
Computer Science Faculty Works Computer Science 

2014 

Survey on securing data storage in the cloud Survey on securing data storage in the cloud 

Lei Huang 
Loyola Marymount University 

Follow this and additional works at: https://digitalcommons.lmu.edu/cs_fac 

 Part of the Electrical and Computer Engineering Commons 

Digital Commons @ LMU & LLS Citation Digital Commons @ LMU & LLS Citation 
Huang, Lei, "Survey on securing data storage in the cloud" (2014). Computer Science Faculty Works. 13. 
https://digitalcommons.lmu.edu/cs_fac/13 

This Article is brought to you for free and open access by the Computer Science at Digital Commons @ Loyola 
Marymount University and Loyola Law School. It has been accepted for inclusion in Computer Science Faculty 
Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. 
For more information, please contact digitalcommons@lmu.edu. 

https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/cs_fac
https://digitalcommons.lmu.edu/cs
https://digitalcommons.lmu.edu/cs_fac?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lmu.edu/cs_fac/13?utm_source=digitalcommons.lmu.edu%2Fcs_fac%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


SIP (2014), vol. 3, e7, page 1 of 17 © The Authors, 2014.
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence
http://creativecommons.org/licenses/by/3.0/
doi:10.1017/ATSIP.2014.6

overview paper

Survey on securing data storage in the cloud
chun-ting huang1, lei huang2, zhongyuan qin3, hang yuan1, lan zhou4,
vijay varadharajan4 and c.-c. jay kuo1

Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fasci-
nating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number
of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud
storage security in association with cloud computing. After an overview of the cloud storage system and its security problem,
we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three
security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed
in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges,
and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art
knowledge to new researchers who would like to join this exciting new field.

Keywords: Cloud computing, Data security, Data integrity, Confidentiality, Access control, Searchable encryptions, Data availability

Received 16 September 2013; Revised 20 March 2014; Accepted 24 March 2014

I . I NTRODUCT ION

Rapid advances in broadband communication and high-
speed packet switching networks have made large file
sharing much more effective during the past two decades.
Consequently, the demand for rich media applications,
such as multimedia mails, orchestrated presentations, high-
quality audio and video sharing, and collaborative docu-
ments, has grown tremendously. The amount of data and
computing resources being used by those applications have
also grown exponentially. As a result, the costs of IT ser-
vice and support, such as investment in new hardware and
software, staffing for installation and maintenance are ris-
ing consistently for both enterprises and individual users.
Therefore, cloud computing has become an appealing new
model of IT service provisioning and support driven by
economic and productivity advantages. Instead of invest-
ing in new hardware and software, as well as maintaining
those resources, users can use applications, infrastructures,
servers, storage, network, and other computing resources
that are available in the ‘cloud’, which is a shared pool of
computing resources that can be easily accessed through

1Ming Hsieh Department of Electrical Engineering, University of Southern Califor-
nia, Los Angeles, CA, USA
2Loyola Marymount University, Los Angeles, CA, USA
3Information Science andEngineering School, SoutheastUniversity,Nanjing, Jiangsu,
China
4Information and Networked Systems Security Research, Macquarie University,
North Ryde, Australia

Corresponding author:
Lei Huang
Email: lei.huang@lmu.edu

broadbandnetwork connections. This new IT service provi-
sioning model offers users seemingly unlimited computing
resources without up-front acquisition and/or sustaining
maintenance costs. Moreover, it offers on-demand elastic-
ity and flexibility in using computing resources. The utility
pricingmodel allows users to pay for their actual usage only.
Storage, as one of the most influential and demanding

computing resources in current digital era, is among the
first beingmoved into the cloud. This type of cloud comput-
ing services, known as cloud storage, represents a business
model in which the service provider rent spaces in their
large-scale storage infrastructure to organizations and indi-
viduals. It has always been one of themost prevalent services
in cloud computing industry. As an extension of tradi-
tional data center or file hosting service into cloud, cloud
storage has distinct characteristics including on-demand
self-service, broadband network access, resourcemultiplex-
ing, rapid elasticity and measured usage for utility billing.
Besides the key advantages of cost saving, cloud storage
can facilitate information sharing and task collaborating,
promote portability and universal accessibility of data, as
well as provide easy and convenient solutions to some other
problems. For example, for disaster recovery purpose, orga-
nizations shouldmaintain secondary off-premise data back-
ups. Storage of sensitive data, such as financial, personal,
or medical data are subject to more and more regulations
and legal constraints. Cloud storage offered by a regulation-
complied service provider can relieve data owners from the
complicated process.
However, the promising new paradigm of cloud com-

puting brings up unique challenges in terms of perfor-
mance, availability, security, and scalability (known as

1

mailto:lei.huang@lmu.edu


2 chun-ting huang et al.

PASS). Among these challenges, security issues have been
reported as the biggest concern preventing enterprises and
organizations from adopting cloud services according to
recent researches [1]. Therefore, it is imperative to provide
security strategies, tools, and mechanisms that meet user’s
requirements in the cloud. Security in cloud computing
is a complex issue spanning across many aspects includ-
ing physical security, infrastructure (distributed computers,
servers and other hardware) security, data security, network
security, and software security. Moreover, it involves shared
responsibilities and obligations among the constituents of
the cloud service. Security enforcement would not be suc-
cessful without agreement, trust, regulations, and coordina-
tion among service providers and cloud users.
Since storage is one of the necessary core infrastruc-

ture in clouds, security of data in storage is one of the
key concerns of any cloud computing systems, particu-
larly in cloud storage services. The consequences of secu-
rity breaches in cloud storage could be seriously damaging
to both service providers and users. Without trust from
users, the service provider could lose their customers. On
the other hand, users whose valuable data lost, or sen-
sitive information hacked could experience irrecoverable
loss or damage. There have been many cases reported
as threats of cloud storage security. Many leading ser-
vice providers, including Amazon, Window and Google,
encountered disconnections of their web-based cloud ser-
vices due to different reasons such as power failure, hard-
ware, and software failures. For instance, Amazon Web
Service’s server was hit by lightning, causing destruction
on power generator. Although Amazon successfully trans-
ferred data to a backup server, the service still stopped
after their uninterruptible power supply (UPS) went out.
There was bulk email deletions in Gmail happened in
2006; numerous users found that they lost their emails
and contact information without further notification from
Google. Google was unable to restore the accounts after
users responded the problem. Another incident happened
recently in July, 2012. Because of a security loophole on
the access control, Dropbox, a popular cloud storage ser-
vice, was attacked by hackers. Some users reported that they
received tons of spam emails, and some users’ passwords
were even leaked.
Although the security requirements for cloud storage

vary with different applications and users, they share the
same three basic objectives as any computer information
systems [2]: integrity, confidentiality and availability. Many
different tools have been developed to achieve these objec-
tives, such as authentication, access control, encryption,
certification, audition, and digital signature. This paper
aims at providing a thorough study on recent data secu-
rity mechanisms developed for the cloud storage. Based on
the results of the study, we give our insights and suggestions
on the future research directions in achieving each security
objectives.
The rest of this paper is organized as follow: themodels of

cloud storage systems and related security implications are
firstly introduced in Section II. A general conceptual system

architecture model of the cloud storage is also proposed
to address security issues in different layers. In Section
III, recent researches on data integrity protection such as
proofs of retrievability (POR) and third party audition are
reviewed and compared. In Section IV, data confidential-
ity and its related research work are discussed. A promising
new encryption technique, fully homomorphic encryption
(FHE), which allows algebraic operations performed on
encrypted data, is examined in detail first, followed by
discussion on access control and searchable encryption.
In Section V, we probe methods for ensuring data avail-
ability in distributed cloud storage systems, such as data
synchronization, data recovery, and information disper-
sal algorithms. At last, concluding remarks are given in
Section VI.

I I . OVERV IEW OF SECUR ITY IN
CLOUD STORAGE

The scope and requirements for cloud security vary signif-
icantly with different cloud deployment models. National
Institution of Standards andTechnology (NIST) has defined
[3] four deployment models of cloud computing. Private
cloud is provisioned for exclusive use by a single orga-
nization comprising multiple users. Community cloud is
provisioned for exclusive use by a specific community of
users from multiple organizations that have shared con-
cerns.Public cloud is provisioned for open use by the general
public. Hybrid cloud is a combination of at least two of the
above three. Apparently, the price of deployment decreases
from private cloud to public cloud at the cost of increasing
security concerns.
Cloud storage can be deployed in any of the four deploy-

ment models. Internet-based public cloud storage services
are rapidly growing because they are able to provide users
with biggest cost saving and most elasticity. Numerous
storage service providers (SSPs), including Amazon, IBM,
Google, Microsoft, EMC, HP, Symantec, Rackspace, to
name just a few, are competing in this enormous market.
However, these public cloud storage services also face high-
est potential risks of security breaches because the shared
infrastructure is open to the public. As a matter of fact,
cloud storage systems deployed in other forms of multi-
tenancy clouds, including hybrid clouds and community
clouds, are also exposed to higher risks than private cloud.
Even in the private cloud, it is highly likely that cloud
storage is managed and operated by a service provider off
premises, in order to take the most advantage of the cloud
computing. In fact, the cloud storage usage, such as disas-
ter recovery backup, requires off-premises storage. When
data are no longer stored and managed by the data owner
on its own premises, the data owner has less control over
their data. Therefore, cloud storage security is challenging
if the service providers are not trusted, regardless of the
deployment model.
NIST has also defined three primary cloud service

