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In this paper we review the theory of the ‘‘falling chimney,’’ which deals with the breaking in
mid-air of tall structures when they fall to the ground. We show that these ruptures can be caused
by either shear forces typically developing near the base, or by the bending of the structure which
is caused primarily by the internal bending moment. In the latter case the breaking is more likely to
occur between one-third and one-half of the height of the chimney. Small scale toy models are used
to reproduce the dynamics of the falling chimney. By examining photos taken during the fall of
these models we test the adequacy of the theory. This type of experiment, which is easy to perform
and conceptually challenging, can become part of a rotational mechanics lab for undergraduate
students. ©2003 American Association of Physics Teachers.

@DOI: 10.1119/1.1576403#

I. INTRODUCTION

One of the most interesting demonstrations for an intro-
ductory mechanics course is the ‘‘Falling Chimney-Free Fall
Paradox,’’ as it was named by Sutton in his classical book
Demonstration Experiments in Physics.1 In the original ver-
sion of this demonstration a ball is placed at one end of a
uniform stick, which is pivoted at the other end and makes
initially an angle of about 30° with the horizontal. The el-
evated end of the stick is suddenly dropped, together with the
ball, thus showing a very counter-intuitive behavior. The fall-
ing end of the stick accelerates at a greater rate than the
free-falling ball, proving that its acceleration is greater than
g, the acceleration of gravity.

A simplified version of the experiment can be performed
just with a meter stick and a coin. The stick is supported in
the horizontal position by two fingers, placed near the two
ends. A coin is set on the stick near one end, which is sud-
denly released. The effect is similar to the previous demon-
stration: the falling end of the rotating stick eventually ac-
quires an acceleration greater than that of the freely falling
coin, which loses contact with the stick surface and lags
behind the falling stick.

A description of the first version of the experiment can be
found in almost every book of physics demonstrations,2–4

sometimes with different names~‘‘Falling Stick,’’ ‘‘Hinged
Stick and Falling Ball,’’ and others!. Photographic descrip-
tions or even video-clips of this demo can be found on-line
in several web-pages~see our web-page,5 for a collection of
related links!.

In addition, countless papers exist in the literature; we
have traced several of these, from the 1930s to the present.
Some of the earliest discussions can be found in
Constantinides6 and Ludeke7 ~as well in the book by
Sutton1!, followed by many others.8–12 These concentrate
mostly on the simple explanation of the effect, which relies
on the concept of ‘‘center of percussion’’ of the rotating stick
~a simple introduction to this concept can be found in
Bloomfield13!. This particular point of the stick~located at a
distance from the hinged end equal to two-thirds of the
length, for a uniform stick! is moving with the same accel-
eration as a particle under gravity, constrained to move along
the same circular path. Points on the stick beyond the center
of percussion descend with accelerations greater than that of

particles freely moving under gravity, on their respective cir-
cular paths. As a consequence of this, if the initial angle
formed by the stick with the horizontal is less than about
35°, the end point will possess at all times a vertical com-
ponent of the acceleration greater thang, producing the ef-
fect described above.

Several variations of the basic demonstration also
exist,14–19 the majority of which suggest attaching an addi-
tional mass to the rotating stick at different positions. The
effect for the student or the viewer is even less intuitive than
the original version: an additional mass placed near the end
of the stick actually reduces the acceleration of the end point,
affecting substantially the outcome of the experiment. In
general the addition of a mass at any point on the stick will
increase both the total torque on the system~thus increasing
the rotational acceleration! and the moment of inertia of the
system around the axis of rotation~resulting in a decreased
rotational acceleration!. The center of percussion of the stick
still plays a key role: if the additional mass is placed beyond
it, the effect of the increased moment of inertia dominates
and the acceleration of the rotational motion will be reduced.
If the mass is placed before the center of percussion, the
increase in the torque will dominate and the rotational mo-
tion will be enhanced. The effect is null if the mass is placed
exactly at the center of percussion~a complete discussion of
this effect can be found in Bartlett17 and Haber-Schaim19!.

The next logical step is to analyze the behavior of areal
falling chimney. Almost invariably a tall chimney, falling to
the ground like the stick in the previous discussion, will
break in mid-air at some characteristic height. This is well
documented in several photos reproduced in the literature,
such as the one which appeared on the cover of the Septem-
ber 1976 issue of The Physics Teacher~other photos can be
found in Bundy20 and Bartlett,21 or also on our web-page5!.
The causes of such breaking, the height of the rupture point
and the angle at which the breaking is most likely to occur,
are the most natural questions which arise.

