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Estrogen and Hippocampal Plasticity in Rodent Models

Michael R. Foya, Michel Baudryb, Roberta Diaz Brintonb,c, and Richard F. Thompsonb
aDepartment of Psychology, Loyola Marymount University, Los Angeles, CA 90045
bNeuroscience Program, University of Southern California, Los Angeles, CA 90089
cDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los
Angeles, CA 90089

Abstract
Accumulating evidence indicates that ovarian hormones regulate a wide variety of non-reproductive
functions in the central nervous system by interacting with several molecular and cellular processes.
A growing animal literature using both adult and aged rodent models indicates that 17β-estradiol,
the most potent of the biologically relevant estrogens, facilitates some forms of learning and memory,
in particular those that involve hippocampal-dependent tasks. A recently developed triple-transgenic
mouse (3xTg-AD) has been widely used as an animal model of Alzheimer's disease, as this mouse
exhibits an age-related and progressive neuropathological phenotype that includes both plaque and
tangle pathology mainly restricted to hippocampus, amygdala and cerebral cortex. In this report, we
examine recent studies that compare the effects of ovarian hormones on synaptic transmission and
synaptic plasticity in adult and aged rodents. A better understanding of the non-reproductive functions
of ovarian hormones has far-reaching implications for hormone therapy to maintain health and
function within the nervous system throughout aging.
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Introduction
Within the past decade, there has been increasing interest among neuroscientists in studying
the effects of estrogen on neural function. This effort is driven, in part, by the results of clinical
studies suggesting that estrogen therapy administered after the menopause may delay or prevent
the onset of Alzheimer's disease (AD) in older women. Other, still controversial, research
indicates that estrogen may enhance certain forms of memory in postmenopausal women.
Much of the most current research related to estrogen and brain function is focused in two
primary directions. First, clinical studies have examined the potential effect estrogen might
offer in protecting against cognitive decline during normal aging and against AD
(neuroprotection). Second, laboratory studies have examined the mechanisms by which
estrogen can modify the structure of nerve cells and alter the way neurons communicate with
other cells in the brain (neuroplasticity). Rodent models have been used extensively to study
a variety of behavioral, cognitive and anatomical changes linked to important features of AD
found in humans. In this article, we examine recent evidence from experimental research using
rodent models on the effects of estrogen on neuroplasticity and neuroprotection in both adult
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and aged rats, as well as information regarding the recent triple transgenic mouse model of
AD.

AD is an age-related, irreversible and neurodegenerative disorder that causes a progressive
deterioration of cognitive function, including a profound loss of memory [50].
Neuropathologically, AD is characterized by an accumulation of amyloid-β (Aβ) deposits in
the brain, neurofibrillary tangles which consist of hyperphosphorylated tau aggregates [90],
and progressive neuron loss. Aβ has been found to be the primary component of amyloid
plaques and is generated from the amyloid-β protein precursor (AβPP) by sequential proteolytic
cleavage at the β and γ sites on the peptide [50]. Neurofibrillary tangles are composed of
hyperphosphorylated tau, a microtubule-associated protein found in the brain. Tau promotes
the assembly of microtubles; hyperphosphorylation of tau interferes with the normal biological
functions of tau by reducing its ability to bind to and stabilize microtubules [109]. The
occurrence of both amyloid deposits and neurofibrillary tangles are necessary to confirm a
diagnosis of AD. Epidemiological studies indicate that women develop a higher risk of AD
even after adjusting for age [23,56], suggesting a genetic or hormonal cause. However, the
exact cause of higher AD risk in women is unknown. The depletion of the sex steroid hormone
estrogen (and progesterone) at menopause appears to be a significant risk factor for the
development of AD in women [60,82,83,105,125]. Prospective and case-control studies have
demonstrated that hormone therapy (HT) can reduce the risk of AD in women [60,83,105].
However, the relationship between the therapeutic benefits of estrogen- and progesterone-
based HT, and both normal cognitive decline and development of AD have been the recent
topics of heated debate and controversy (see [29]). Furthermore, clinical findings from the
massive Women's Health Initiative Memory Study (WHIMS) demonstrating a higher incidence
of dementia in subjects receiving estrogen-based HT [87,93] was quite unexpected, given the
early background of estrogen and AD. The WHIMS findings raised many important points,
perhaps the most important being the need to better understand the role of estrogen (and
progesterone) in AD pathogenesis, and to optimize HT.

Estrogen and Cognition
In humans, the issue of hormone therapy has yielded much debate with many clinical studies
supporting a protective role of estrogen, along with those including the use of progesterone to
counteract estrogen-induced proliferation of the endometrium [57,91]. The depletion of
estrogen that occurs after the menopause increases the susceptibility of women to AD [53,
83], whereas estrogen replacement in postmenopausal women improves verbal memory [2,
88]. Healthy postmenopausal women with estrogen replacement scored significantly higher
on tests of immediate and delayed paragraph recall compared with healthy postmenopausal
women not taking estrogen replacement [59]. Other evaluations of estrogen-replacement
therapy in AD patients indicate that estrogen does not alleviate cognitive impairment associated
with the disease [73], but it does seem to have a beneficial effect as a preventive treatment
[105], which is most apparent in younger, postmenopausal women [54]. The WHIMS study
[93] was designed to address this seemingly contradictory literature. A possible confound in
many of the earlier estrogen studies of cognition was the use of combinations of estrogens and
progestins. The WHIMS reported a non-significant increase in the number of women with mild
cognitive impairment who were using estrogen (conjugated equine estrogens), but a highly
significant increase in the number of women with mild cognitive impairment who were using
combined estrogens and progestins.