models. Software as a Service (SaaS) implies consumers

https://www.cambridge.org/core


survey on securing data storage in the cloud 3

utilize service provider’s application running on cloud
infrastructure, such as SalesForce CRM, YouTube, and
Google Apps (Gmail, Google Document). Platform as
a Service (PaaS), means the service provider builds an
environment for consumers to establish acquired appli-
cations with programming languages, libraries, and tools
that are already supported in the platform. Famous PaaS
includes Google App Engine, Microsoft Azure, and Cloud
Foundry from VMware. Infrastructure as a Service (IaaS),
represents consumers can deploy and manage applica-
tion, operating system with provided network, and storage
devices. Amazon’s Elastic Compute Cloud (EC2) is a lead-
ing example, with other offerings such as RackspacesMosso
and GoGrid’s ServePath [3]. From SaaS to PaaS, and to
IaaS, users have progressively deeper control over the stack
of cloud architecture, thus share more responsibility on
security enforcement.
Basic cloud storage services are categorized as IaaS ser-

vice model, although many cloud storage providers are
offering value-added PaaS and SaaS services built upon
their baseline IaaS services. As an IaaS, cloud storage allows
users to strengthen the security measure using their own
security protection mechanisms. For example, users can
encrypt their data before moving them into the cloud stor-
age using a private key managed by themselves. In this case,
even if the data were accessed by unauthorized parties, the
sensitive informationwould not be revealedwithout obtain-
ing the key. However, users of SaaS services can only rely on
the service provider’s security measures.
The basic architecture of a cloud storage system is com-

posed of a storage resource pool, including the distributed
file system, the Service Level Agreements (SLA), and service
interfaces [4, 5]. In order to conceptually understand the
cloud storage systems, and how security protection mech-
anisms could be integrated and implemented in the system,
we decompose the system architecture into a three-layer ref-
erence model based on the logical function boundaries as
shown in Fig. 1.
In physical storage infrastructure layer, there are dis-

tributed wired and wireless networks connecting a dis-
tributed storage device network. The second layer is storage
management layer, which processes necessary operations,
such as data placement, replication, and reduction, on the
stored data in the first layer. Bymeans of virtualization tech-
nology, this layer becomes the intelligent abstraction layer,
which hides the complexity of the underlying layer. The ser-
vice interface layer provides the interface for users to access
their data stored in the cloud storage. Basic cloud storage
systems mostly provides either a client-side software or a
web browser interface, or sometimes both. Client-side soft-
ware has to be installed on the user’s devices used to access
the data, whereas a web browser interface allows access
of data from any place without local installations. Some
advanced cloud storage systems also provide an Application
Programming Interface (API), which can be used to directly
integrate access of stored data into other applications. Most
of those applications belong to PaaS or SaaS based on the
cloud storage infrastructure.

Fig. 1. Cloud storage architecture [5].

Since different layers have different functionalities, the
security concerns in each layer have different empha-
sis. The physical storage infrastructure layer deals with
physical and hardware security. The storage management
layer should efficiently control the resource allocation and
reliably perform data management. In the service interface
layer, how to avoid the encroachment on rights of both
clients and service providers using secure interfaces and
APIs has been extensively discussed. In every layer, there
could be risks, intrusions, and attacks against data integrity,
confidentiality and/or availability. Therefore, storage secu-
rity protection mechanisms should be integrated into every
layer, and the security objectives cannot be achievedwithout
the collaborated efforts across all three layers. For exam-
ple, to ensure data availability under any circumstances such
as hardware failure or disasters, the physical storage infras-
tructure layer usually have duplicated data stored at differ-
ent locations. In case data stored in one location was lost,
the storage management layer should be able to locate the
available data in another location and route it to the users
upon their request. The service interface layer should be
able to effectively receive incoming requests from anywhere
and provide reliable access method to legitimate users.
Given the architecture overview of cloud storage and its

security implications, we will discuss recent research efforts
in achieving the threemain security objectives, namely, data
integrity, data confidentiality, and data availability, in the
following three sections, respectively.

I I I . DATA INTEGR ITY

Data integrity refers to the property that data have not been
altered or destroyed in an unauthorized manner [6]. In
cloud storage, since users no longer possess the physical
storage of their data, how to efficiently verify the correct-
ness of out-sourced data stored in cloud server has become
a challenging as well as a promising research topic for data
storage security.
In traditional data communication networks, data

integrity is usually threatened by malicious attackers only.
Both the sender and the receiver of data are trusted and
collaborated in detecting and protecting data integrity.



4 chun-ting huang et al.

However, in cloud storage, the cloud storage servers (CSSs)
are not always trusted. The cloud SSP has motivations to
elude the service users on stored data status. For instance,
A service provider may remove the rarely accessed data in
order to economize the storage usage, or hide the data loss
incidents for maintaining its reputation. Moreover, a mali-
cious server may change or replace the stored data. In order
to prevent the above instances, it is more valuable to have
data integrity verification process in place and regularly
query the correctness of data in storage servers. An effec-
tive verificationmechanism can also allow the user to detect
the threats of data integrity in cloud storage sooner, and
take necessary actions to minimize the damage or recover
the lost caused.
There are three basic requirements for data integrity ver-

ification process, namely, efficiency, unbounded use, and
self-protect mechanism. Efficiency implies minimal net-
work bandwidth and client storage capacity are needed for
the verification process. The client does not need to access
the entire data for verification purpose.Unboundeduse rep-
resents verification process should support unlimited num-
ber of queries. Self-protect mechanism means the process
itself should be secure against malicious server that passes
the integrity test without accessing the data.
A number of different techniques and mechanisms have

been proposed and designed for cloud data integrity ver-
ification process. The mainstream of research in this field
belongs to POR and Provable Data Possession (PDP), both
were designed to the above three requirements. The two
methods originally emerged with a similar concept but dif-
ferent approaches. Since then, each one had gone through
further development along different directions such as
dynamic data support, public verifiability, and privacy
against verifiers. Dynamic data support allows a client to
dynamically update their data partially after uploading the
data. Public verifiability enables everyone, not just data
owner or verifier, to perform verification process. Privacy
against verifiers ensures that the verification process does
not contain any private information of data owner. POR and
PDP schemeswith their developments will be discussed and
compared in more detail later in this section.
Besides those two approaches, there are several methods

studied to address the storage data integrity issue resulted
from data insertion, modification, and deletion at the block
level. In 2010, Proof of Erasability (POE) scheme was pro-
posed by Paul and Saxena [7]. POE addresses clients’ need
to ensure a comprehensive destruction of the stored data in
the storage when they withdraw the data and disassociate
with the storage provider. This model plays a role as prob-
ing engineering or destructor, which can ensure the stored
data are shredded partially or fully based on the rules of
data store. Nevertheless, this scheme only allows the data
owner knowing the data are being destroyed. Another par-
allel scheme calledProofs of Secure Erasure (PoSE-s) also has
a similar function on remote attestation [8]. Even though
this scheme was proposed to replace hardware-based attes-
tation, it is suitable for updating secure code and secure
storage erasure for cloud.

Fig. 2. Schematic of a POR system [9].

In the following subsections, we will first introduce POR
and PDP, followed by their developments to improve effi-
ciency, dynamic data support, and public verifiability.

A) Introduction to POR and PDP
As s widely studied mechanism to ensure data integrity,
POR was firstly proposed by Juels and Kaliski in 2007 [9].
Figure 2 depicts the general schematic of the proposed POR
system, which ensures the server (prover) to a client (ver-
ifier) that the stored data are intact during the storing and
retrieving process of the client. The client first encode a raw
file F through an encoding algorithm into an encoded file F’
and then stores it in the prover. A key generation algorithm
produces a key K stored in the verifier, and it is used to
encode. For the checking process, the verifier can perform
challenge–response process with prover in order to check if
F can be retrieved.
The first POR scheme introduced by Juels and Kaliski

employed a sentinel scheme. POR protocol encrypts F and
inserts randomly several sentinels into the other file data
blocks after encryption. These sentinels play an crucial role
for verification. The verifier can challenge the prover by
pointing out the positions of a collection of sentinels, and
the prover should return the values of the sentinels. If the
values are different from the verifier’s data, then it shows
that prover has deleted or modified F. POR also includes
error-correcting code to recover a small portion F if cor-
rupted. However, this scheme requires pre-processing and
encoding of F prior to store into the data storage, and it is
bounded use – number of sentinels can be used up for lim-
ited queries. Therefore, Juels and Kaliski proposed another
technique from Lillibridge et al. [10], Naor and Rothblum
[11]. It stores the redundantly encoded data blocks withmes-
sage authentication code (MAC) to replace sentinels, and
the MACs are stored together with data blocks. In this
case, verification algorithm can examine the data integrity
and ensures retrievability by requesting random number of
block positions with their MACs. This approach resolves
bounded use problemof the previous scheme, but at the cost
of higher communication complexity of the audit.



survey on securing data storage in the cloud 5

Fig. 3. Schematic of a PDP system.