The first analysis22 of this problem compared the fall of
the real chimney to the fall of the hinged stick, but wrongly
identified the center of percussion~at about two-thirds of the
height! as the probable point of rupture. Reynolds23 first
identified the possible causes of the breaking with the shear
forces and the bending moment originating within the struc-
ture of the toppling chimney. More detailed analyses were
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given by Bundy20 and Madsen24 ~the most complete papers
we found on the subject! while simplified explanations are
also reported.21,25,26It even appears in graduate student study
guides,27,28 although the chimney is shown bending the
wrong way in one of these books.

In this paper we review the theory of the real falling chim-
ney, outlined by Madsen,24 aiming for a complete and clear
explanation of this phenomenon in Secs. II and III. Then, in
Sec. IV, we propose simple ways of using small scale models
~literally toy models—made with toy blocks and bricks! to
test effectively the outlined theory. More information on
these toy models can also be found on our web-site,5 together
with photos and movie clips of the experiments we have
performed.

II. ROTATIONAL MOTION OF THE FALLING
CHIMNEY

The rotational motion of a falling chimney under gravity is
equivalent to that of the falling hinged stick of Sec. I. We can
describe it as in Fig. 1, where we use polar coordinatesr and
u ~with êr and êu as unit vectors! for the position of an
arbitrary pointA on the longitudinal axis of the chimney,
measuring the angleu from the vertical direction. We treat
the chimney as a uniform rigid body of massm and height
H, under the action of its weightW5mg, applied to the
center of gravity~or center of mass—CM—of the body!, and
a forceF exerted by the ground on the base of the chimney,
assumed to act at a single point~we neglect air resistance, or
any other applied force!. In plane polar coordinates:

W5Wrêr1Wuêu52mgcosuêr1mgsinuêu , ~1a!

F5Frêr1Fuêu . ~1b!

The moment of inertia of the chimney can be approxi-
mated with the one for a uniform thin rod, with rotation axis
perpendicular to the length and passing through one end:29

I 5 1
3 mH2. ~2!

Applying the torque equationI ü5tz , for a rotation around
the origin, with an external torque given bytz

5mg(H/2)sinu, we find the angular acceleration

ü5
tz

I
5

3

2

g

H
sinu. ~3!

A simple integration, using ü5 du̇/dt 5(du̇/du) u̇
5 3

2(g/H)sinu, gives the angular velocity

u̇253
g

H
~12cosu!, ~4!

assuming that the chimney starts moving from rest and is
initially in the vertical direction. A further integration of Eq.
~4! can lead tou(t) in terms of elliptic integrals.

We recall that the acceleration in polar coordinates can be
written asa5 r̈5( r̈ 2r u̇2)êr1(r ü12ṙ u̇)êu , so that, for a
point A at a fixed distancer from the origin, it becomes

a5arêr1auêu52r u̇2êr1r üêu . ~5!

For a point at two-thirds of the height,r 5 2
3H, combining

Eqs. ~3! and ~5! we getau(r 5 2
3H)5 2

3H ü5g sinu, proving
that this particular point is thecenter of percussionof the
body, as already mentioned in Sec. I.

The torque equation allowed us to determine the angular
acceleration of the motion in Eq.~3!. We can use this result
and Newton’s second law for the motion of the center of
mass~CM! of the whole chimney to determine the unknown
force F at the base. The vectorial equation is

mr̈CM5W1F, ~6!

which, for r 5 H/2, splits into radial and angular equations,

2m
H

2
u̇25Fr2mgcosu, ~7a!

m
H

2
ü5Fu1mgsinu. ~7b!

Using Eqs.~3! and ~4!, the two components of the forceF
are easily determined:

Fr5
5
2 mg~cosu2 3

5!, ~8a!

Fu52 1
4 mgsinu. ~8b!

III. INTERNAL FORCES AND BENDING MOMENT

We now move to the analysis of the internal forces which
develop inside the structure of the falling chimney. The re-
sulting stresses and bending moment are the causes of the
rupture of the toppling chimney. Consider, as in Fig. 2, an
arbitrary lower portion of the chimney of heightr ~as op-
posed to the total heightH) and the forces acting on this part
of the structure due to the upper portion and the base. The
weight of the lower portion is nowW(r )5mg(r /H) ~as-
suming again a uniform structure, so that the weight is pro-
portional to the height of the considered portion! and it is
applied to the center of gravity of this lower portion~at a
distancer /2 from the origin!. In polar coordinates:

W~r !5Wr~r !êr1Wu~r !êu

52mg
r

H
cosuêr1mg

r

H
sinuêu . ~9!

