Assessing the Impact of Invasive Species Management Strategies on the Population Dynamics of Castor Bean (Ricinus communis L., euphorbiaceae) at Two Southern California Coastal Habitats

Victor D. Carmona
Loyola Marymount University, vcarmona@lmu.edu

Daryle Hinton-Hardin
Jodi Kagihara
Mary Rose T. Pascua

Follow this and additional works at: https://digitalcommons.lmu.edu/bio_fac

Part of the Biology Commons

Recommended Citation
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

This notice is posted in compliance with Title 37 C.F.R., Chapter II, § 201.14
Title: Natural areas journal: a quarterly publication of the Natural Areas Association.

Author: Carmona-Galindo, Victor

Article: Assessing the impact of invasive species management strategies on the population dynamics of castor bean at two Southern California coastal habitats

Copyright: CCG

Volume: 33
Number: 2
Pages: 222-226
Date: 2013

OCLC Number: 9398454
Request Type: COPY
Affiliation: AJCU, SCELC, LINK+, AGCU.

Ship Via: any

Return To:
LLU Del E. Webb Memorial Library
Interlibrary Loan Office
11072 Anderson Street
Loma Linda, CA 92350

Ship To:
Loyola Marymount University
1 LMU Drive, MS 8205
DDS - Library
Los Angeles US-CA 90045-2659
US

Maxcost: 40.00IFM

Assessing the Impact of Invasive Species Management Strategies on the Population Dynamics of Castor bean (*Ricinus communis* L., Euphorbiaceae) at Two Southern California Coastal Habitats

Author(s): Víctor D. Carmona-Galindo, Daryl Hinton-Hardin, Jodi Kagihara and Mary Rose T. Pascua

Published By: Natural Areas Association

DOI: http://dx.doi.org/10.3375/043.033.0212

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
Assessing the Impact of Invasive Species Management Strategies on the Population Dynamics of Castor bean (*Ricinus communis* L., Euphorbiaceae) at Two Southern California Coastal Habitats

Víctor D. Carmona-Galindo

Daryle Hinton-Hardin

Jodi Kagihara

Mary Rose T. Pascua

2301 North William Street
Columbia, Missouri 65201

John A. Burns School of Medicine
University of Hawai‘i at Manoa
Honolulu, HI 96813

Department of Mathematics and Science
St. Mary’s Academy
Inglewood, CA 90301

ABSTRACT: The diverse uses of *Ricinus communis* L. (Castor bean) in herbalism, agriculture, and horticulture have facilitated the worldwide dispersal of this invasive r-selected species. A common element in ruderal areas and transitional habitats, *Ricinus communis* invasion success in southern California has largely relied on manual removal strategies. This study evaluates how the survivorship and fecundity of naturalized *Ricinus communis* populations is impacted by the invasive species management strategies at two sites: Ballona Wetlands and Temescal Canyon Gateway Park. Our findings suggest that documenting patterns of survival and reproduction serve as a tool for the adaptive management of invasive species control strategies.

Index terms: fecundity, invasive species management, life table, population biology, survivorship

INTRODUCTION

The Castor bean plant, *Ricinus communis* L. (Euphorbiaceae), is a woody shrub species that is native to India, East Africa, and Southern Europe ca. 1200 m (Linnaeus 1753). However, the wide use of *R. communis* in ethnomedical treatments (Scarpa and Guerci 1982), agroecosystem biocontrol (Zaki and Bhatti 1990), chemical weed-stock (Somerville and Bonetta 2001), and landscape horticulture (Wu et al. 1995) has facilitated the escape, naturalization, and dispersal of this species throughout the world (Crooks 1948; Balls 1962). As a pioneer species of habitats in early secondary-succesison (El-Sheikh 2005), *R. communis* is successful at invading non-native habitats with frequent and/or intense disturbance regimes (Achman 1991; Hood and Naiman 2000; Sobrino et al. 2009) and is common in ruderal areas and transitional habitats such as habitat edges (e.g., ecotones, buffer zones, road-sides, etc.), fallows (e.g., agricultural, rural, urban, etc.), embankments (e.g., canals, channels, seasonal riverbeds, etc.), and bluffs (e.g., canyon, bajada, etc.). Dispersed primarily by autochonous and secondarily by myrmecochoery (Martins et al. 2009), there is some evidence that *R. communis* does not form long-term seed banks in non-native habitats (Martins et al. 2009). A generalist germination strategy also allows *R. communis* to germinate under a wide range of environmental conditions (Martins et al. 2011) where it exploits a superior competitive ability over native plant communities (Vavra et al. 2007; Funk and Zachary 2010).