On the other hand, PDP came out concurrently with
Juels–Kaliski’s scheme. It was proposed by Ateniese et al.
[12] and constructed based on symmetric key cryptography.
PDP firstly chose RSA-based homomorphic verifiable tags
[13] to combine multiple file blocks into a single value. A
similar approach was also adopted later by Shacham and
Waters [14]’s POR scheme in 2008. PDP scheme also pro-
vides data format independence, and it puts no restriction
on the format of data. In other words, PDP allows any veri-
fier (not only client) to query the server. POR and PDP both
employed erasure code, which is a Forward Error Correc-
tion (FEC) for the binary erasure channel, helping recovery
of the original message from slightly damaged data. The
major difference between initial POR and PDP is that POR
ensures not only data integrity at the server end but also
retrievability, whereas PDP guarantees only data integrity at
cloud data storage. Nevertheless, PDP ismore efficient com-
pared to Juels–Kaliski’s POR, since it does not require any
bulk encryption, and PDP requires smaller storage space
on the client side and fewer bandwidths for challenges and
responses. However, both schemes work on static data only,
even though Ateniese et al. [15] proposed a dynamic version
later in 2008, but it is restricted by number of queries and
basic block operations (Fig. 3).

B) Improvement on public verifiability
Since the Juels–Kaliski’s original POR schemewas proposed
without implementation of public verifiability, and its com-
plexity was still high for communication and client storage,
it became a popular topic for researchers to improve public
verifiability and efficiency (discussed in the next subsec-
tion). In 2008, Shacham andWaters [14] proposed two new
PORs system structures based on Juels–Kaliski’s POR con-
cept. Both solutions allow only one authentication value for
the purpose of verification. The first one is privately ver-
ifiable using pseudorandom functions (PRFs); the second
one is publicly verifiable, and it was built based on signa-
ture scheme of Boneh, Lynn, and Shacham in a bilinear
group [16]. Since the BLS signature was adopted, the public
retrievability was achieved, and the proofs are reduced to
a single authentication value, thus reduced communication

complexity from O(t) to O(1), where t is the number of
block positions. However, this scheme still works on static
data only, without support of dynamic data update. Besides,
the security parameter relies on Random Oracles, which
means the client’s challenge size grows up to O(t2).
A new system model, as depicted in Fig. 4, which aimed

at establishing a trustable mechanism between client and
CSS by introducing a Third Party Auditor (TPA), was pro-
posed in 2009 [18]. By using a privacy-preserving third-
party auditing protocol, the TPA is trusted to monitor the
stored data in cloud and transactions between the client and
CSS, as well as assess and expose risks of the cloud ser-
vices. This new scheme has been further developed based
upon existing PORs and newly developed cryptographic
primitives [17, 19–22].
TPA typically adopts a public-key-based homomorphic

authenticator with random masking to perform traffic
auditing without a local copy of the data for integrity check.
This public audit system can be constructed from the setup
stage, which allows a user to initialize the secret parame-
ters of the system, send the verification metadata to TPA,
and audit the corresponding result. In this process, TPA
will issue an audit message to the server for checking the
user’s data.
Homomorphic authenticators are used to verify meta-

data generated from individual data blocks while the aggre-
gated authenticators can justify a linear combination of
data blocks. As a paradigm, one can use a homomorphic
token with distributed verification to check the integrity
of erasure-coded data. The erasure-correcting codes play a
vital role in preparing files for distribution so that the dis-
tributed files have redundancy parity vectors and the data
dependability property. However, the linear combination
of data blocks may potentially reveal users’ privacy. With
random masking, TPA cannot derive user’s data content by
building a correct group of linear equations.
The above model was further improved in [23] by inte-

grating dynamic data support in 2011. Zhu et al. [24] also
proposed a construction of dynamic audit services for
untrusted and out-sourced storage. It can detect abnormal
behavior by using fragment structure, random sampling,
and index-hash table.
Even though TPA-based schemes allows public verifi-

cation of data integrity checking, They have a potential
obstacle that requires an additional constituency, which is
a third party auditor, added to the entire existing data stor-
age scheme. The implementation of such schemes might be
a burden for service providers because of additional costs.
To address this concern, Han and Xin [25] proposed a new
scheme offering the traditional TPA functions provided by
CSP in a trustful manner. This scheme utilizes RSA and
BilinearDiffie–Hellman techniques, createsmessage header
and mechanisms to achieve authentication process, while
reducing complexity of cloud computing. Another work
that provides public verifiability without help from the third
party auditor was examined in [26] based on the work of
Sebe et al. [27], and it has been proved to be secure from an
untrusted server.



6 chun-ting huang et al.

Fig. 4. TPA structure [17].

C) Improvement on efficiency
Efficiency of POR and PDP has been improved from differ-
ent aspects of the verification process. For instance, Curt-
mola et al. [28] showed how to integrate error-correcting
codes with PDP and an adversarial error-correcting code
construction similar to PORs. It also enabled PDP scheme
to secure multiple replicas over distributed system without
encoding each separate replica.
Besides, Dodis et al. [29] provided different solutions of

optimized POR schemes under different constraints, such
as bounded-use or unbounded-use, knowledge-soundness,
or information-soundness. They analyzed the tradeoffs in
parameters and security between bounded and unbounded
use schemes, and they also compared PORs under different
circumstances in detail. It also improved the Shacham–
Waters POR scheme by avoiding the usage of RandomOra-
cles, which reduced the challenge size down to be linear in
the security parameter, from O(t2) to O(t).
In addition, a theoretical framework of PORs improve-

ment was concurrently proposed by Bowers et al. [30].
The model offers an improvement over the protocols of
Juels–Kaliski [9] and Shacham–Waters [31] by proposing
a new variant to achieve lower storage overhead and tol-
erate higher error rates. The proposed POR scheme also
decreased the challenge size to be linear of the security
parameter. Another POR scheme was proposed by Kumar
and Saxena in 2011 [32]. It targeted on simplification of
Juels–Kaliski’s sentinel scheme, making it suitable for lim-
ited computational power or small storage at verifier end.
For PDP, Ateniese and Burns et al. concluded previous
research developments and implementations of PDP in 2011
[33], and proposed two improved provably secure PDP
schemes with higher efficiency than previous ones.

D) Improvement on dynamic data support
Supporting dynamic data update in data integrity verifi-
cation schemes are especially challenging. Ateniese et al.
[15] proposed the first partially dynamic PDP scheme in
2008. This scheme was more efficient in setup and verifi-
cation phase compared to its previous version in [12], since

it was only relied on symmetric-key cryptography. On the
other hand, it only allowed a limited number of queries and
basic block operations with limited functionality. For exam-
ple, block insertion was not supported. Moreover, public
verifiability was not supported either.
In 2009, Erway et al. proposed an improvement on PDP,

referred as dynamic provable data possession (DPDP) [34].
In order to support provable updates on the stored data, this
newmodel utilized authenticated directories based on rank
information, and it defined the update as block insertion,
modification, or deletion to achieve dynamic PDP scheme.
Nevertheless, this scheme maintains skip list [35] for tags
and stores root metadata in clients side to prevent replay
attack, so its computational and communication complexity
can be up to O(log t).
The dynamic data updates on POR were first consid-

ered in 2009. Wang et al. [17, 18] proposed the first scheme
that achieved efficient data dynamics of the POR model by
utilizing the homomorphic token with distributed verifica-
tion of erasure-coded data, and manipulation of theMerkle
Hash Tree (MHT) [36], respectively. The first scheme sup-
ported block update, delete and append operations only,
while the second scheme provided both public verifiability
and data dynamics for remote data integrity check, but the
verification complexity increased to O(log n) fromO(1) as a
trade-off, and it achieved partially dynamic instead of fully
dynamic. Both schemes also showed a new system model
involving TPA.
In addition, Zheng and Xu presented a new POR scheme

with a fresh property, namely, fairness, to deal with dynamic
data [37]. This property prevents unscrupulous clients from
accusing a legitimate server about modifying their stored
data. This issue arises because of the feature of dynamic
data. POR for static data storage can solve this problem
simply by asking the verifier to approve and sign digitally
when the data has not been stored into the storage. The pro-
posed fair and dynamic proof of retrievability (FDPOR) was
mainly composed of two parts, a new authenticated data
structure: range-based 2–3 tree (rb23Tree) and a new incre-
mental signature scheme called hash-compress-and-sign.
However, FDPOR did not support public verifiability, and



survey on securing data storage in the cloud 7

complexity for both the verifier and the prover were higher
than that of previous PORs.

E) Summary
PORs and PDPs are the major remote data integrity check-
ing protocols proposed in cloud storage systems. The orig-
inal POR and PDP protocols differs in many aspects. PORs
are considered to be more secure compared to PDPs,
because it requires encryption of the original data and error
correction coding to recover damaged data, whereas PDPs
are known for higher efficiency and applicability to large-
scale public databases, such as digital libraries.With further
improvement of each, the two schemes have been con-
verging toward the same objectives. For example, although
public verifiability and homomorphic verifiable tags were
first known for PDPs, these characteristics are also applica-
ble to PORs. On the other hand, some PDP variants may
also adopt encryption and/or error correction coding tools
to strengthen their securitymeasurement. Therefore, it is all
about making tradeoffs among security functionalities and
efficiency.
In Table 1, we summarize the above reviewed POR and

PDP schemes by a thorough comparison of their per-
formances. It is noteworthy that schemes with dynamic
data support suffers higher complexities compared to their
counterparts. Future research directions include further
improvements on efficiency and fully dynamic data sup-
port. To improve efficiency of those schemes, reducing
communication cost and storage overhead are rightful
considerations. However, fully dynamic data support is a
challenging objective, because it increases complexity but
reduces update information on server-end.