Fig. 1. The falling chimney described as a rotating uniform stick. The ex-
ternal forces are the weight of the body applied to the center of gravity, and
the constraint force at the base.
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The forceF, applied at the base, is still the same as in Eqs.
~8a! and~8b!, but we have to add the action of the upper part
on the lower portion. We follow here the general analysis of
the internal forces and moments which can be found in every
textbook on statics~see, for example, Refs. 30 and 31! and
which can be easily adapted to our case.

The distribution of all the internal forces, at the cross sec-
tion being considered, can be equivalently described by a
resultant force and a resultant moment acting at a specific
point of the cross section~typically the ‘‘centroid’’ of the
sectioned area, in our case simply the central point of the
section, on the longitudinal axis!. In particular, the resultant
force can be decomposed into a transverse shearing forceS
5Suêu , and a longitudinal stress force~tension or compres-
sion! P5Prêr , applied as in Fig. 2, at the cross section
between the upper and lower portions, and assumed positive
in the êu , êr direction, respectively.

In addition, we have to consider the resultant moment of
the forces at the cross section, which is usually called the
‘‘bending moment’’ Nb , because its effect will ultimately
result in bending the structure. It is represented in the picture
by the curved arrow. Because we treat this as a plane prob-
lem, the bending moment can only have a component per-
pendicular to the plane of the figure, i.e., in thez direction.
No other components are considered here, in particular we
assume that no torsional moment exists in the structure,
which would tend to twist the chimney around its longitudi-
nal axis.

The bending momentNb5Nbêz can be thought of as
originating from a pair of forces,f and 2f, that can be re-
garded as applied to the leading and trailing edge of the
structure at the cross section considered. This couple of
forces is shown explicitly in the papers by Bundy20 and
Madsen,24 but we prefer to use directlyNb in our treatment,
because the bending moment is the result of the whole dis-
tribution of forces at the cross section considered. The two
small insets inside Fig. 2 show the definition of the bending
moment in terms of the couple of forcesf and2f. We also
show the resulting deformation of the structure due to a
‘‘clockwise’’ ~diagram a!, or a ‘‘counterclockwise’’ bending

moment~diagram b!. The latter case will be the actual defor-
mation of the falling chimney.Nb will be assumed to be
positive if it acts as in the figure, i.e., a positive component
of the torque in thez direction~we assume here the use of a
right-handed system of coordinate axis!. In the following we
will refer to Nb as the bending moment, acting on the lower
portion of the chimney.32

Again, we will consider the torque equation and the sec-
ond law for the motion of the center of mass~located atr /2)
for just the lower portion of the chimney~of mass (r /H) m).
It is better to analyze the CM motion first. The vector equa-
tion,

m
r

H
r̈CM5W~r !1F1P1S, ~10!

will split into the radial and angular directions,

2m
r 2

2H
u̇252

3

2
mg~12cosu!

r 2

H2

52mg
r

H
cosu1

5

2
mgS cosu2

3

5D1Pr ,

~11a!

m
r 2

2H
ü5

3

4
mgsinu

r 2

H2

5mg
r

H
sinu2

1

4
mgsinu1Su , ~11b!

having used Eqs.~3!, ~4!, ~8a!, ~8b!, and ~9!. We can solve
for the longitudinal and transverse forces

Pr52
1

2
mgS 12

r

H D F S 513
r

H D cosu23S 11
r

H D G ,
~12a!

Su5
3

4
mgsinuS r 2

H2 2
4

3

r

H
1

1

3D , ~12b!

which depend on the fraction of heightr /H, the angle of
rotation u, and also the total weightmg. Following the
analysis by Bundy,20 we plot these two forces in Figs. 3 and
4, respectively, normalized to the total weightmg, as a func-
tion of the height fraction, for several angles.

From Fig. 3 we see thatPr is negative~a compression! for
smaller angles, but eventually becomes positive~a tension!
for angles greater than about 45°.Pr also depends critically
on r /H ~for u50°, Pr represents simply the compression
due to the weight of the upper part acting on the lower part!.
This longitudinal force will be combined later with the bend-
ing moment to determine the total stress at the leading and
trailing edges, which is the most typical cause of the rupture.

