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H ave you ever observed a child playing with 
toy blocks? A favorite game is to build tow-
ers and then make them topple like falling 

trees. To the eye of a trained physicist this should im-
mediately look like an example of the physics of “fall-
ing chimneys,” when tall structures bend and break in 
mid-air while falling to the ground. The game played 
with toy blocks can actually reproduce well what is 
usually seen in photographs of falling towers, such as 
the one that appeared on the cover of the September 
1976 issue of The Physics Teacher.1 In this paper we 
describe how we performed and analyzed these simple 
but interesting experiments with toy blocks.

One of us recently published a detailed paper2 

summarizing the physics of the rotational motion of 
tall structures falling under gravity. In this analysis it 
is assumed that the structure falls while maintaining 
a point of contact at the bottom so that its motion 
is essentially a rotation around this pivot point, and 
the only external forces are the weight W of the body 
and a constraint force F at the base (see Fig. 1). We 
performed experiments using models made with toy 
blocks and filmed the falling motion with a digital 
video camera. These video clips and still pictures of the 
models can be viewed on a related web page.3

A classical physics demonstration, usually called 
the “falling stick” or “hinged stick,” works on the 
same principle, showing that the acceleration of 
gravity can be exceeded during the fall by some 
points of the body (see again the review paper2 and 
references therein). The difference between a falling 
stick and a real falling tower (or the toy models we 

used) is that the latter is not rigid and will usually bend 
and break during the fall. This can be seen in Fig. 2, 
and it is well documented by all the photos and videos 
on our website. 3

The Causes of the Breaking
The internal forces causing the tower to bend and 

break are also shown in Fig. 1. We use polar coordi-
nates r and θ to describe the rotational motion of the 
body around the point of contact with the ground 
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Fig. 1. The falling tower or chimney described as a rotat-
ing uniform stick. The external forces, the weight W and 
the constraint force F at the base, are shown in blue. The 
internal forces (P, S) and the bending moment Nb, at an 
arbitrary cross section, are shown in red.
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at the origin for a structure of total height H. For 
an arbitrary cross section of the tower at a distance r 
from the origin, the internal forces can be modeled 
as a longitudinal stress force P (either a tension or 
a compression), a transverse shearing force S, and a 
“bending moment” Nb, represented by the curved ar-
row in Fig. 1. This bending moment is the main cause 
of the bending and breaking of the structure and can 
be thought of as originating from a “pair” of forces ap-
plied at the leading and trailing edges of the tower.

Complete details about the calculation of these 
forces are given in Ref. 2. Summarizing these results, 
we observe that the tower can break in two possible 
ways. In the first case, a particularly strong transverse 
shear force S can “cut” the tower. This is more likely 
to happen for real structures (such as falling chimneys, 
towers, etc.), and the breaking typically occurs near 
the bottom, where S is larger. In the second case, by 
far the most common with small-scale models, the 
structure progressively bends and breaks, due to a 
combined effect of the bending moment Nb and the 
longitudinal force P.

This combined effect is usually better described by 
the longitudinal stress at the leading edge L, which 
can be computed from the previous quantities and de-
pends on the tilt angle θ, the height fraction r /H, and 
the side a of the square cross section of the tower:4
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In this equation the leading edge stress L is nor-
malized by dividing by the factor W/a2 in order to 
obtain a dimensionless quantity. For a given value of 
the ratio H/a (total height H divided by the side a of 
the tower), Eq. (1) relates L directly to the variables  
θ and r /H. By plotting this function of two vari-
ables, it is easy to see which values of θ and r /H will 
maximize L, determining the angle and height frac-
tion at which the structure is more likely to break.

Toy Block Models
To check the theory outlined above, we set up 

models built with different types of toy blocks. We in-
duced their fall, making sure they would start rotating 
around an appropriate support at the bottom. Details 
of the blocks we used and the dimensions of the mod-
els can be found in Refs. 2 and 3. These experiments 
are very simple and inexpensive and can be made part 
of a laboratory class devoted to rotational mechanics 
or used as physics demonstrations.

Fig. 2. A toy model made with wooden blocks. The struc-
ture appears to bend and break at r /H ≅ 0.354 and at an 
angle θ = 20o–25o. VideoPoint software is used to show 
the progressive bending of the tower. Fig. 3. The normalized longitudinal stress at the leading edge 

is shown as a function of the height fraction and for several 
angles. The maxima of the stress curves are marked by solid 
points. Curves in red are related to the breaking pattern of 
the structure shown in the previous figure.
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In order to improve on our previous work, we used 
video capture software (VideoPoint 2.5), together with 
a digital video camera, to record and analyze the mo-
tion. An example of a picture frame taken from one 
of these video recordings is shown in Fig. 2, while the 
complete video clips can be viewed on our web page.3  

In Fig. 2 we observe the fall of a tower made of 24 
cubic wooden blocks (H/a = 24), which appears to 
bend around the ninth block from the bottom (for  
r /H ≅ 0.354). The use of the software allows for a 
better determination of the breaking angle θ, which is 
estimated to be around 20–25. As can be seen from 
the picture, the software can follow the different rota-
tions of the top and bottom portions of the structure, 
showing the point where the tower begins to bend.

In Fig. 3 we plot the quantities of Eq. (1) for the 
case of our toy model with H /a = 24. The normalized 
stress at the leading edge is shown as a function of the 
height ratio r /H for different tilt angles. For a given 
angle, the structure should break at the point where 
the stress is maximum (corresponding to the solid 
points in the figure).

We notice a good agreement with the behavior 
of our toy model from Fig. 2. For a breaking angle 
around 20–25, Fig. 3 predicts a breaking height ratio 
r /H  ≅ 0.35-0.37 (considering the maxima of the red 
curves and the related dashed green lines in Fig. 3). 
Our structure seems in fact to be bending and break-
ing at r /H ≅ 0.354, as mentioned above.

Similar experiments can be performed with differ-
ent types of blocks or varying dimensions of the tow-
ers and will typically show results consistent with the 
theory outlined here. 

Conclusion
Toy blocks can easily be used to illustrate some 

peculiar effects of rotational dynamics. These experi-
ments can be effectively integrated into classroom or 

lab activities at various levels. They can be shown as 
simple demonstrations of rotational physics in intro-
ductory classes, or become more challenging activities 
for advanced mechanics courses or laboratories.
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