I V . DATA CONF IDENT IAL ITY

Data confidentiality in cloud storage security refers to the
property that information stored in the cloud storage is not
made available or disclosed to unauthorized individuals,
entities, or processes. Access control and data encryption
have been widely deployed to protect data confidentiality
in the traditional data communication networks. It is nat-
ural to extend their deployment in cloud storage systems.
For instance, Secure Socket Layer (SSL) and AES-256 bit
encryption are adopted in Dropbox to ensure data secu-
rity. However, data confidentiality in cloud storage systems
faces new risks and challenges, thus calls for new tech-
niques or improvedmechanisms. In this section, we discuss
new challenges faced by access control and data encryp-
tion mechanisms, as well as recent developments to meet
those challenges of data confidentiality protection in cloud
computing.
Although traditional encryption techniques can hide the

information of data from the cloud server, it would not
provide a satisfactory solution if users demand to compute
on their stored data. Since the computing can not be func-
tionally performed on the ciphertext, users would have to
decrypt the data before performing any computation and

re-encrypt after the computation. During this process, sen-
sitive information could have been leaked to the curious
server. Otherwise, user would be forced to compromise
with the service provider by uploading plaintext and sign-
ing SLA, which exposes their data to higher risks. To solve
this problem, there have been research attentions drawn to a
newly proposed encryption primitive, namely, FHE, which
allows ciphertext to be computedwithout affecting decipher
process.
In the following of this section, we first examine new

access control mechanisms with higher efficiency and fine-
grain user control suitable for cloud storage. Then introduce
some new concept of data encryption schemes, such as
searchable encryption and FHE, and discuss their poten-
tial applications in protecting data confidentiality in cloud
computing. Then,Other data confidentiality approaches are
also briefly discussed.Weprovide our insights of the current
research efforts and future directions in data confidentiality
to summarize this topic.

A) Access control
As mentioned above, access control has been one of the
key mechanisms to protect data confidentiality in tradi-
tional data networks. It is designed to block unauthorized
users and malicious hackers from accessing data. Although
the objective of access control in cloud storage does not
differ from that in traditional data network, the require-
ment does change. Traditional access control enforced by
the service provider could not stop a curious cloud service
provider accessing users’ sensitive data, which was stored
in the service provider’s infrastructure and managed by
the service provider. A curious cloud storage server try-
ing to derive sensitive information from its stored data, or
from data operations performed by data owner and autho-
rized users, is a new threat model against data confidential-
ity in cloud storage service. Moreover, a malicious service
provider could intentionally leak the data to unauthorized
parties for profit, or a malicious attacker could compromise
the service provider and get unauthorized access to the data.
To address this challenge, cryptographic access control

schemes that shifted the access control agency from the ser-
vice provider to the users have been proposed. Instead of
relying on untrusted service provider to grant access con-
trol, users can enforce their own access control by selectively
granting different decryption access to a certain part of
encrypted data. Bymeans of encryption, the owners of data,
i.e., cloud storage users who lost their physical control over
their own data could regain their control at the semantic
level.
Plutus [39] and SiRiUS [40] are examples of using

encryption to secure file sharing on remote untrusted stor-
age. These schemes encrypted different files with different
keys, thus changing the problem of access to files to the
problem of key management. However, this approach is not
scalable when applying to cloud storage, because the com-
plexity of key management increases with the number of



8 chun-ting huang et al.

Table 1. Performance comparison for data integrity verification schemes

Data dynamic Public verifiability Retrievability Server comp. Verifier comp. Communication comp. TPA

2007 JK [9] Static No Yes O(1) O(1) O(t) No
2008 SW [31] Static Yes Yes O(1) O(1) O(1) No
2009 Wang [17, 18] Partially dynamic Yes Yes O(log t) O(log t) O(log t) Yes
2009 Dodis [29] Static Yes Yes O(1) O(1) O(1) No
2009 Bowers [30] Static Yes Yes O(1) O(1) O(1) No
2010 Wang [38] Static Yes Yes O(1) O(1) O(1) Yes
2011 Saxena [32] Static No Yes O(1) O(1) O(1) No
2011 Zheng [37] Partially dynamic No Yes O(log t) O(log t) O(log t) No
2007 Ateniese [12] Static Yes No O(1) O(1) O(1) No
2008 Ateniese [15] Partially dynamic No No O(1) O(1) O(1) No
2008 Curtmola [28] Static Yes No O(1) O(1) O(1) No
2009 Erway [34] Fully dynamic Yes No O(log t) O(log t) O(log t) No
2011 Ateniese [33] Partially dynamic Yes No O(1) O(1) O(1) No
2011 Hao [26] Fully dynamic Yes No O(log t) O(log t) O(log t) No

files and/or the number of users, which both could be enor-
mous in a cloud storage system. As a large number of users
are sharing the same infrastructure in a public cloud storage
built upon a complicated network scale, it is crucial to have
efficient, scalable and reliable access control mechanism in
place.
In the following, we examine recent research on more

efficient access control using encryption techniques devel-
oped for cloud storage systems.

1) Access control using attribute-based encryption (ABE)
In attribute-based access control (ABAC) model, access is
granted based on attributes of the user. When applied to
cloud storage, access control is enforced on data encrypted
using ABE schemes. In an ABE system, a user’s keys and
ciphertexts are labeled with sets of descriptive attributes.
A particular key can decrypt a particular ciphertext only if
there is a match between the attributes of the ciphertext and
the user’s key.
The concept of ABE was introduced by Sahai andWaters

[41]. Their access control allowed for decryption when the
number of overlapped attributes between a ciphertext and
a private key exceeds a specified threshold k. The fuzzy
nature of this scheme was originally designed for error-
tolerant identity-based encryption scheme that could use
biometric identities. However, with a threshold-based flat
access structure, it could not be generalized to other appli-
cations. Two prominent ABE schemes with more general
tree-access structures, namely, Key-Policy Attribute-Based
Encryption (KP-ABE) [42] and Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [43], were proposed in 2006
and 2007, respectively. Both algorithms associated a set of
expressively descriptive attributes with a tree-access struc-
tures to enforce access control on the encrypted data, but
they work in a reverse manner. In KP-ABE, each ciphertext
was labeled with a set of attributes during encryption, while
the users’ private keys were associated with an access tree
specifying which ciphertexts the key can decrypt. On the
contrary, in CP-ABE, Users’ private keys were based on
a set of their attributes while ciphertexts are associated

with an access tree over the attributes during encryption.
As a result, in KP-ABE scheme, it is the key distributor
(usually the service provider), who decides the access pol-
icy, while in CP-ABE scheme, it is the encryptor (usually
the data owner) who controls the access over the encrypted
data.
In the above-mentioned ABE schemes, the access pol-

icy can only contain logical formula “and” and “or”, and
threshold gates. A KP-ABE scheme was introduced in [44]
which allows “negative” constraints to be represented in
access policies. Additionally, many CP-ABE schemes were
proposed such as [45–47] which either achieve chosen-
ciphertext attack (CCA) secure or are built on different
security assumptions. Even though the KP-ABE and CP-
ABE work in reverse manner, Goyal et al. [48] provided a
generic approach to transform a KP-ABE scheme into a CP-
ABE one. Malek and Miri combined the two ABE schemes
into one system, and proposed a balanced access control
that allows both service provider setting up system wide
access policies and data owner setting up access structure
to their own data [49]. Further research on ABE is also
discussed in [50, 51]. In a dynamic system, access policies
may differ from time to time, and user qualifications may
also change. Therefore, the ability to revoke attributes from
a user is desired in ABE systems. Several revocable ABE
schemes [52, 53] were proposedwhere anABE system is able
to revoke users from accessing encrypted data to which they
used to have access in the system.
When using the ABE in a system where there is a

large number of attributes, assessing the qualification of
users and generating decryption keys by a central author-
ity becomes impractical. Multi-Authority Attribute-Based
Encryption (MA-ABE) was first proposed to address this
issue in 2007 [54]. In a MA-ABE scheme, attributes are
divided into different sets, and each set can be man-
aged by an independent attribute authority. Corresponding
attribute keys for decryption are issued bymultiple attribute
authorities, and encryptors can specify an access policy that
requires a user to obtain decryption keys for appropriate
attributes from different authorities in order to decrypt a



survey on securing data storage in the cloud 9

message. Subsequently, several other MA-ABE construc-
tions were proposed in [55, 56].