In animal models, ovarian hormones have been shown to influence memory via actions on
neurons, particularly in the hippocampus [71,74,104,115]. A neuroprotective role of estrogen
has been established in both in vivo and in vitro animal models of neurodegeneration [39,40,
99,101]. Additionally, 17β-estradiol has been found to facilitate some forms of learning and
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memory function in rodents, particularly for hippocampal-dependent tasks [7,8]. Post-training
injection of 17β-estradiol facilitates retention in the Morris water maze [97], and a cholinergic
agonist enhance this effect [81]. In other studies, the effects of 17β-estradiol and raloxifene, a
selective estrogen-receptor modulator, have been evaluated on the acquisition of a delayed
matching to position in a T-maze task and on hippocampal acetylcholine release in
ovariectomized rats. 17β-estradiol, but not raloxifene, enhanced the T-maze task performance,
and 17β-estradiol and a high dose of raloxifene increased potassium-stimulated acetylcholine
release in hippocampus [47]. By contrast, some studies found little or no effect of the estrous
cycle, and thereby of endogenous levels of 17β-estradiol, on tasks involving spatial memory
[11,43,114,122].

A recent review of sex differences in rodent models of learning and memory function suggests
that male rats have advantages in some forms of memory, but this finding was found not to be
as strong in mouse models of memory [58]. Most research suggests that 17β-estradiol, and
perhaps progesterone, influence learning and memory, but do so in a task-dependent manner
[32]. In a series of rat studies, progesterone was found to impair cognitive function [16,17].
Gonadally-intact aged female rats performed much more poorly on a reference memory task
(radial arm maze) than gonadally-intact young adult female rats. Interestingly, if the aged
animals were ovariectomized, they performed as well as the young animals. It appears that in
the gonadally-intact aged animals, 17β-estradiol levels are virtually the same as in young
animals, but progesterone levels are much higher in the aged animals. Indeed, if aged
ovariectomized animals were chronically implanted with progesterone pellets, they performed
the radial arm maze task as poorly as gonadally-intact aged female rats. In this cognitive task,
progesterone supplementation appears to reverse the somewhat cognitive enhancing effects of
ovariectomy. Despite a vast literature on ovarian hormones and cognition, the effects of ovarian
hormones on learning and memory functions still remain unclear. What emerges from many
of these reports is that 17β-estradiol and progesterone enhance learning and memory in some
instances, but impair, or have no effect on learning in others.

Estrogen and Hippocampus
For more than 30 years, electrophysiological investigations have found estrogen to promote
changes in synaptic plasticity within the nervous system. In a pioneering study, decreased
hippocampal seizure thresholds were found in animals primed with estrogen and also during
proestrus, the time of the estrous cycle when estrogen levels are at their highest levels [106].
In humans, changes in electrical activity of nervous system tissue correlate with hormonal
factors that appear to play a role in catamenial epilepsy, a form of epilepsy in which the
likelihood of seizures varies during the menstrual cycle. Many women with catamenial epilepsy
experience a sharp increase in seizure frequency immediately before menstruation, when
estrogen concentrations relative to those of progesterone are also at their highest levels [3].
Changes in hippocampal responsiveness correlate with estrogen activity, as induction of long-
term potentiation (LTP), an induced form of synaptic plasticity (see below), is maximal in
female rats during the afternoon of proestrus, when endogenous estrogen concentrations are
highest [113]. Furthermore, induction of hippocampal LTP is facilitated in ovariectomized rats
treated with estrogen as compared to untreated ovariectomized rats [28].

The development of in vitro models to study the mechanisms of neuronal plasticity have
provided researchers better tools to investigate how estrogen regulates synaptic excitability in
the nervous system, and, in particular, in hippocampus. It should be stressed, however, that the
binding of 3H-estradiol in hippocampus does not approach that seen in hypothalamus and
related diencephalic structures [69,70]. Nonetheless, studies by Teyler and colleagues using
in vitro hippocampal slice preparations have shown that gonadal steroids dramatically affect
neuronal excitability in specific pathways of the rodent hippocampus [107,110]. In the initial
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series of experiments, extracellular monosynaptic population field responses recorded from
area CA1 of hippocampal slices from male and female rats were monitored before and after
the addition of 17β-estradiol (100 pM) to the slice incubation medium (artificial cerebrospinal
fluid; aCSF). In male rats, 17β-estradiol produced a rapid (< 10 min) enhancement of
population field responses evoked by stimulation of the afferents to CA1 pyramidal cells (Fig.
1). This was the first published report demonstrating that picomolar concentrations of the
gonadal steroid 17β-estradiol directly enhanced glutamatergic synaptic transmission in
hippocampus [107].