In Fig. 4 we plot the~transverse! shear forceSu , which
can be the other leading cause of rupture. It is easily seen
that, for any considered angle, the magnitude of the shear
force uSuu has an absolute maximum atr /H 50 ~and a posi-
tive value!, meaning that large shear forces, in theêu direc-
tion, usually originate near the base. The shear force is al-
ways zero at one-third of the height, anduSuu also has a
~relative! maximum at2

3H ~with a negative value, therefore
Su is in the2êu direction!, but this value is smaller than the
one near the base.

Fig. 2. The forces acting on the lower portion of the chimney, due to the
upper part and the action of the constraint at the base, are shown here. The
two insets explain the definition of the bending moment in terms of a couple
of forces. The resulting deformation of the structure is also shown for the
two possible cases.
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From this analysis, it is typically concluded that if the
structure breaks from shear stress alone, this is usually more
likely to happen near the base. This can be seen for example
in the already mentioned cover photo of the September 1976
issue ofThe Physics Teacher,5,21 showing the fall of a chim-
ney in Detroit. The two ruptures at the bottom are likely due
to shear forces, while a third rupture can be seen at aboutr
50.47H, and this is due to the combination of bending mo-
ment and longitudinal forcePr , as we will explain in the
following. More photos and detailed pictorial descriptions of
chimney ruptures can be found in the paper by Bundy.5,20

The ‘‘bending moment’’Nb can be calculated from the

torque equationI (r ) ü5tz , where nowI (r )5 1
3m (r /H) r 2 is

the moment of inertia of just the lower part.ü will come
from Eq. ~3!, and the total external torque is nowtz

5(r/2) Wu(r )1rSu1Nb . Using Eqs.~9! and ~12b!, we can
solve the torque equation for the bending moment, obtaining

Nb52
1

4
mgsinur S 12

r

H D 2

, ~13!

or, in a nondimensional form,

Nb

mgH
52

1

4
sinu

r

H S 12
r

H D 2

, ~14!

which is plotted in Fig. 5, as a function of the height fraction
and for various angles.

Nb is always negative, showing that it is actually directed
in the opposite way of Fig. 2~or as in diagram b of Fig. 2!.
This particular direction of the bending moment will induce
a tension in the leading edge of the chimney and a compres-
sion in the trailing edge. The structure will bend accordingly,
with the concavity on the side of the trailing edge, and will
eventually break in the way shown by the many existing
photos. We can see that, for any angle, the bending moment
is obviously zero at the bottom and at the top of the chimney,
while it assumes its maximum absolute value at exactly one-
third of the heightH. The bending moment alone would
therefore induce a rupture at one-third of the structure, but
the total longitudinal stress at the leading edge is also due to
the forcePr , as we will show next.

Another interesting relation between the bending moment
Nb and the shear forceSu is that they are in general related
by a simple derivative, i.e.,Su52 ]Nb /]r , as it is easy to
check from Eqs.~12b! and ~13!.33 This is a well-known re-
lationship of the statics of beams and other structural mem-
bers~for a complete proof see, for example, Hibbeler31!. It is
a direct consequence of the equilibrium equations applied to
an infinitesimal longitudinal portion of the beam: the change
in bending moment along the beam is always equal to the
shear force applied to that portion of the beam.

Finally, we can combineNb and Pr to compute the total
longitudinal stress on the cross-sectional area between the
lower and upper parts. We follow the theory of elasticity and
deformations in beams, which can be found in classical trea-
tises such as Sommerfeld34 and Landau–Lifshitz,35 or again

Fig. 3. The longitudinal stress force per unit weight of the chimney is shown
as a function of the height fraction for several angles. Positive values indi-
cate tensions, while negative values represent compressions.

Fig. 4. The transverse shear force per unit weight of the chimney is shown
as a function of the height fraction for several angles. Positive values are for
forces in theêu direction.

Fig. 5. The bending moment, divided by the weight and the height of the
chimney, is shown as a function of the height fraction for several angles.
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in Bundy’s paper.20 The longitudinal stress is maximum at
the leading and trailing edges, located at the maximum dis-
tance from the longitudinal~centroidal! axis of the chimney
which lies within the ‘‘neutral surface’’ of the structure, the
surface which is neither stretched nor compressed.