2) Role-based access control (RBAC)
Another access control model called RBAC [57, 58], has also
been commonly adopted in traditional storage system in
order to simplify management of permissions. Its access
policy is determined based on different roles assigned to
users by the system, while the data owner can specify a set
of permissions of their data to different roles. By separa-
tion the tasks of role assignment and permission assign-
ment, RBAC is much more efficient and scalable compared
to other access control based on individual users, because
the number of roles are usually significantly less than the
number of users. Furthermore, it makes dynamic access
control easier. For example, in applications where permis-
sions for roles change slowly, while users may enter, leave,
or change roles rapidly, the role manager can simply assign
a new role to the user or revoke a role from the user. On the
other hand, the data owner can also add permissions to a
role or revoke permissions from a role. The authors of [59]
suggested including RBAC in a new access control model
for the health care system that can provide flexible access
rights, because it can be modified dynamically while the
task changed.However, one of themajor criticisms of RBAC
schemes is the complicated process when setting up the role
structure. To make RBACmore efficient, roles can be struc-
tured hierarchically so that some roles inherit permissions
from others.
To enforce RBAC policies, one approach is to transform

the access control problem into a keymanagement problem.
In the literature, there exist many hierarchical access con-
trol schemes [60–62]which have been constructed based on
hierarchical key management (HKM) schemes. Because of
the similarity in structures between hierarchical access con-
trol and RBAC, a hierarchical access control scheme can be
easily used to enforce RBAC access policies in cloud envi-
ronment. In 2010, a role-based encryption (RBE) scheme
[63] was built directly on RBAC policies. The security of
the hierarchical access control scheme relies on the correct
execution of the key assignment process, while the security
of the RBE is based on the security of the cryptographic
algorithm. More specifically, when a user is assigned to a
role in RBE, a decryption key is calculated through a cryp-
tographic algorithm by taking as input of the secret value
and the identity of user and role. In the hierarchical access
control scheme, the key for the user is generated based on
the access control policies of the whole system. In 2011,
Zhu et al. [64] proposed a revocable RBE scheme which
allows users to be granted or revoked role memberships
dynamically.
In the above schemes for enforcing RBAC policies, user

membership of each role and role hierarchy are man-
aged by a central authority. However in large-scale RBAC,
systems which have hundred or even thousands of roles
and hundreds of thousands of users and permissions, it is
impractical to centralize the task of managing these users
and permissions, and their relationships with the roles in

a small team of security administrators. Zhou et al. [65]
proposed a new RBE scheme using an identity-based broad-
cast encryption (IBBE) algorithm [66], which allows user
memberships to be managed by individual roles. In the
new RBE scheme, plaintext can be encrypted to a specified
role, and only users in that role and its predecessor roles
can decrypt the data with their role secrets and decryption
keys. The employment of a broadcast encryption algorithm
allows dynamically adding new users into a role without re-
encryption, as well as revoking an existing user from a role
without affecting any other existing users. In addition, this
scheme has other features such as constant size keys and
ciphertexts.
There have also been combined ABAC and RBAC

schemes proposed in order to take advantage of both to
provide effective access control for distributed and rapidly
changing applications [67]. Hong et al. [68] implemented
RBAC system for cloud storage via CP-ABE. In their work,
permission assignments were handled by data owner while
role assignmentswere handled by other users through prop-
agation.

B) Searchable encryption
With more and more data moving to the cloud storage, it
becomes imperative to enable search over the huge amount
of data for many user applications. To preserve data con-
fidentiality and integrity, it is necessary to store encrypted
data in the cloud storage servers. To perform searching
over data, the user has to either store an index locally,
or download all the encrypted data, decrypt it and search
locally. Neither approach is efficient when the data size
grows in the cloud. When users seek to search and down-
load relevant files from a cloud storage system, it is often
desirable for the SSP to host search service, because it can
minimize the network traffic and reducemanagement com-
plexity for the users.Therefore, how to perform searching
on encrypted databases without the need of decryption
has become an increasingly fascinating topic in cloud stor-
age systems. Recently, there have been new cryptographic
primitives, called searchable encryption schemes [69, 70],
proposed to address this problem.
The basic idea of searchable encryption schemes is to

encrypt a search index generated over a collection of data
in such a way that its contents are hidden without appro-
priate tokens, which can only be generated with a secrete
key. Given a token for a keyword, one can retrieve point-
ers to the encrypted data files that contain the keyword.
During the retrieval process, there is no contents of either
the data files or the keyword revealed, other than the fact
that all the retrieved data files contain one keyword in
common.
Searchable encryption schemes, including Symmetric

Search Encryption (SSE) [70], Asymmetric Search Encryp-
tion (ASE) [69] and other improvements on both schemes
are reviewed in [71]. SSE employs symmetric cryptographic
algorithms, such as block cipher or hash function, there-
fore is suitable when the party that performs search over the



10 chun-ting huang et al.

data are also the onewho generates it, whereas ASE employs
asymmetric cryptographic algorithms such as elliptic curve,
thus is also suitable when the party that performs search
over the data are different than the one who generates it.
Therefore, ASE has wider applications than SSE in cloud
storage than SSE. Meanwhile, compared to SSE schemes,
ASE can achieve more complex search queries, such as con-
junctions of terms, but at the cost of higher complexity
and weaker security guarantees [72]. Efficient ASE, or ESE
scheme was introduced in [73] to improve the efficiency
when the keywords are hard to guess. However, it is more
vulnerable to dictionary attacks.
Since SSE achieves higher efficiency and stronger secu-

rity, it has been further developed recently. For example,
dynamic SSE [74, 75] extended the inverted index approach
[76] to allow update of the encrypted index and data files,
and to achieve adaptive security against chosen-keyword
attacks. Furthermore, Parallel and dynamic SSE [74] enables
more efficient and scalable construction based on a key-
word red-black tree-basedmulti-mapdata structure.On the
other hand, SSE schemes with improved functionalities but
compromised security have been proposed. Kuzu et al. [77]
utilized locality sensitive hashing (LSH), which is widely
used for fast similarity search in high-dimensional spaces
for plain data, and proposed a search scheme to enable fast
similarity search in the context of encrypted data. Another
approach, which was proposed by Wang and Cao et al.
[78] to secure ranked keyword search in encrypted cloud
data. This method utilized the Order-Preserving Symmet-
ric Encryption (OPSE) [79, 80], which achieves both secu-
rity and privacy-preserving by protecting sensitiveweighted
information.
For cloud storage that are accessible with multiple users,

how to enforce privileges and access control while searching
through cloud storage has attracted researchers’ attentions.
One approach was proposed by Singh et al. [81] in 2009
which performs indexing in the trusted enterprise domain,
and utilizes the resulting indices systematically with the
Access Control Barrel (ACB) [82] primitives and concepts
of user access hierarchy. This solution improves indexing
efficiency and allows transferring the indices to the SSP for
hosting, and it can be developed based on the integrity of
search results returned by the SSP in the future.
Other than search algorithms on encrypted database,

more general computation on encrypted database is
a related topic. Secure Computation ON an Encrypted
Database (SCONEDB) [83] was proposed to solve the
k-Nearest Neighbor (kNN) computation in an encrypted
database utilizing asymmetric scalar-product preserving
encryption (ASPE). Besides, SCONEDB can incorpo-
rate other existing techniques, such as OPSE for the
range query and homomorphic encryption for aggregate
queries. CryptDB [84] implemented an integrated system
that supports more general SQL query operations over
encrypted database, by adapting a number of existing
and new SQL-aware encryption primitives with different
security properties and functionalities. CryptDB dynami-
cally adjusts the encryption strategies using layered onion

structures, where each data was dressed in increasingly
stronger encryption, such that the outmost layer provides
maximum security, whereas inner layers provide more
functionality. A trusted proxy determines whether layers
of encryption need to be removed when receiving a query
from the user application.

C) Fully homomorphic encryption
Homomorphic encryption allows specific algebraic oper-
ations to be manipulated on a ciphertext, so it can pro-
duce the same encrypted result as the ciphertext of the
result of the same (or different but known) operations per-
formed on the plaintext. In other words, the operations
to be performed on original data can now be performed
on the encrypted ciphertext without knowing the orig-
inal data. Homomorphic encryption can be categorized
into two types: partially homomorphic encryption (PHE)
and FHE. PHE allows only one homomorphic operation,
either addition (e.g. Paillier [85]) or multiplication (e.g.,
unpadded RSA), while FHE supports both addition and
multiplication operations. Since the original unpadded RSA
algorithm published in 1977, there have been many PHE
algorithms developed. However, the partially homomor-
phic property of an encryption algorithm has rarely been
considered advantageous, but rather vulnerable to adap-
tive CCAs. Therefore, PHE algorithms have been found
useful only in limited security applications such as elec-
tronic voting systems. On the other hand, since the first
FHE algorithm was announced in 2009 [86], it has been
recognized as a huge breakthrough in the computing secu-
rity field. Practical application of FHE cryptosystems will
potentially enable development of computing programs,
which runs on encrypted input data to generate encrypted
output. These programs can thus be run by untrusted enti-
ties without revealing any sensitive information during the
computing process.
A homomorphic cryptosystem ε consists of four algo-

rithms, KeyGenε , Encryptε , Decryptε , and an Evaluateε
algorithm. The first three algorithms are defined the same
as those in any public-key cryptosystems. The KeyGenε(λ)

produces key-pair (pk, sk) given a security parameter λ. The
Encryptε algorithm takes pk and a plaintext π as input,
and it outputs a ciphertext φ. The Decryptε takes sk and
φ as input, and outputs the plaintext π . In addition, the
Evaluateε algorithm takes as input pk, a circuit C from a
permitted set Cε , and a set of ciphertexts ϕ = (φ1, . . . φt),
consequently outputs a ciphertext φ. The homomorphic
cryptosystem ε is correct for Cε if for any key-pair (pk, sk)
generated by KeyGenε(λ), any circuit C ∈ Cε , any plain-
texts π1, . . . , πt , and any ciphertexts ϕ = (φ1, . . . φt) with
φi → Encryptε(pk, πi ), it is the case that