Although the mechanism of action of gonadal steroids in hippocampus is not entirely
understood, it is likely to be receptor-mediated. There was no facilitation of field responses
when the inactive estrogen, 17α-estradiol, was added to hippocampal slice medium [38], and
the further addition of 17β-estradiol no longer resulted in an increased response, as observed
in the presence of 17β-estradiol alone [38,116,117]. Similar results were found when the
estrogen receptor antagonist tamoxifen was applied to hippocampal slices before addition of
17β-estradiol [37]. The ability of 17α-estradiol and tamoxifen to block the effects of 17β-
estradiol on hippocampal excitability provides strong evidence that the rapid physiological
modulation of gonadal hormones is most likely due to the activation of a plasma membrane
receptor.

Synaptic Plasticity and Long-Term Potentiation
Long-term potentiation of synaptic transmission in hippocampus and neocortex is considered
to be a cellular model of memory trace formation in the brain, at least for certain forms of
memory [8,18,64]. Although there is a large body of work regarding the molecular and synaptic
mechanisms underlying LTP [9,46], there is a relative paucity of studies demonstrating the
critical role of LTP in behavioral learning and memory [92]. Nonetheless, whether LTP is or
not the substrate of the synaptic modifications which occur during learning in forebrain
structures of vertebrates, studies of its mechanisms have revealed the existence of a number of
processes that undoubtedly play critical roles in memory formation [12]. In area CA1 of
hippocampus, the most widely studied form of LTP requires NMDA receptor activation for its
induction, and an increase in α-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate (AMPA)
receptor function for its expression and maintenance. In addition, Teyler and associates have
demonstrated a second form of tetanus-induced LTP in CA1 that is independent of NMDA
receptors, and involves voltage-dependent calcium channels [48].

Estrogen and Non-Genomic Mechanism of Action
The genomic mechanism of action of estrogen has been the traditional framework for
interpreting the effect of estrogen on cell function, but an increasing number of reports
document the effects of acute applications of estrogenic steroids that are too rapid (occurring
≤ 10 min) to be accounted for exclusively by a genomic pathway. In particular, the existence
of rapid estrogenic steroid-induced changes in neuronal excitability suggests other, non-
genomic mechanisms involving direct interactions with sites on the plasma membrane that
alter or regulate a variety of ion channels and neurotransmitter transporters [84,119].

In vitro intracellular recordings of CA1 neurons from adult ovariectomized female rats have
shown that the addition of 17β-estradiol increases synaptic excitability in part by enhancing
the magnitude of AMPA receptor-mediated responses [117]. The rapid onset of the increased
excitability, and its blockade by 6-cyano-7-nitroquinaxaline (CNQX, an AMPA receptor
antagonist) but not by D-2-amino-5-phosphonovalerate (D-APV a competitive NMDA
receptor antagonist), supported a postsynaptic membrane site of action resulting in enhanced
non-NMDA glutamate receptor function. Later studies using whole cell recordings found that
acute 17β-estradiol application potentiated kainate-induced currents in a subpopulation of CA1
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cells [49], although a direct interaction between 17β-estradiol and the receptor channel was
not indicated [118].

Estrogen and Nmda Receptor Regulation
A large body of evidence demonstrates that 17β-estradiol-mediated regulation of synapse
formation is dependent on NMDA receptor activation. Morphological studies during the course
of neuronal development conducted in cultured neurons prepared from embryonic day 18 rat
fetuses have shown that estrogenic steroids exert a growth-promoting, neurotrophic effect on
hippocampal and cortical neurons via a mechanism that requires NMDA receptor activation
[21,22]. In vivo studies using adult ovariectomized female rats have also revealed a
proliferation of dendritic spines in hippocampal CA1 pyramidal cells after 17β-estradiol
treatment that could be prevented by blockade of NMDA receptors, but not by AMPA or
muscarinic receptor antagonists [120]. Other reports using adult ovariectomized female rats
provided evidence that chronic 17β-estradiol treatment increased the number of NMDA
receptor binding sites and NMDA receptor-mediated responses [44,121]. These studies
indicate that estrogen and NMDA receptors are heavily involved in synapse formation.

The possibility of a direct regulation of NMDA receptor-mediated synaptic transmission by
17β-estradiol may not have been detected previously (e.g., [117]) because tests of this
hypothesis had not been conducted under optimal conditions. Because of the voltage-dependent
blockade of the NMDA receptor channel by Mg2+ and the slow kinetics of the channel opening
relative to that of the AMPA receptor, there is only a minor NMDA receptor-mediated
component of the excitatory postsynaptic potential (EPSP) evoked by low-frequency
stimulation of glutamatergic afferents. This NMDA receptor component can be enhanced with
low Mg2+ concentrations or high-frequency stimulation patterns used to induce the
depolarization accompanying the summation of overlapping EPSPs [124]. In experiments
using low Mg2+ concentrations and in the presence of the AMPA receptor antagonist 6,7-
dinitroquinoxaline-2,3-dione (DNQX), an acute application of 17β-estradiol in adult male rat
hippocampal slices resulted in a rapid increase in the amplitude of NMDA receptor-mediated
EPSPs evoked by stimulation of the Schaffer collaterals [39]. The effect of 17β-estradiol on
pharmacologically isolated NMDA receptor-mediated synaptic responses was such that
concentrations of 17β-estradiol greater than 10 nM induced seizure activity in hippocampal
neurons, and lower concentrations (1 nM) markedly increased the amplitude of NMDA
receptor-mediated EPSPs.