For simplicity, we will only consider from here on, struc-
tures with uniform square cross section of sidea, as this is
the case of the toy models described in Sec. IV. In this case
the stresses at the leading and trailing edge,sL and sT ,
respectively, can be evaluated from

sL/T5
Pr

A
7

aNb

2J
~15!

~the negative sign is forsL , the positive forsT) whereA
5a2 is the area of the square cross section of sidea, with
the factora/2 representing the distance between the longitu-
dinal axis, considered as the ‘‘neutral axis,’’ and the two
edges.J5 a4/12 is the moment of inertia of the cross-
sectional area computed about the neutral axis~see
Sommerfeld34 for details!. Using also the expressions forPr

andNb , we obtain

sL/Ta2

mg
52

1

2 S 12
r

H D F S 513
r

H D cosu23S 11
r

H D G
6

3

2

H

a
sinu

r

H S 12
r

H D 2

, ~16!

where we normalizedsL/T , by dividing bymg/a2, to obtain
a dimensionless quantity which is plotted in Fig. 6 as a func-
tion of the height fraction and for several angles.

This quantity depends also on the ratioH/a, which for a
real chimney is of the orderH/a *10. For the toy models
described in Sec. IV, the value of this ratio is even bigger:
H/a .24– 61, enhancing the contribution of the second term
of Eq. ~16!, which comes from the bending momentNb . In
Fig. 6 we show the plot forH/a 524, but similar figures can
be obtained for different values of the ratio.

In Eqs. ~15! and ~16!, and in Fig. 6 the total stresses are
considered positive if they represent tensions, negative if
they are compressions. It is easily seen from the figure that
the stress at the leading edge,sL , is initially a compression,
but eventually becomes a tension, constantly increasing for
larger angles;sT on the contrary is usually a compression. It
is therefore the combination of these intense tensile stresses
in the leading part of the chimney~and also compressions on
the trailing side! that causes the rupture of the chimney.

This type of breaking is more likely to occur at the posi-
tive maximum value ofsL . This maximum value depends
critically on ther /H ratio, for a certain angle of ruptureu, so
it is possible, just by looking at the maxima of the solid
curves in Fig. 6~marked by solid points!, to roughly match
the height of the rupture point to the angle at which the
breaking started to occur. As far as the actual prediction of
the point of rupture, this would obviously depend on the
building materials and the construction of the chimney or
tower, an analysis of which goes beyond the scope of this
work.

It is interesting to note, from Fig. 6 again, that the stress
sL is not always maximum at one-third of the height~as for
the bending moment of Fig. 5!. For small angles of about
u.5° – 20° it reaches a maximum forr /H .0.4– 0.5, while
for larger angles it approaches the typical ratior /H . 1

3. This
means that if the chimney breaks early in its fall, for small
angles, it is more likely to break near the center; on the
contrary if the rupture occurs at larger angles, the breaking
point is usually shifted toward one-third of the height. This is
the effect of thePr term in Eq. ~15!, which modifies the
position of the maximumsL ~or sT).

As already mentioned, another factor to be considered is
the ratioH/a, which is usually in the rangeH/a .5 – 20 for
real chimneys, but can be increased by up to aboutH/a
.100 with our toy models. In Fig. 7 we plot the maxima of
the leading edge stress curves, for several values of the ratio

Fig. 6. The normalized longitudinal stress at the leading edge~solid line!
and at the trailing edge~dotted line!, are shown as a function of the height
fraction and for several angles (H/a524). The maxima of the leading edge
stress curves are marked by solid points.

Fig. 7. The maxima of the leading edge stress curves are shown as continu-
ous functions, for several values of the ratioH/a. They represent the points,
in terms of the height ratior /H and angleu, at which the structure is more
likely to break, due to bending.
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H/a 55,10,20,30,. . . ,100~for the group of curves between
the values of 30 and 100, the parameter is increased by 10
units for each curve!.

These maxima are plotted as continuous curves, showing
the corresponding values of the ratior /H and the angleu, at
which the structure is more likely to break, for a given value
of H/a. In other words, connecting for example the solid
points of Fig. 6, we would obtain a corresponding continuous
curve in Fig. 7, with the angle of probable rupture on the
vertical axis, instead of the normalized stress.