I f φ← Evaluateε(pk, C , ϕ),

then Decryptε(sk, φ)→ C (π1, . . . , πt)

The computation complexity of all the above algorithms has
to be polynomial in the size of C and security level param-
eter λ, which is defined as all known attacks against the



survey on securing data storage in the cloud 11

scheme take time at least 2λ. ε is fully homomorphic if it
is homomorphic for all circuits [86].
A family of schemes ε(d) : d ∈ Z+ is leveled fully homo-

morphic if they all use the same decryption circuit, ε(d) is
homomorphic for all circuits of depth at most d (that use
some specified set of gates �), and the computational com-
plexity of ε(d)’s algorithms is polynomial in λ, d, and (in the
case of Evaluateε(d)) the size of C.
The first FHE scheme proposed by Craig Gentry in

2009 [86] applies lattice-based cryptography to construct
the scheme, where lattice L was a set of points in the
n-dimensional Euclidean space Rn with a strong period-
icity property. The proposed scheme started from a some-
what homomorphic encryption scheme using ideal lattices,
which is limited to “low-degree” polynomials evaluation on
encrypted data due to the augment of noise in the ciphertext
during evaluation. After this “initial construction” stage, a
“squash the decryption circuit” technique was used to mod-
ify the scheme to make it “bootstrappable”. The modified
encryption scheme can evaluate its own decryption circuit,
and effectively refresh the ciphertext to reduce the aug-
mented noises, which eliminates the limitation on the depth
of circuit evaluated over the ciphertext. In short, Craig
Gentry slightly modified somewhat homomorphic encryp-
tion by recursive self-embedding. The resulting scheme can
reduce the accumulated noise caused by multiple algebraic
operations, thus make it possible to realize FHE in arbitrary
depth.
However, this first FHE scheme is impractical since the

computation complexity and ciphertext size are high-order
polynomials in the security level parameter λ, which means
they increase sharply in order to achieve a practically high-
enough security level. This prohibit the practical application
of the FHE, especially in the cloud computing context where
high security level is crucial. Another major concern of
this scheme is that its security was based on two relatively
new assumptions, namely, the hardness of the worst-case
bounded distance decoding problem (BDD) on ideal lat-
tice, and the hardness of the average-case sparse subset sum
problem (SSSP) of the squashing step. Both are relatively
untested cryptographic assumptions.
More recently, there have been growing research efforts

made in searching practical FHE algorithms, which are
more efficient and/or based on more reliable security
assumptions. A second version of FHE scheme, known as
DGHV, was proposed by Marten van Dijk, Craig Gen-
try, Shai Halevi, and Vinod Vaikuntanathan in 2010 [87].
DGHV uses Gentry’s techniques with only elementary
modular arithmetic over integers to convert a simple some-
what homomorphic encryption scheme to a bootstappable
FHE scheme. This scheme achieved conceptual simplic-
ity because all computations were performed over integers
instead of ideal lattice. It also reduced the security assump-
tion to the hardness of the greatest common divisor (GCD)
problem. However, the price of this tradeoff is the immense
size of public key, which can be impractical for the cur-
rent systems. Stehle and Steinfeld [88] presented a faster
homomorphic encryption in order to improve Gentry’s

scheme by a more aggressive analysis of the SSSP assump-
tion, and introducing a probabilistic decryption algorithm
implemented by an algebraic circuit of low multiplica-
tive degree. With these two enhancements, this scheme
obtains O(λ3.5) bit complexity for refreshing a cipher text,
whereas previous scheme claimed O(λ6) for the same task,
where λ is the security parameter. However, there is a
non-zero probability of decryption error associated with
this scheme.
Besides, Zvika Brakerski andVinodVaikuntanathan gave

another improvement on Gentry’s scheme [89] by changing
the two security assumptions made in [86]. First, the some-
what homomorphic encryption was based on ring learn-
ing with errors (RLWE) assumption from Lyubashevsky,
Peikert and Regev [90] instead of the ideal lattices BDD
problem. Second, to make the somewhat homomorphic
encryption scheme bootstrappalbe, it used a dimension-
modulus reduction technique instead of Gentry’s squashing
technique, thus eliminating the assumption of SSSP. This
new bootstrapping technique also shortened the ciphertext
and reduced the complexity. Based on the above improve-
ment, Brakerski, Gentry, and Vaikuntanathan worked
together to propose a new leveled FHE scheme without
Gentry’s bootstrapping procedure in 2011 [91]. By applying
RLWE, this FHE scheme has O(λ · L 3) per-gate computa-
tion for L-level arithmetic circuits. As an optional approach,
they also proposed a leveled FHE scheme using bootstrap-
ping as optimization to further reduce the per-gate compu-
tation down to O(λ2), independent of L.
Following up in 2011, Coron et al. proposed an improve-

ment of FHE over the integers described by van Dijk
et al. The proposed new scheme shortened the public
key size from O(λ10) to O(λ7) [92]. This procedure is
done by using quadratic form instead of linear one in
the public key elements, so that the full-length public
key is compressed to a smaller subset of the original key.
Instead of proposing any further improvement on FHE,
Ron Rothblum manifests how to transform any addi-
tively homomorphic private-key encryption scheme into a
public-key encryption scheme [93]. To construct this pro-
cess, this scheme develops a theorem that any compact
additively homomorphic with respect to addition mod-
ulo two can be transformed into a semantically scheme.
In consequence, the public-key encryption scheme save
one hop homomorphic with regard to the same set oper-
ations with private-key encryption, which are prior FHE
schemes.
With all the theoretical development of different FHE

algorithms, it is necessary to investigate their practical
implementation. There were several implementations of
Gentry’s FHE in 2010, and the first attempt was made by
Smart and Vercauteren [94]. They were able to implement
the somewhat homomorphic scheme using “principle-ideal
lattices” of prime determinant, which can be implied by two
integers only. However, they were not able to implement the
bootstrapping functionality to obtain a fully homomorphic
scheme. Bottleneck of this implementation was the failure
to support a large amount of parameters.



12 chun-ting huang et al.

Based on this work, in 2011, Gentry and Halevi devel-
oped a series of simplifications and optimizations thatmade
bootstrapping implementation possible. As the result, the
asymptotic complexity is reduced from Smart and Ver-
cauteren’s O(n2.5) to O(n1.5). The optimizations from this
paper were also used in [92] in order to implement the fully
homomorphic DGHV scheme under new variant. With the
result of having similar performance, Coron et al. success-
fully showed that FHE can be implemented with a simple
arithmetic scheme.
In Table 2, we provide a comparison of performance for

different FHE schemes. BDD and SSSP are the problems
that stated in the first FHE scheme.

D) Other data confidentiality approaches
There are several other data confidentiality methods beside
above. For instance, The application of cryptographic algo-
rithms to data blocks in the cloud storage is a popu-
lar method used to ensure the confidentiality of stored
data. A data confidentiality scheme in coreFS, which is a
user-level network file system, was proposed in 2009 [96].
This scheme is constructed based on a new universal-hash
stateful MAC. It has smaller computational overhead of
cryptographic operations comparing to the MHT. Besides,
it allows better communication capability. However, the
choice of caching strategy, MAC tree update schedule, and
the method to store the tree can affect the performance of
this scheme.
Another data confidentiality scheme exploited the newly

proposed secure provenance (SP) model based on the bilin-
ear pairing techniques in 2010 [97]. This scheme records
the ownership and the process history of data objects in
the cloud storage in order to increase the trust from pub-
lic users. The SP model consists of the following modules:
system setup, key generation, anonymous authentication,
authorized access, and provenance tracking. The provable
security technique has been tested on this scheme under the
standard SP model. It demands some practical considera-
tions in real-world applications and further improvement
under the current framework.
Different from above schemes, an compelling statement

was proposed by Dijk and Juel in 2010 [98], which claimed
that no cryptographic protocol, even including power prim-
itives such as FHE, can enforce privacy requested by com-
mon cloud services alone. This paper also demonstrated
that above demand can be achieved by other enforcements
instead, such as tamperproof hardware, distributed comput-
ing, and complex trust ecosystems.

E) Summary
Data confidentiality is one of the most critical issues for
applications with sensitive data, such as personal informa-
tion, customer’s account information, financial and health-
care information. The new challenge of storing those data in
clouds is how to prevent accidental or intentional data leak-
age to the cloud SSP, such that even if the service provider

is compromised, the information can still be kept confiden-
tial. The fundamental solution to this problem is still data
encryption. The user has to encrypt the data before they
are moved to the cloud server, and keep it encrypted for
the entire period during which the data are in the cloud.
When the data needs to be accessed or processed by either
the data owner or other legitimate users who have the key
for decryption, it is not efficient to retrieve the encrypted
data, decrypt it, process and re-encrypt it before sending
back to the server. Therefore, new encryption mechanisms
that allow for processing of the ciphertext directly with-
out revealing the original information in the plaintext will
have a significant potential in cloud storage of sensitive data.
WIth encryption, data owners or users regain their control
over their data that are not physically stored by themselves.
FHE is an ideal example of these encryption algorithms.