Estrogen and Hippocampal LTP in Male Rats
To investigate the effect of estrogen on synaptic plasticity associated with learning and memory
function, estrogen was applied to hippocampal slices from adult male rats before the slices
were exposed to high-frequency stimulation designed to induce LTP. When LTP was assessed
after high-frequency stimulation, fEPSP values were increased significantly for 17β-estradiol-
treated slices compared to control-aCSF slices (Fig. 2). fEPSP mean increases in slope was
192% (experimental) vs. 154% (control). Thus, hippocampal slices from adult male rats treated
with 17β-estradiol exhibited a pronounced, persisting and significant increase in LTP as
measured by both population fEPSP slope and fEPSP amplitude recordings [39,42].

To further evaluate the effects of 17β-estradiol on the magnitude of hippocampal LTP, the
intensity of afferent stimulation to Schaffer collaterals in slices perfused with 17β-estradiol
was decreased in order to produce baseline values to pre-17β-estradiol levels immediately
before the delivery of the high-frequency stimulation train used to elicit LTP [13]. Under these
conditions, 17β-estradiol still produced an increase in the amplitude of LTP from adult male
rat hippocampal slices compared to that obtained in control (aCSF) slices (Fig. 3). These
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findings indicate that 17β-estradiol-induced enhancement of hippocampal LTP is not due to
simply a change in basal EPSP level, but is more likely due to biochemical activation of an
intracellular cascade, presumably mediated by activation of a src tyrosine pathway that
enhances NMDA receptor function.

Estrogen and Hippocampal LTP in Female Rats
In another series of animal studies, estrous cycle changes in rats were correlated with changes
in synaptic plasticity. Hippocampal slices from cycling female rats in diestrus (low estrogen
concentration) and proestrus (high estrogen concentration) were prepared in aCSF, and LTP
was elicited by high-frequency stimulation. The difference in LTP magnitude between these
groups following high-frequency stimulation was dramatic: slices from rats in proestrus
exhibited LTP representing about a 50% increase over baseline, whereas slices from rats in
diestrus had LTP values representing about a 25% increase over baseline [14] (Fig. 4). These
findings support the original interpretation of Teyler et al (1980) who identified changes in
baseline synaptic transmission that were correlated with the phase of the estrus cycle in female
rats at the time of hippocampal slice preparation.

Since the electrophysiological study above has shown that female rats in proestrus exhibited
an increased magnitude of hippocampal LTP as compared to female in diestrus, results of a
current study examining the effect of 17β-estradiol on hippocampal LTP during the two critical
time periods in the rat estrous cycle, proestrus and diestrus, are reported here. Estrous cycles
of adult (3-5 mo) Sprague-Dawley rats were monitored for 10 days prior to any physiological
experiments, and hippocampal slices were prepared from rats that were either in proestrus or
diestrus. Recording and stimulating electrodes were positioned in the dendrites of area CA1
and Schaffer collaterals, respectively. Baseline stimulation (0.05 Hz, 100 μsec) was adjusted
to elicit 50% of the maximum fEPSP amplitude. After 10 min of stable baseline stimulation,
aCSF or 17β-estradiol at a concentration of 100 pM (experimental group) was perfused to the
slices for 30 min, and LTP was induced by a brief period of high-frequency stimulation (5
trains of 20 pulses at 100 Hz). Subsequent synaptic responses were monitored for 30 min post-
LTP induction. The magnitude of LTP induced in area CA1 was larger in slices from proestrus
rats, compared to slices from diestrus rats, as previously reported [14]. However, addition of
17β-estradiol increased LTP in slices from diestrus rats, while it decreased LTP in slices from
proestrus rats (Fig. 5). These observations suggest that 17β-estradiol alters hippocampal LTP
in female rats, depending on the state of their estrous cycle (i.e., on the levels of circulating
17β-estradiol). In cycling female rats, when endogenous circulating levels of 17β-estradiol are
at their highest levels (i.e., proestrus), LTP magnitude is increased, and exogenously applied
17β-estradiol during proestrus decreases LTP magnitude, possibly through the activation of
inhibitory or ceiling effect. When endogenous circulating levels of 17β-estradiol are at their
lowest levels (i.e., diestrus), the situation is completely reversed from that observed in the
proestrus state. Here, LTP magnitude is decreased, and exogenously applied 17β-estradiol
increases LTP magnitude under this condition.

These results suggest that cyclic changes in estrogen levels occurring during the estrous cycle
in female rats are associated with changes in the magnitude of LTP recorded from hippocampal
CA1 cells. They also corroborate work mentioned earlier indicating the facilitation of LTP
induction by estrogen in ovariectomized female rats [28], increased LTP in the afternoon of
proestrus of female rats [113], and support a study showing improved memory performance
with high estrogen levels in female rats [66].

