󶀢󶀢4󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

×𝑓𝑓(3) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶁱󶁱󶁱󶁱󶁱󶁱

+ 𝑟𝑟𝑠𝑠
2 󶀢󶀢−16 󶀢󶀢2󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2 − 𝜌𝜌2󶀲󶀲

× 󶀡󶀡−1 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶀱󶀱 𝑓𝑓
′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

+ 󶀢󶀢4 󶀢󶀢6 + 𝑣𝑣𝑠𝑠
2󶀲󶀲 󶀲󶀲𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

4

+ 󶀢󶀢43 + 3𝑣𝑣𝑠𝑠
2󶀲󶀲 󶀲󶀲𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2𝜌𝜌2

+ 19𝜌𝜌4 + 𝑣𝑣𝑠𝑠
2󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱

2

× 󶀢󶀢4󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 3𝜌𝜌2󶀲󶀲

× 󶀡󶀡−2 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶁱󶁱 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 󶁱󶁱

× 𝑓𝑓′′󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱
2 + 8𝑟𝑟𝑠𝑠 󶀡󶀡−1 + 𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶁱󶁱

× 󶀢󶀢󶀢󶀢2󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2 + 𝜌𝜌2󶀲󶀲 𝑓𝑓(3) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱

+𝑟𝑟𝑠𝑠󶀡󶀡𝑥𝑥 𝑥 𝑥𝑥𝑠𝑠𝑡𝑡󶀱󶀱
2𝑓𝑓(4) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱󶁱󶁱󶁱󶁱󶁱󶁱 .

(A.1)

In the main part of our work, we used the Hartle shaping
function in (13), or more explicitly as

𝑓𝑓 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 = 󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴
+
≡
󶙢󶙢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱

𝑚𝑚󶙢󶙢 + 󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱
𝑚𝑚󶁲󶁲

2
,

(A.2)

where [⋯]+ indicates the positive part of the function. e
derivatives of the HSF, up to the fourth order, were computed
in terms of the Heaviside step function 𝐻𝐻𝐻𝐻𝐻𝐻 and the Dirac
delta function 𝛿𝛿𝛿𝛿𝛿𝛿, also using the relations for the derivatives
of these special functions 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    ;
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ; 𝑥𝑥𝑛𝑛𝑑𝑑𝑛𝑛𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑛𝑛 = (−1)𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 as follows:

𝑓𝑓′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 = −
𝑚𝑚
𝑅𝑅
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚𝑚𝑚

𝐻𝐻󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

𝑓𝑓′′ 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 = −
𝑚𝑚 (𝑚𝑚 𝑚𝑚 )

𝑅𝑅2
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚𝑚𝑚

𝐻𝐻󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

+
𝑚𝑚2

𝑅𝑅2
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
2𝑚𝑚𝑚𝑚

𝛿𝛿 󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

𝑓𝑓(3) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 = −
𝑚𝑚 (𝑚𝑚 𝑚𝑚 ) (𝑚𝑚 𝑚𝑚 )

𝑅𝑅3
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚𝑚𝑚

𝐻𝐻󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

+
3𝑚𝑚2 (𝑚𝑚 𝑚𝑚 )

𝑅𝑅3
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
2𝑚𝑚𝑚𝑚

𝛿𝛿 󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

+
𝑚𝑚3

𝑅𝑅3
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
3𝑚𝑚𝑚𝑚 𝛿𝛿 󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱

𝑚𝑚󶁲󶁲

󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱
𝑚𝑚󶁲󶁲

𝑓𝑓(4) 󶁡󶁡𝑟𝑟𝑠𝑠󶁱󶁱 = −
𝑚𝑚 (𝑚𝑚 𝑚𝑚 ) (𝑚𝑚 𝑚𝑚 ) (𝑚𝑚 𝑚𝑚 )

𝑅𝑅4
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚𝑚𝑚

× 𝐻𝐻󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

+
𝑚𝑚2 (𝑚𝑚 𝑚𝑚 ) (7𝑚𝑚 𝑚𝑚𝑚 )

𝑅𝑅4
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
2𝑚𝑚𝑚𝑚

× 𝛿𝛿 󶁤󶁤1 − 󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
𝑚𝑚
󶁴󶁴

+
6𝑚𝑚3 (𝑚𝑚 𝑚𝑚 )

𝑅𝑅4
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
3𝑚𝑚𝑚𝑚 𝛿𝛿 󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱

𝑚𝑚󶁲󶁲

󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱
𝑚𝑚󶁲󶁲

+
2𝑚𝑚4

𝑅𝑅4
󶀤󶀤
𝑟𝑟𝑠𝑠
𝑅𝑅
󶀴󶀴
4𝑚𝑚𝑚𝑚 𝛿𝛿 󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱

𝑚𝑚󶁲󶁲

󶁢󶁢1 − 󶀡󶀡𝑟𝑟𝑠𝑠/𝑅𝑅󶀱󶀱
𝑚𝑚󶁲󶁲

2 .