However, the promising applications of current FHE algo-
rithms are hindered by its computation complexity and
other implementation difficulties. Improvements must be
made before it can be put in practical applications. In addi-
tion, more implementations of various improvements are
awaited to be evaluated on current platforms.
Unlike FHE, which has an ambitious aim at arbi-

trary computing on the ciphertext, other cloud encryption
schemes aimed at specific type of control over encrypted
data. For example, ABE allows access control being enforced
on the encrypted data by incorporating attribute-based
access structure into either the ciphertext or the decryp-
tion key. Searchable encryption schemes provide a way to
search the ciphertext for a keyword token without revealing
the real content of either data or the keyword.

V . AVA I LAB I L I TY

As a different security measure, availability in cloud storage
refers to that the data are accessible and usable when autho-
rized users request them from any machine at any time.
In an earlier stage of cloud computing, availability was of
more security concern due to the lack of mature and reli-
able infrastructure. Many incidents of service unavailability
occurred due to hardware failure and resulted in severe con-
sequences. With better and more reliable infrastructures in
place, the challenge facing the availability of cloud stor-
age service is how to preserve the user’s data in case of
emergency, such as a natural disaster.
The most straightforward solution is to keep backup

copies of data in multiple physical locations. Amazon EC2
and S3 provide a perfect example based on availability zone,
which locates within divided geographic regions, for exam-
ple, US-West and US-East. Each region contains several
instances with same data. When accident occurs, Ama-
zon EC2 and S3 can easily recover damaged or lose data
from other availability zones within the same region to save
power and time. However, this approach is not efficient in
terms of storage resource utilization.
There have been backup storage management schemes,

such as incremental backup and data deduplication,



survey on securing data storage in the cloud 13

Table 2. Performance comparison for FHE schemes

Solution on ideal lattices BDD Solution on SSSP Per-gate comp. Public key size Asymptotic comp.

2009 Gentry [86] SVP Availability of SVP Oracle O(λ6)

2010 Stehle [88] Refined Analysis O(λ3)

2011 Brakerski [89] RLWE O(λ3)

2010 Dijk [87] Replace Ideal Lattice Choosing Large Enough θ O(λ3) O(λ10)

2011 Coron [92] Refined Analysis O(λ3) O(λ7)

2010 Vercauteren [94] O(λ3) O(n2.5)

2011 Halevi [95] O(λ3) O(n1.5)

developed to improve the storage utilization. Incremen-
tal backup has been used widely in file backup services. It
exploits the correlation between current files with previous
backup version and only stores the differences.When incre-
mental backup being deployed in a data block level or even
data byte level, it becomes more efficient in storage utiliza-
tion, butwith higher processing overhead.Delta encoding is
a famous incremental backup example applied by Dropbox.
Data deduplication is a specialized data compression tech-
nique that identifies commondata chunkswithin and across
different files, and stores them only once to improve stor-
age utilization. Unfortunately, data deduplication poten-
tially undermining the data security in terms of both data
integrity and data confidentiality. First, by definition, data
deduplication alters the original data from the user and
stores them in a different form in the cloud storage, thus
results in concerns of data integrity. Second, data deduplica-
tion attempts to identify and exploit identical data chunks,
while encryption algorithms usually try to randomize them
to conceal the real contents. The encrypted ciphertext for
the same plaintext will likely to be extremely different. To
address these issues, efficient and secure data deduplication
which allows data deduplication performed on encrypted
ciphertext have been developed [99]. This technique uti-
lized convergent encryption, in which the encryption key
is generated using a hash function of the plaintext of the
data chunk. Therefore, the same plaintext data chunk will
be encrypted using the same key, no matter when and
by whom it is encrypted. This results in the same cipher-
text data chunk for the same plaintext. The scheme stores
unique chunks of data or bytes during data analysis, and
then compares other chunks to the stored data. If the com-
pared result is matched, then the redundant part is replaced
by a small pointer pointing to the location of the matched
stored data.
Another proactive approach is to predict future avail-

ability failure occurrences so that actions could be taken
earlier to avoid interruption of service. Guan et al. pro-
posed two learning approaches to predict failure dynamics
in cloud computing systems by using Bayesian meth-
ods and decision trees [100]. An initial stage is required
for monitoring data, and then an ensemble Bayesian
methods labels data that have anomalous behaviors.
After all the anomalies are identified, the model can
predict future failure occurrences based on decision tree
classifiers.

Once the failure has occurred, data recovery schemes
are necessary to reduce or eliminate the loss. Zhang et al.
[101] presented a data recovery method that examines the
damage in a fine-grained cloud database and allows the
cloud database owner to know and locate the damage
precisely for the recovery purpose. Information disper-
sal algorithm [102] is used to enable greater availability
of data when encountering physical failures and network
outages.
Besides the above techniques, data recovery can also be

achieved by new service framework. Chi-won Song et al.
proposed Parity Cloud Service (PCS) in 2011 [103]. It gener-
ates virtual disk in user system for private backup andmakes
parity group of multiple users. The same data among those
users in the parity group are stored at the server-end. There-
fore, when users find out that original file requires recovery,
they can request data from the server-end without violating
privacy since private backup is stored at each user’s virtual
disk. This approach is simple and secure, but each user has
to build up virtual disk, which costs additional overhead for
users.
In summary, ensuring availability of users’ data when-

ever users demands it is the basic and primary require-
ment in cloud storage. The main challenge arises when
taking other performance and security concerns into
consideration. Trade-offs between efficiency and reliabil-
ity have to be made to balance the interests of service
provider and the user. Furthermore, data integrity and data
confidentiality should not be compromised by improved
availability.

V I . CONCLUS ION AND FUTURE
WORK

With the trend of rapid deployment of cloud storage and
computing nowadays, it is essential for the cloud storage
systems to be equipped with security solutions proven to
be reliable and trustworthy. In this work, we conducted a
survey on most recently developed or proposed primitives
to ensure three of the most critical security measurements,
namely, data integrity, data confidentiality, and availability,
for the cloud storage systems. For each aspect, we identified
the unique challenges that are different from those in tra-
ditional data network or file storage systems, summarized
the existing development progress up to date, and provided



14 chun-ting huang et al.

insight into the future directions of research. Overall, we
feel that the cloud storage security is still in its infancy and
expect to see more salient breakthrough in the near future.
For example, although the cloud storage security solutions
have been developed rapidly in recent years, we have not
yet seen a widely accepted model for the implementation.
Besides the system design, the cloud storage security sys-
tem should be flexible enough so that it can be improved by
new cryptographic algorithms.

ACKNOWLEDGEMENTS

This work is supported by the Jiangsu Provincial Key Lab-
oratory of Network and Information Security under Grants
No. BM2003201, and the Key Laboratory of Information
Network Security, the Ministry of Public Security.

REFERENCES

[1] Chantry, D.: Mapping applications to the cloud. Technical Report,
January 2009.

[2] Guttman, B.; Roback, E.A.: Sp 800-12. an introduction to computer
security: the NIST handbook. Technical Report, Gaithersburg, MD,
USA, 1995.

[3] Mell, P.; Grance, T.: The NIST definition of cloud computing. Tech-
nical Report, July 2009.

[4] Tim Jones, M.: Anatomy of a cloud storage infrastructure. Technical
Report, IBM, 2010.

[5] Zeng, W.; Zhao, Y.; Ou, K.; Song, W.: Research on cloud storage
architecture and key technologies. In Proc. 2nd Int. Conf. on Inter-
action Sciences: Information Technology, Culture and Human, ICIS
’09, New York, NY, USA, 2009, 1044–1048, ACM.

[6] CCITT Recommendation X.800. Security architecture for open sys-
tems interconnection for CCITT applications. Technical Report,
March 1991.

[7] Paul, M.; Saxena, A.: Proof of erasability for ensuring comprehen-
sive data deletion in cloud computing. In Recent Trends in Network
Security and Applications, volume 89 of Communications in Com-
puter and Information Science, Springer–Berlin–Heidelberg, 2010,
340–348.

[8] Perito, D.; Tsudik, G.: Secure code update for embedded devices via
proofs of secure erasure. In Proc. 15th European Conf. on Research in
Computer Security, ESORICS’10, Berlin, Heidelberg, 2010, 643–662,
Springer-Verlag.

[9] Juels, A.; Kaliski, B.S. Jr.: Pors: proofs of retrievability for large files.
In Proc. 14th ACMConf. on Computer and Communications Security,
CCS ’07, New York, NY, USA, 2007, 584–597.

[10] Lillibridge, M.; Elnikety, S.; Birrell, A.; Burrows, M.; Isard, M.:
A cooperative Internet backup scheme. In Proc. USENIX Annual
Technical Conf., ATEC ’03, Berkeley, CA, USA, 2003, 3–3, USENIX
Association.

[11] Naor, M.; Rothblum, G.: The complexity of online memory check-
ing. Cryptology ePrint Archive, Report 2006/091, 2006.

[12] Ateniese, G. et al.: Provable data possession at untrusted stores. In
Proc. 14th ACM Conf. on Computer and Communications Security,
CCS ’07, New York, NY, USA, 2007, 598–609.

[13] Johnson, R.; Molnar, D.; Song, D.; Wagner, D.: Homomorphic sig-
nature schemes. In Topics in Cryptology CT-RSA 2002, volume 2271

of Lecture Notes in Computer Science, Springer Berlin/Heidelberg,
2002, 204–245.