Estrogen, Synaptic Plasticity and Aging in Rats
It has been reported that during aging, when memory function declines, the processes of
synaptic plasticity in hippocampus are altered. Specifically, LTP is impaired and the opposite
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process of long-term depression (LTD) is enhanced [4-6,34,35,45,62,63,78,79]. We recently
replicated this effect of aging on LTD and discovered a profound action of estrogen on this
process in aged male rats [42,111]. LTD was induced in CA1 region of hippocampal slices
using standard conditions (stimulation of Schaffer collaterals at 1 Hz for 15 min) in adult (3-5
mo) and aged (18-24 mo) Sprague-Dawley rats. In agreement with earlier studies, the standard
protocol for inducing LTD resulted in little or no LTD in slices from adult animals, but in
marked LTD in slices from aged animals (Fig. 6A) [34,35]. Infusion of 17β-estradiol in slices
caused a slight increase in synaptic transmission (baseline), as in previous studies. It had little
effect on LTD in slices from adult animals, but markedly attenuated LTD in slices from aged
animals (Fig. 6B). Thus, the prevention by 17β-estradiol of age-related LTD enhancement may
account, in part, for the protective effects of estrogen on memory functions in aged organisms
reported in some studies (see below).

Estrogen and Two Forms of LTP
As we noted earlier, Teyler and associates discovered a form of LTP in CA1 pyramidal neurons
that is independent of NMDA receptors and involves voltage-dependent calcium channels
[48]. This form of LTP is optimally induced by very high frequency stimulation of Schaffer
collaterals (e.g., 200 Hz for 1 sec) and is blocked by nifedipine (L-type calcium channel
blocker), but not by the NMDA receptor antagonist D-APV. In contrast, the NMDA receptor-
dependent form of LTP in CA1 is best induced by lower frequencies of stimulation (e.g., 25
Hz) and is blocked by D-APV but not by nifedipine. The standard stimulation paradigm used
for LTP induction (i.e., 100 Hz for 1 sec) therefore induces both forms of LTP [26,72].

We evaluated the effects of acute application of 17β-estradiol (CA1 slice) on both forms of
LTP in hippocampal slices from male rats. Using 25 Hz tetanus of Schaffer collaterals, 17β-
estradiol and nifedipine were infused and extracellular field EPSPs recorded. 17β-estradiol
caused the expected increase in synaptic transmission and pronounced enhancement of LTP
whereas nifedipine had no effect on either process, implying that under this condition, 17β-
estradiol was acting only on NMDA receptor-dependent LTP [126].

We then used a 100 Hz tetanus of Schaffer collaterals (in the CA1 region of hippocampal slices
from adult male rats), and both extracellular field EPSPs and intracellular EPSPs were recorded
from pyramidal neurons and 17β-estradiol and nifedipine were infused. 17β-estradiol alone
caused the expected increase in synaptic transmission and pronounced enhancement of LTP,
but both effects of 17β-estradiol were reduced in magnitude by nifedipine. Therefore, under
this condition, it would seem that 17β-estradiol is acting by modulating both L-type voltage
gated calcium channels and NMDA receptors. Intracellularly recorded EPSPs in response to
paired subthreshold stimuli with a short interstimulus interval (50 ms) in the presence of 17β-
estradiol indicated an increase in EPSP amplitude to both stimuli without changes in the paired-
pulse ratio, strongly supporting a postsynaptic origin of the effects of 17β-estradiol [1]. The
possibility that 17β-estradiol may modulate calcium influx through L-type calcium channels
is consistent with the effects of aging on synaptic transmission and plasticity in hippocampus.
Thus, it has been reported that aging is associated with enhanced activity of voltage-gated
calcium channels in hippocampal CA1 neurons [24], and that blocking calcium influx through
L-type calcium channels inhibits LTD induction and enhances LTP in aged animals in the CA1
region of hippocampal slices [79]. Blocking L-type calcium channels in hippocampus has been
reported to enhance memory in several paradigms and particularly to enhance learning and
memory processes in aged animals [31,85,86].

Development of 3xTg-AD Mouse (Alzheimer's Disease)
A recently generated triple-transgenic mouse model of AD (called 3xTg-AD) was developed
in LaFerla's laboratory at the University of California, Irvine [80]. Mutations in three genes
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linked to AD and frontotemporal dementia were utilized. Human AβPPSWE and tauP301L
transgenes were co-microinjected into single-cell embryos harvested from homozygous mutant
PS1M146V knock in mice. There are several advantages in using this model. First, the reported
tight AβPP and tau linkage paired with the ‘knock in’ PS1 approach yielded homozygous mice
that breed readily, thus facilitating rapid, straightforward and cost-effective generation of a
study colony. Second, and more importantly, the 3xTg-AD mouse exhibits age-related
neuropathological phenotype that includes both Aβ and hyperphosphorylated tau pathologies
that develop with a regional pattern similar to AD. Specifically, intracellular Aβ accumulates
first in cortical regions (around 4 mo) and later in hippocampus, while tau
hyperphosphorylation develops after Aβ accumulation (between 12-15 mo), beginning in
limbic structures and progressing to cortical regions [15,80]. An in vitro study examining
synaptic dysfunction in 3xTg-AD mice at 6 months found lowered levels of hippocampal basal
synaptic transmission and reduced levels of LTP compared to non-transgenic mice [80]. In this
report, it was suggested that the synaptic dysfunction found in transgenic mice might represent
an early change preceding the accumulation of the hallmark pathological lesions that
accompany AD. Another study using 3xTg-AD mice found that in ovariectomized transgenic
mice, progesterone blocked the beneficial effect on Aβ peptide accumulation provided by
estrogen treatment alone, but did not affect spontaneous alternation behavior in a Y-maze, a
rodent model of working memory [25]. Significantly higher amounts of Aβ peptide pathology
was also found in female 3xTg-AD mice compared to male 3xTg-AD mice [55]. Research
utilizing the 3xTg-AD mouse model has indicated that this mouse also shows hypothalamic-
pituitary-adrenal (HPA) axis hyperactivity in both an age- and sex-dependent fashion [108].
3xTg-AD mice exhibit HPA hyperactivity in response to stress, which is more pronounced in
9 mo old female 3xTg-AD mice compared to age-matched non-transgenic female mice and
3xTg-AD male mice [27].