(A.3)



12 ISRN Astronomy and Astrophysics

By inserting these derivatives into (A.1), we obtained the
expression used to compute 𝑇𝑇00 in Figure 1 (bottom right
panel) and Figures 2, 4, and 6.

Acknowledgment

is work was supported by a grant from the Frank R. Seaver
College of Science and Engineering, LoyolaMarymount Uni-
versity. e authors would like to acknowledge suggestions
and clari�cations by Dr. P. Mannheim and also thank the
anonymous reviewers for the useful comments received.

References

[1] M. Alcubierre, “ewarp drive: hyper-fast travel within general
relativity,” Classical and Quantum Gravity, vol. 11, p. L73, 1994.

[2] S. Hawking andG. Ellis,eLarge Scale Structure of Space-Time,
Cambridge University Press, New York, NY, USA, 1973.

[3] S. M. Carroll, Spacetime and Geometry: An Introduction to
General Relativity, Addison-Wesley, San Francisco, Calif, USA,
2004.

[4] R.M.Wald,General Relativity,eUniversity of Chicago Press,
Chicago, Ill, USA, 1984.

[5] S. Krasnikov, “Hyperfast travel in general relativity,” Physical
Review D, vol. 57, pp. 4760–4766, 1998.

[6] J. Natario, “Warp drive with zero expansion,” Classical and
Quantum Gravity, vol. 19, no. 6, p. 1157, 2002.

[7] K. D. Olum, “Superluminal travel requires negative energies,”
Physical Review Letters, vol. 81, pp. 3567–3570, 1998.

[8] C. van den Broeck, “A “warp drive” with more reasonable total
energy requirements,” Classical and Quantum Gravity, vol. 16,
no. 12, p. 3973, 1999.

[9] C. Clark, W. A. Hiscock, and S. L. Larson, “Null geodesics in
the Alcubierre warp-drive spacetime: the view from the bridge,”
Classical and Quantum Gravity, vol. 16, no. 12, p. 3965, 1999.

[10] P. F. Gonzalez-Diaz, “ On the warp drive space-time,” Physical
Review D, vol. 62, Article ID 044005, 7 pages, 2000.

[11] M. J. Pfenning and L. Ford, “e unphysical nature of ‘warp
drive’,” Classical and Quantum Gravity, vol. 14, no. 17, p. 1743,
1997.

[12] H. G. White, “A discussion of space-time metric engineering,”
General Relativity and Gravitation, vol. 35, no. 11, pp.
2025–2033, 2003.

[13] F. S. Lobo and M. Visser, “Fundamental limitations on “warp
drive” spacetimes,” Classical and Quantum Gravity, vol. 21, p.
5871, 2004.

[14] P. F. Gonzalez-Diaz, “Superluminal warp drive,” Physics Letters
B, vol. 653, pp. 129–133, 2007.

[15] P. F.Gonzalez-Diaz, “Superluminalwarp drive anddark energy,”
Physics Letters B, vol. 657, pp. 15–19, 2007.

[16] S. Finazzi, S. Liberati, and C. Barcelo, “Semiclassical instability
of dynamical warp drives,” Physical ReviewD, vol. 79, Article ID
124017, 2009.

[17] C. Barcelo, S. Finazzi, and S. Liberati, “On the impossi-
bility of superluminal travel: the warp drive lesson,” http://arxiv
.org/abs/1001.4960. In press.

[18] T.Muller andD.Weiskopf, “Detailed study of null and time-like
geodesics in the AlcubierreWarp spacetime,”General Relativity
and Gravitation, vol. 44, p. 509, 2012.

[19] B.McMonigal, G. F. Lewis, andP.O’Byrne, “e alcubierrewarp
drive: on the matter of matter,” Physical Review D, vol. 85, p.
064024, 2012.