The dependence of the rupture point on these quantities
can be noted in several of the existing photos of falling chim-
neys, when the breaking occurs due to the bending of the
structure and not for the transverse shear stress near the base
mentioned at the beginning of this section. The angle of rup-
ture can be roughly estimated by measuring the angle the
upper part of the chimney forms with the vertical in the
photos. This angle tends in fact not to change much after the
rupture, since the upper part falls without much additional
rotation. For example the photos in the paper by Bartlett5,21

refer to chimneys withH/a .10, breaking at aboutu
.20° – 25° and forr /H .0.47, consistent with the values of
Fig. 7, for theH/a 510 curve. Similar behavior can be seen
in other photos,5,20 because real chimneys tend to break very
early in their fall due to the intense stresses originating
within their structure.

IV. TOY MODELS

In this section we discuss our efforts to reproduce the ef-
fects described above with the help of toy models of the
falling chimney. These models were constructed with simple
toy blocks of different type and size, and their fall was filmed
with a digital camera so that we could analyze the events
frame by frame to test the theory. Complete details on the
type of blocks used, experimental settings and video-capture
techniques, as well as the complete set of our video-
recordings and still photos can be found on our web-site,5

and in an upcoming publication.36

Bundy noted in his work20 that the use of a model to test a
real chimney would be useless due to a ‘‘scale effect.’’ The
stresses inside the chimney depend roughly on the scale of
the object, so that real chimneys would develop bigger
stresses than equivalent small-scale models, therefore break-
ing earlier in their fall. Nevertheless we found it interesting
to reproduce these effects in small scale models to test espe-
cially the discussion based on Figs. 6 and 7. It was also
supposed to be difficult20 to show these effects with toy
models.37

Figure 8 is the first example of one of our toy models. We
made a tower by simply stacking 24 wooden toy blocks of
cubic shape, for a total heightH50.76 m, massm
50.32 kg, and a ratioH/a 524, the value used in Fig. 6.
The tower was set into the falling motion by removing a
support at the bottom, inducing a rotation without slipping at
the bottom point. The picture clearly shows the ‘‘rupture’’
due to bending of the structure at exactly half the height,
r /H 50.50, and for a small angleu&10°, which again can
be estimated by measuring the angle the upper part of the
chimney forms with the vertical direction. This is in good
agreement with the position of the maximum for the solid-

10° curve in Fig. 6 and also with the data of Fig. 7, using the
H/a 520 curve. These results show that the theory is appli-
cable also to these small-scale models.

Our second example~Fig. 9! is a taller tower (H
51.9 m, m50.65 kg, andH/a 561) made with 100 plastic
blocks of a very popular brand of toy bricks. The blocks are
inserted on top of each other so that bending of the structure
is allowed, but shear stress cannot possibly break the tower.
The 100 toy blocks are arranged by color to subdivide the
structure into three equal parts, and also the position of the
center is marked. This time the rupture occurs for an angle
aroundu.30° –35°, and at the height ratior /H 50.40. This
is consistent with the 30° solid curve in Fig. 6, while the data
from Fig. 7 ~for H/a 560) would suggest a smaller angle of
rupture. It is actually difficult, with this type of toy bricks, to
estimate the angle at which the structure begins to bend.

We performed several other experiments, varying the di-
mensions of the towers, the type of blocks, always obtaining
results consistent with the theory. We can conclude that it is
actually easy to reproduce the bending and breaking of chim-
neys with small scale towers, and this type of experiment
could be made part of an undergraduate laboratory class for
rotational mechanics, with some minor adaptations and
changes.36

Fig. 8. The first toy model made with wooden blocks. The structure appears
to break atr /H 50.5, and at a small angleu&10°, which can be estimated
by measuring the angle formed by the upper part of the tower with the
vertical.

Fig. 9. The second toy model made with plastic blocks. The structure ap-
pears to break atr /H 50.40, and at a larger angleu.30° – 35°, which can
be estimated by measuring the angle formed by the upper part of the tower
with the vertical.
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V. CONCLUSION

In this paper we reviewed the theory of the falling chim-
ney, showing that the rupture can be caused by either shear
forces typically near the base, or by the bending of the struc-
ture which is caused primarily by the bending moment, but is
also affected by the longitudinal stress force. In the latter
case the breaking is more likely to occur between one-third
and one-half of the height of the chimney.

This point of rupture is also related to the angle of rupture
and this relationship can be verified in the many existing
photographic reports of falling chimneys. We also con-
structed several small scale toy models, showing that it is
possible with them to reproduce the dynamics of the fall. By
examining photos taken during the fall of these models we
were able to confirm the theoretical model outlined in this
paper.
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