In an in vitro electrophysiological study, synaptic plasticity was examined comparing the
effects of 17β-estradiol in hippocampal slices prepared from both gonadally-intact and
gonadectomized 6 month-old male 3xTg-AD and wild-type (wt: 129/C57BL/6 F1 hybrid) mice
[41]. 17β-estradiol induced an increase in LTP in both 3xTg-AD groups (intact and
gonadectomized) compared to their respective vehicle controls [41]. However, in the wild-type
groups, 17β-estradiol produced a smaller enhancement of LTP. These findings suggest a
differential effect of 17β-estradiol on hippocampal synaptic plasticity in 3xTg-AD and wild-
type mice.

In a related behavioral study, the impact of allopregnanolone, a metabolite of progesterone
promoting proliferation of neural progenitor cells derived from rat hippocampus and cerebral
cortex [112], was evaluated on the hippocampal-dependent trace eyeblink conditioning task in
3xTg-AD mice [96]. In delay eyeblink conditioning, the conditioned stimulus (CS; e.g.,
auditory tone) onset precedes the unconditioned stimulus (US; e.g., an airpuff to the cornea of
the eye) onset, and the two CS and US stimuli overlap and coterminate with one another. In
trace eyeblink conditioning, the CS precedes the US, and there is a short stimulus free period
(trace interval) between the CS offset and the US onset. Research has found that both delay
and trace eyeblink conditioning require the cerebellum, but the trace procedure also requires
involvement of the hippocampus [100,103]. Mice were injected with 10 mg/kg
allopregnanolone (s.c.) and 100 mg/kg BrdU. Seven days later, mice were trained in the trace
eyeblink-conditioning paradigm (250 ms tone followed by 100 ms, 60 Hz shock, 30 trials, 2
sessions/day for 5 days, trace interval of 250 ms). Following the learning trials, mice were
returned to their home cages for another seven days, and subsequently tested for memory of
the learned association. Allopregnanolone treatment enhanced the rate of learning in 3xTg-AD
mice, increased the magnitude of the learning performance, and reversed the memory deficit
of 3xTg-AD [96]. These results also suggest that allopregnanolone is a potent cognitive
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enhancer in a mouse model of AD, and that allopregnanolone could be a potential therapeutic
to prevent or delay cognitive deficits associated with AD.

In summary, the neuropathology of AD mimicked in the 3xTg-AD mouse (development of
Aβ and tau pathology) provides an exciting model with which to the study the molecular,
cellular and behavioral interactions between the many processes underlying learning and
memory function, and their modifications during the post-menopausal period and aging-related
disorders.

Estrogen and Cellular Neuroprotection
In a well-established model of estrogen-induced neuroprotection, primary cultures of
hippocampal neurons were exposed to the excitatory amino acid, glutamic acid, and neuronal
injury was assessed by measuring lactate dehydrogenase (LDH) release in the culture medium.
A 5 min treatment with 100 μM glutamate caused significant cell death compared to control
conditions; neuronal cell death was significantly decreased following pre-treatment with 17β-
estradiol [75]. Maximal neuroprotection of approximately 18% was provided by a
concentration of 10 ng/ml 17β-estradiol [75].

To investigate the mechanism underlying E2-mediated neuroprotection, and in particular, the
contributions of changes in intracellular calcium concentration, calcium concentration was
determined by imaging techniques and microfluorescence in cultured hippocampal neurons.
Surprisingly, in neurons pretreated with 17β-estradiol, changes in intracellular calcium
concentration elicited by glutamate application were increased by about 70% [76]. 17β-
estradiol itself induced a rapid increase in intracellular calcium concentration within minutes
of exposure, an effect that was blocked by an L-type calcium channel antagonist suggesting
that 17β-estradiol directly or indirectly regulates some properties of these voltage-gated
calcium channels [123]. 17β-estradiol-induced calcium ion influx was required for 17β-
estradiol-mediated activation of a biochemical signaling pathway involving Src, ERK, CREB,
and Bcl-2; a schematic diagram of the molecular signaling cascade leading to 17β-estradiol-
induced neuroprotection was described in [123]. These results demonstrate that at the single-
cell level, a 17β-estradiol membrane-associated receptor mediates rapid 17β-estradiol effects
in cultured neurons. Estrogen-induced neuroprotection against excitotoxic glutamate also
requires the mitogen-activated protein kinase (MAPK) cascade in primary cortical neuron
cultures [77,95]. A similar neuroprotective effect of 17β-estradiol against NMDA-mediated
neurotoxicity was reported in cultured hippocampal slices, and this effect also involved the
activation of the MAP kinase pathway [14].