[20] J. B. Hartle, Gravity: An Introduction to Einstein General Rela-
tivity, Addison-Wesley, San Francisco, Calif, USA, 2003.

[21] P. D. Mannheim, “Alternatives to dark matter and dark energy,”
Progress in Particle and Nuclear Physics, vol. 56, pp. 340–445,
2006.

[22] G. U. Varieschi, “A kinematical approach to conformal cosmol-
ogy,” General Relativity and Gravitation, vol. 42, pp. 929–974,
2010.

[23] H. Weyl, “Reine in�nitesimalgeometrie,” Mathematische
Zeitschri, vol. 2, no. 3-4, pp. 384–411, 1918.

[24] H. Weyl, “Gravitation und elektrizität,” Sitzungsberichte der
Preussischen Akademie der Wissenschaen, Physikalisch-Mathe-
matische, vol. 1918, p. 465, 1918.

[25] H. Weyl, “Eine neue Erweiterung der Relativit tstheorie,”
Annalen der Physik, vol. 59, pp. 101–133, 1919.

[26] P. D. Mannheim, “Making the case for conformal gravity,”
Foundations of Physics, vol. 42, p. 388, 2012.

[27] P. D.Mannheim and J. G. O’Brien, “Impact of a global quadratic
potential on galactic rotation curves,” Physical Review Letters,
vol. 106, no. 12, Article ID 121101, 2011.

[28] P. D. Mannheim and J. G. O’Brien, “Fitting galactic rotation
curves with conformal gravity and a global quadratic potential,”
Physical Review D, vol. 85, no. 12, Article ID 124020, 26 pages,
2012.

[29] J. G. O’Brien and P. D. Mannheim, “Fitting dwarf galaxy
rotation curves with conformal gravity,” Monthly Notices of the
Royal Astronomical Society, vol. 421, no. 2, pp. 1273–1282, 2011.

[30] P. D. Mannheim, “Schwarzschild limit of conformal gravity in
the presence of macroscopic scalar �elds,” Physical Review D,
vol. 75, Article ID 124006, 2007.

[31] G. U. Varieschi, “Kinematical conformal cosmology: funda-
mental parameters from astrophysical observations,” ISRN
Astronomy and Astrophysic, vol. 2011, Article ID 806549, 24
pages, 2011.

[32] A. Diaferio, L. Ostorero, and V. F. Cardone, “Gamma-ray bursts
as cosmological probes: lambdaCDMversus conformal gravity,”
Journal of Cosmology andAstroparticle Physics, vol. 2011,Article
ID 008, 2011.

[33] S. Weinberg, Gravitation and Cosmology: Principles and Appli-
cations of the General eoryof Relativity, John Wiley & Sons,
New York, NY, USA, 1972.

[34] R. Bach, “Zur Weylschen Relativittstheorie und der Weylschen
Erweiterung des Krummungstensorbegriffs,” Mathematische
Zeitschri, vol. 9, pp. 110–135, 1921.

[35] C. Lanczos, “A remarkable property of the riemann-christoffel
tensor in four dimensions,” Annals of Mathematics, vol. 39, pp.
842–850, 1938.

[36] R. Schimming and H. J. Schmidt, “On the history of fourth
order metric theories of gravitation,” NTM Schrienreihe für
Geschichte der Naturwissenschaen, Technik und Medizin, vol.
27, p. 41, 1990.

[37] P. D. Mannheim and D. Kazanas, “Exact vacuum solution
to conformal Weyl gravity and galactic rotation curves,” e
Astrophysical Journal, vol. 342, pp. 635–638, 1989.

[38] D. Kazanas and P. D. Mannheim, “General structure of the
gravitational equations of motion in conformal Weyl gravity,”
e Astrophysical Journal, vol. 76, p. 431, 1991.



ISRN Astronomy and Astrophysics 13

[39] H. J. Schmidt, “Non-trivial solutions of the bach equation exist,”
Annalen der Physik, vol. 496, no. 6, pp. 435–436, 1984.

[40] J. Wood and W. Moreau, “Solutions of conformal gravity with
dynamicalmass generation in the solar system,” http://arxiv.org/
abs/gr-qc/0102056. In press.

[41] P. Mannheim, private communication,2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


	Conformal Gravity and the Alcubierre Warp Drive Metric
	Digital Commons @ LMU & LLS Citation

	Untitled-13