In southern California, *R. communis* invades a diverse array of habitats, ranging from the remaining estuaries and coastal wetlands to the riparian communities along the canyons and foothills of both trans- and cis-mountain ranges. Strategies to control invasive plant species in southern California primarily rely on mechanical and/or chemical eradication (Rejmanek et al. 1991), which suggests that the intensity and frequency by which invasive species like *R. communis* are removed may be impacted by budget resources (Westman 1990). For example, the budget available to the Ballona Wetlands, the last remaining major coastal wetland on the western edge of Los Angeles County (West 2001), allows for intense and frequent campaigns to remove invasive plants (Friends of Ballona, pers. comm.). In contrast, the limited budget at Temescal Canyon Gateway Park, a riparian habitat located in the foothills of the Santa Monica Mountains in Pacific Palisades, restricts the scope of campaigns to remove invasive plants (Santa Monica Mountains Conservancy, pers. comm.). However, while the early identification and eradication of invasive species are fundamental to environmental management (Garcia-de-Lomas et al. 2010), it is also important to monitor and evaluate the effectiveness of invasive species control strategies. We propose that field-studies on population dynamics (which document patterns of survival and reproduction) can serve as a tool to characterize the impact of invasive species management strategies (Meekins and McCarthy 2002; Hinton-Hardin, unpubl. data).
The objective of this study was to assess how the invasive species management strategies at Ballona and Temescal are respectively impacting the survivorship and fecundity of naturalized populations of *R. communis*. The pattern of survivorship in a population can be expressed in three types of curves: Type I, Type II, and Type III (Pinder et al. 1978). Populations that follow a Type I curve have a high survivorship as juveniles and low survivorship in older cohorts; Type II populations have equal survivorship rates regardless of cohort age; and Type III populations have low survivorship as juveniles and high survivorship in older cohorts. In general, plant populations follow the exponential decay pattern of a Type III survivorship curve (Miller 1923). We hypothesized that the aggressive invasive species eradication strategy at Ballona (in contrast to Temescal) would result in a lower survivorship and fecundity for *R. communis* populations.

METHODS

We located two sites with *R. communis* at both Ballona and Temescal and measured stem diameter (mm) at the base of the plant stem using a dial caliper. The plants were then assigned to cohorts based on stem diameter size (Tables 1 and 2). For each of the four sites, survivorship (l_i) was calculated using the formula:

\[
l_i = \frac{n_i}{n_0}
\]

where n_i is the number of individuals in the first cohort group and n_0 is the number of individuals in each of the successive cohort groups. We counted the number of seeds produced by each plant and calculated fecundity (seeds produced per surviving individual) and the total seeds produced per member of each cohort. The fit of the cohort survivorship was tested against an exponential curve:

\[
y = \lambda e^{-\lambda x}
\]

where $\lambda = 3$, using a Kolmogorov-Smirnov (KS) one-sample test. The distribution of cohort survivorship for all four sites was compared using a KS two-sample test. The exponential term “x” in equation (2) was used as the survivorship rate for each of the four sites. Survivorship rate was tested for normality using a Shapiro-Wilks test, and mean differences of both survivorship rate and fecundity between Ballona and Temescal were determined using a parametric t-test. Differences in variance in both survivorship rate and fecundity between Ballona and Temescal were tested using an F-test.

RESULTS

We collected stem diameters from 561 plants at Ballona and 337 plants at Temescal sites, and used a static life table to calculate survivorship and fecundity among size-class based cohorts (Tables 1 and 2). The survivorship curves for *R. communis* cohorts at all sites did not differ significantly from an exponential decay pattern (Kolmogorov-Smirnov one-sample test, $P > 0.05$ respectively, Figure 1). Additionally, the cohort survivorship distribution did not differ significantly among the four sites (Kolmogorov-Smirnov two-sample test, $P > 0.05$, respectively, Table 3). Both mean survivorship rate and mean fecundity were normally distributed (Shapiro-Wilks, $P > 0.05$). Neither mean survivorship rate nor mean fecundity differed significantly between Ballona and Temescal (T-Test, $P > 0.05$, Figures 2 and 3). Additionally, the variance of the survivorship rates did not differ significantly between Ballona and Temescal (F-Test, $P > 0.05$, Figure 2). However, the variance of fecundity was significantly greater in Ballona than Temescal (F-Test, $P < 0.05$, Figure 3).