Collectively, these reports indicate that although significant progress has been made regarding
the identification of the cellular mechanisms involved in 17β-estradiol-mediated
neuroprotection, there is a need to further elucidate a number of unresolved issues regarding
the complex and mostly indirect ways in which estrogen interacts with numerous cellular
signaling pathways regulating cell survival and death.

Molecular Mechanisms of Estrogen Effects in Brain
Recent results from several laboratories have provided a general framework to understand the
mechanisms underlying the multiple effects of 17β-estradiol on synaptic structure and function
(Fig. 9) [65]. Physiological concentrations of 17β-estradiol (10 pM-1 nM) interact with Erα
and Erβ receptors to produce both direct and indirect genomic effects. The direct genomic
effects are due to interactions between 17β-estradiol and traditional cytoplasmic receptors
followed by translocation of the hormone-receptor complex to the nucleus and the regulation
of transcription of specific genes, through interactions with ERE regulatory elements present
in these genes. In neurons, these include anti-apoptotic genes of the bcl-2 family, which are
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probably responsible for the neuroprotective effects of 17β-estradiol observed in a number of
models of neuronal death. In astrocytes, they include the GFAP (down regulation) and laminin
(up regulation) genes, which might be involved in regulating sprouting responses following
lesions, as well as in normal astrocyte activation in brains from old animals [61]. The indirect
genomic effects of 17β-estradiol might be linked to the stimulation of the phosphoinositol-3
(PI3) kinase/Akt system [30,94] and/or of a G protein, and/or of Src tyrosine kinase and ERK/
MAP kinase pathways [98].

The MAP kinase pathway occupies a central place in the regulation of synaptic plasticity
[68,102]. Pharmacological manipulations directed at blocking this pathway have consistently
produced impairments in synaptic plasticity and learning and memory, and this pathway is
activated with LTP-inducing tetanus or in different learning paradigms [10,19,20,89]. We have
shown that endogenous estrogen levels in cycling female rats produce a tonic phosphorylation/
activation of extracellular signal-regulated kinase 2 (ERK2)/MAP kinase [14]. In addition, we
have shown that this activation of the MAP kinase pathway is also linked to the regulation of
glutamate ionotropic receptors and might be involved in the “cognitive enhancing” effects of
17β-estradiol. Indeed, the acute estrogen-mediated enhancement of LTP is mediated by
activation of a src tyrosine kinase pathway [13]. Thus, acute application of the src inhibitor
PP2 in the perfusing medium of hippocampal slices from adult male rats abolished 17β-
estradiol-mediated enhancement of both synaptic transmission and LTP, but had no effect on
LTP itself (see Fig. 5). Similarly, this pathway might also be involved in the neuroprotective
effects of 17β-estradiol, as MAP kinase inhibitors have consistently been shown to block the
neuroprotective effects of 17β-estradiol in a variety of models of neurodegeneration. Moreover,
growth factors and other factors providing neuroprotection, such as PDGF and BDNF, also
use the MAP kinase pathway for their neuroprotective effects.

Interestingly, it appears that Erα stimulation is critically involved in the neuroprotective effect
of estrogen, as Erα knock-out mice are not protected by 17β-estradiol against ischemia-induced
neuronal damage [33]. Furthermore, recent results obtained from the same knock-out mice
suggest the possible existence of novel 17β-estradiol receptors responsible for the activation
of the ERK/MAP kinase pathway [98]. These results indicate that several steps described in
Figure 9 remain to be elucidated.

Summary of Estrogen's Effects on Synaptic Plasticity
The studies mentioned in this report establish several fundamental characteristics of the effects
of estrogen on synaptic transmission in the mammalian central nervous system (CNS).
Estrogen acts rapidly via presumed membrane mechanisms to enhance both NMDA and
AMPA receptor/channel responses elicited by glutamate released from excitatory presynaptic
terminals.

17β-estradiol can also markedly enhance hippocampal LTP in CA1 neurons of adult, male rats.
The enhancement of LTP after acute 17β-estradiol application is due to an increase in NMDA
receptor and AMPA receptor functions. Both possibilities are consistent with intracellular data.
Changes in estrogen levels in cycling female rats have also been correlated with changes in
synaptic plasticity, as measured by changes in LTP magnitude. Furthermore, 17β-estradiol has
also been found to enhance LTP from male hippocampal slices prepared from 3xTg-AD mice.
These findings suggest a mechanism by which naturally fluctuating endogenous hormone
levels can impact a cellular model associated with important aspects of learning and/or memory
in mammalian CNS.