DISCUSSION

The cohort survivorship of *R. communis*
was not significantly impacted at either Ballona or Temescal, despite the differences in frequency and intensity of invasive plant eradication. Instead, cohort survival was followed by the expected exponential decay pattern of a Type III survivorship curve. Additionally, *R. communis* at Ballona and Temescal did not differ significantly in terms of mean survivorship rate or mean fecundity. However, there was greater variability in the fecundity of *R. communis* at Ballona, where the invasive plant eradication is both more frequent and intensive. Our findings suggest that the population dynamics of *R. communis* are not negatively impacted by the invasive species eradication strategies at either Ballona Wetlands or Temescal Canyon. Our study further suggests that the control of invasive species in Ballona Wetlands, at best, only introduces variability in the fecundity of *R. communis*. We propose that cohort structure can be negatively impacted by management strategies at both sites if plants are cut down earlier in flowering (Gao 2009). We further propose that evaluation of the population dynamics of invasive plants can serve as an assessment tool in the management of exotic species across non-native habitats.

ACKNOWLEDGMENTS

We thank the Santa Monica Mountains Conservancy, Friends of Ballona, Santa Monica Bay Restoration Foundation, Playa Vista Planning & Entitlements office, and E. Read & Associates for providing constructive comments during the early phases of this project, as well as thanks to Dr. Pippa Drennan at Loyola Marymount University for her tremendous support of undergraduate research opportunities.

Dr. Victor D. Carmona-Galindo is an Assistant Professor with the Department of Biology at Loyola Marymount University and is currently a U.S. Fulbright Scholar with the Universidad de El Salvador in San Salvador, El Salvador.

Daryle Hinson-Hardin graduated from Loyola Marymount University in 2010 with a B.S. in Biology and completed a Post-baccalaureate biomedical research program in 2011 with the Department of Molecular Microbiology & Immunology at the University of Missouri School of Medicine. Daryle is currently applying for graduate and medical school.

Jodi Kagihara graduated from Loyola Marymount University in 2010 with a B.S. in Biology and is currently a medical student with the John A. Burns School of Medicine in the University of Hawai’i at Manoa.

Mary Rose Pascua graduated from Loyola Marymount University (LMU) in 2010 with a B.S. in Biology. She participated in the program Partners in Los Angeles Catholic Education (PLACE Corps), a Catholic teacher service corps, with the LMU School of Education and received her Master’s in Secondary Education and Preliminary Credential in Secondary Mathematics in 2012. Mary Rose is currently a Mathematics and Science teacher at St. Mary’s Academy.

Table 2. The static life table of the *R. communis* populations sampled across two sites in Temescal.

<table>
<thead>
<tr>
<th>Cohort (x)</th>
<th>Cohort Size (mm)</th>
<th>Number Alive (nₐ)</th>
<th>Survivorship (lₓ)</th>
<th>Seeds Produced</th>
<th>Fecundity</th>
<th>Seeds Produced per Member of Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>304</td>
<td>1.0000</td>
<td>0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>23</td>
<td>0.0757</td>
<td>128</td>
<td>5.6</td>
<td>0.42</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>6</td>
<td>0.0197</td>
<td>1,020</td>
<td>170.0</td>
<td>3.36</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>2</td>
<td>0.0066</td>
<td>2</td>
<td>1000.0</td>
<td>6.58</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>2</td>
<td>0.0066</td>
<td>200</td>
<td>100.0</td>
<td>0.66</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1,556</td>
<td></td>
<td>11.01</td>
</tr>
</tbody>
</table>

Figure 1. The survivorship curves of *R. communis* across size-classed cohorts encountered at Ballona and Temescal sites.
<table>
<thead>
<tr>
<th></th>
<th>Ballona Wetlands</th>
<th>Ballona Wetlands</th>
<th>Temescal Canyon</th>
<th>Temescal Canyon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site 1</td>
<td>Site 2</td>
<td>Site 1</td>
<td>Site 2</td>
</tr>
<tr>
<td>Ballona Wetlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballona Wetlands</td>
<td>0.984</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Site 2</td>
<td></td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temescal Canyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 1</td>
<td></td>
<td>0.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temescal Canyon</td>
<td></td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LITERATURE CITED

Figure 2. Mean survivorship rate of the *R. communis* populations encountered at Ballona and Temescal sites. Bars denote a standard deviation.
Figure 3. Mean fecundity of the *R. communis* populations encountered at Temescal and Ballona sites. Bars denote a standard deviation.