To the extent that LTP is a mechanism involved in processes of coding and storage of
information, i.e., in memory formation, 17β-estradiol appears to enhance these processes.
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Indeed, the 17β-estradiol enhancement of LTP suggests a possible mechanism by which 17β-
estradiol can exert its facilitatory effects on memory processes in humans. Clinical evidence
indicates that estrogenic steroids can enhance cognitive functions in humans, particularly in
postmenopausal women [51,52,60], however, some prospective observational studies have yet
to find a protective effect of estrogen on either cognition, or the incidence of dementia [7,67].
Understanding the mechanisms underlying the changes in some of the effects of estrogen
associated with aging will represent a significant advance in understanding the mechanisms
involved in decline in cognitive function with aging.
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Figure 1.
(A) Diagram of a transverse hippocampal slice. Stimulating electrodes were located in the
afferent pathway, which contains the Schaffer (Sch.) collaterals. Recording micropipettes were
situated in the pyramidal cell body layer in CA1. Cells of this subfield receive monosynaptic
input from the CA3 pyramids via the Schaffer collateral system.
(B) Representative field potentials from slice preparations in the various experimental
conditions. Extracellular population spike responses to a given stimulus intensity are shown
from the control period (before steroid administration) and after the administration of 1 ×
10-10 M 17β-estradiol (E) or 1 × 10-10 M testosterone (T). Potentials from slices obtained from
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males and from proestrus and diestrus females are shown for purposes of comparison. All
potentials are single sweeps recorded at the same voltage and time scales.
(C) Bar graph summarizing the major experimental outcomes. Values on the ordinate are mean
percentages of spike amplitudes after steroid administration. Data for each condition are from
6 to 10 animals, each contributing one slice. Cursors representing magnitude of variability
(standard error of the mean) are shown for each bar.
Reprinted with permission from [107]. Copyright 2008 American Association for the
Advancement of Science.
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Figure 2.
Field EPSP (f-EPSP) recordings in area CA1.
All hippocampal slices were perfused with aCSF for 10 min to obtain fEPSP slope and
amplitude percentage baseline data. After 10 min of baseline recording, experimental slices
were perfused with 100 pM 17β-estradiol (E2). Control slices continued to be perfused with
aCSF. After 30 min of either E2 or aCSF perfusion, all slices received high-frequency
stimulation, designed to induce long-term potentiation. Data points represent averaged fEPSP
slope ± SE (taken at each 20 sec sweep) for experimental (E2-treated) and control (aCSF)
hippocampal slices.
Reprinted with permission from [42]. Copyright 2008 American Physiology Society.
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Figure 3.
Changes in LTP in field CA1 of hippocampal slices from female rats in proestrus and diestrus.
Hippocampal slices from female rats in proestrus or diestrus were prepared as described. fEPSP
amplitude and slope values were obtained for each slice and averaged across slices to produce
one average before and after the train of hfs. fEPSP amplitudes and slopes were normalized
for the 10 min pre-hfs period for each slice. Separate ANOVAs and planned two-tailed t tests
for the pre-hfs and post-hfs periods were used to evaluate the effects of estrous cycle on fEPSP
slope and amplitude.
(A) Representative waveforms from female rats in proestrus and diestrus for pre-hfs (1) and
post-hfs (2) periods.
(B) Means ± SEM of fEPSP slopes recorded in slices from female rats in proestrus (filled
circles; n=6) and diestrus (open circles; n=5).
Reprinted with permission from [14]. Copyright 2008 National Academy of Sciences, USA.
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Figure 4.
Changes in LTP in field CA1 of hippocampal slices from female rats in proestrus and diestrus,
and with 17β-estradiol (experimental) or aCSF (control) treatment. Hippocampal slices from
female rats in proestrus or diestrus were prepared as described.
(A) Means ± SEM of fEPSP amplitudes recorded following tetanus in slices from female rats
in diestrus. 17β-estradiol (filled circles) enhanced LTP relative to control aCSF (open circles).
(B) Means ± SEM of fEPSP amplitudes recorded following tetanus in slices from female rats
in proestrus. 17β-estradiol (filled circles) impaired LTP relative to control aCSF (open circles).
Reprinted with permission from [36]. Copyright 2008 Cambridge University Press.
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Figure 5.
Long-term depression.
(A) LTD Adult aCSF versus E2. In this figure, following baseline and drug/aCSF periods,
slices received low-frequency stimulation (low-frequency) to elicit long-term depression. LTD
that was initially induced in the aCSF adult males quickly diminished. The arrows indicate the
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time at which aCSF/E2 was applied, and when low-frequency stimulation (900 pulses at 1 Hz)
was delivered.
(B) LTD Aged aCSF versus E2. LTD was examined in slices from aged rats, with fEPSP
comparisons between aCSF versus E2. LFS delivered to aged rat slices perfused with 17β-
estradiol failed to induce robust LTD. Reprinted with permission from [42].
Copyright 2008 American Psychological Association.
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Figure 6.
Schematic representation of the general hypotheses linking estrogen/testosterone with the
MAPK/ERK pathway, NMDA receptors and synaptic plasticity in brain. Abbreviations:
AMPAR = α-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate receptor; bax = protein of
bcl-2 family (pro-apoptotic); bcl-2 = integral membrane protein (anti-apoptotic); Erα =
estrogen receptor alpha; Erβ = estrogen receptor beta; ERK = extracellular signal regulated
kinase; Erm = estrogen receptor membrane; GFAP = glial fibrillary acidic protein; LTP = long-
term potentiation; MAPK = mitogen-activated protein kinase; MEK = MAPK kinase;
NMDAR = N-methyl-D-aspartate receptor; Src = family of intracellular tyrosine kinases; Src-1
= member of src kinase family.
Reprinted with permission from [36]. Copyright 2008 Cambridge University Press
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