[14] Shacham, H.; Waters, B.: Compact proofs of retrievability. In Proc.
14th Int. Conf. on Theory and Application of Cryptology and Infor-
mation Security: Advances in Cryptology, ASIACRYPT ’08, Berlin,
Heidelberg, 2008, 90–107, Springer-Verlag.

[15] Ateniese, G.; Di Pietro, R.; Mancini, L.V.; Tsudik, G.: Scalable and
efficient provable data possession. In Proc. 4th Int. Conf. on Secu-
rity and Privacy in Communication Networks, SecureComm ’08, New
York, NY, USA, 2008, 9:1–9:10, ACM.

[16] Boneh, D.; Lynn, B.; Shacham, H.: Short signatures from the weil
pairing. In Advances in Cryptology ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
2001, 514–532.

[17] Wang, Q.; Wang, C.; Li, J.; Ren, K.; Lou, W.: Enabling public verifia-
bility and data dynamics for storage security in cloud computing. In
Proc. 14th Eur. Conf. on Research in Computer Security, ESORICS’09,
Berlin, Heidelberg, 2009, 355–370, Springer-Verlag.

[18] Wang, C.; Wang, Q.; Ren, K.; Lou, W.: Ensuring data storage secu-
rity in cloud computing. In 17th Int. Workshop on Quality of Service,
IWQoS 2009, July 2009, 1 –9.

[19] Wang, C.; Chow, S.S.M.; Wang, Q.; Ren, K.; Lou, W.: Privacy-
preserving public auditing for secure cloud storage. IEEE Trans.
Comput., 62 (2) (2013), 362–375.

[20] Wang, C.; Ren, K.; Lou, W.; Li, J.: Toward publicly auditable secure
cloud data storage services. IEEE Netw., 24 (4) (2010), 19 –24.

[21] Wang, C.; Wang, Q.; Ren, K.; Cao, N.; Lou, W.: Toward secure and
dependable storage services in cloud computing. IEEE Trans. Serv.
Comput., 5 (2) (2012), 220–232.

[22] Wang, C.; Wang, Q.; Ren, K.; Lou, W.: Privacy-preserving public
auditing for data storage security in cloud computing. In Proc. 29th
Conf. on Information Communications, INFOCOM’10, Piscataway,
NJ, USA, 2010, 525–533, IEEE Press.

[23] Wang, Q.; Wang, C.; Ren, K.; Lou, W.; Li, J.: Enabling public
auditability and data dynamics for storage security in cloud com-
puting. IEEE Trans. Parallel Distrib. Syst., 22 (5) (2011), 847–859.

[24] Zhu, Y.; Wang, H.; Hu, Z.; Ahn, G.-J.; Hu, H.; Yau, S.S.: Dynamic
audit services for integrity verification of outsourced storages in
clouds. InProc. 2011 ACMSymp. onAppliedComputing, SAC ’11, New
York, NY, USA, 2011, 1550–1557.

[25] Han, S.; Xing, J.: Ensuring data storage security through a novel third
party auditor scheme in cloud computing. In 2011 IEEE Int. Conf. on
Cloud Computing and Intelligence Systems (CCIS), September 2011,
264–268.

[26] Hao, Z.; Zhong, S.; Yu, N.: A privacy-preserving remote data
integrity checking protocol with data dynamics and public verifi-
ability. IEEE Trans. Knowl. Data Eng., 23 (9) (2011), 1432–1437.

[27] Sebé, F.; Domingo-Ferrer, J.; Martinez-Balleste, A.; Deswarte, Y.;
Quisquater, J.-J.: Efficient remote data possession checking in crit-
ical information infrastructures. IEEE Trans. Knowl. Data Eng., 20
(2008), 1034–1038.

[28] Curtmola, R.; Khan, O.; Burns, R.: Robust remote data checking. In
Proc. 4th ACM Int. Workshop on Storage Security and Survivability,
StorageSS ’08, New York, NY, USA, 2008, 63–68.

[29] Dodis, Y.; Vadhan, S.;Wichs, D.: Proofs of retrievability via hardness
amplification. InProc. 6th Theory of CryptographyConf. on Theory of
Cryptography, TCC ’09, Berlin, Heidelberg, 2009, 109–127, Springer-
Verlag.

[30] Bowers, K.D.; Juels, A.;Oprea, A.: Proofs of retrievability: theory and
implementation. In Proc. 2009 ACMWorkshop on Cloud Computing
Security, CCSW ’09, New York, NY, USA, 2009, 43–54.



survey on securing data storage in the cloud 15

[31] Shacham, H.; Waters, B.: Compact proofs of retrievability. J. Cryp-
tol., 26 (3) (2013), 442–83.

[32] Sravan Kumar, R.; Saxena, A.: Data integrity proofs in cloud stor-
age. In 2011 3rd Int. Conf. on Communication Systems and Networks
(COMSNETS), January 2011, 1–4.

[33] Ateniese, G. et al.: Remote data checking using provable data pos-
session. ACM Trans. Inf. Syst. Secur., 14 (1) (2011), 12:1–12:34.

[34] Erway, C.; Küpçü, A.; Papamanthou, C.; Tamassia, R.: Dynamic
provable data possession. In Proc. 16th ACM Conf. on Computer
and Communications Security, CCS ’09, New York, NY, USA, 2009,
213–222.

[35] Papamanthou, C.; Tamassia, R.; Triandopoulos, N.: Authenticated
hash tables. In Proc. 15th ACM Conf. on Computer and Communica-
tions Security, CCS ’08, New York, NY, USA, 2008, 437–448.

[36] Merkle, R.C.: Protocols for Public Key Cryptosystems, IEEE Com-
puter Society Press, 1980, 122–134.

[37] Zheng, Q.; Xu, S.: Fair and dynamic proofs of retrievability. In Proc.
of the first ACM Conference on Data and Application Security and
Privacy, CODASPY ’11, New York, NY, USA, 2011, 237–248.

[38] Wang, C.; Cao, N.; Li, J.; Ren, K.; Lou, W.: Secure ranked keyword
search over encrypted cloud data. In 2010 IEEE 30th Int. Conf. on
Distributed Computing Systems (ICDCS), June 2010, 253 –262.

[39] Kallahalla, M.; Riedel, E.; Swaminathan, R.; Wang, Q.; Fu, K.: Plu-
tus: Scalable secure file sharing on untrusted storage. In Proc. 2nd
USENIX Conf. on File and Storage Technologies, Berkeley, CA, USA,
2003, 29–42, USENIX Association.

[40] Goh, E.j.; Shacham, H.; Modadugu, N.; Boneh, D.: Sirius: Securing
remote untrusted storage. In Proc. Network and Distributed Systems
Security (NDSS) Symp. 2003, 2003, 131–145.

[41] Sahai, A.; Waters, B.: Fuzzy identity-based encryption. In Advances
in Cryptology – EUROCRYPT 2005, 24th Annu. Int. Conf. on the
Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark,May 22–26, volume 3494 of LectureNotes in Computer Science,
Springer, 2005, 457–473.

[42] Goyal, V.; Pandey, O.; Sahai, A.; Waters, B.: Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proc. 13th
ACM Conf. on Computer and Communications Security, CCS ’06,
New York, NY, USA, 2006, 89–98.

[43] Bethencourt, J.; Sahai, A.; Waters, B.: Ciphertext-policy attribute-
based encryption. In Proc. 2007 IEEE Symp. on Security and Privacy,
SP ’07, Washington, DC, USA, 2007, 321–334.

[44] Ostrovsky, R.; Sahai, A.;Waters, B.: Attribute-based encryption with
non-monotonic access structures. In Proc. 14th ACMConf. on Com-
puter and Communications Security, CCS ’07, New York, NY, USA,
2007, 195–203.

[45] Cheung, L.; Newport, C.: Provably secure ciphertext policy abe. In
Proc. 14th ACM Conf. on Computer and Communications Security,
CCS ’07, New York, NY, USA, 2007, 456–465.

[46] Lewko, A.B.; Okamoto, T.; Sahai, A.; Takashima, K.; Waters, B.:
Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In Advances in Cryptol-
ogy EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, Springer, Berlin/Heidelberg, 2010, 62–91.

[47] Waters, B.: Ciphertext-policy attribute-based encryption: an expres-
sive, efficient, and provably secure realization. InPublic KeyCryptog-
raphy PKC 2010, volume 6571 of Lecture Notes in Computer Science,
Springer Berlin/Heidelberg, 2011, 53–70.

[48] Goyal, V.; Jain, A.; Pandey, O.; Sahai, A.: Bounded ciphertext policy
attribute based encryption. In 35th Int. Colloq. Automata, Languages

and Programming, 2008, volume 5126 of Lecture Notes in Computer
Science, Springer, 2008, 579–591.

[49] Malek, B.; Miri, A.: Combining attribute-based and access systems.
In Int. Conf. on Computational Science and Engineering, 2009. CSE
’09, volume 3, aug. 2009, 305–312.

[50] Yu, S.; Wang, C.; Ren, K.; Lou, W.: Achieving secure, scalable, and
fine-grained data access control in cloud computing. In INFOCOM,
2010 Proc. IEEE, March 2010, 1–9.

[51] Zhao, F.; Nishide, T.; Sakurai, K.: Realizing fine-grained and flexible
access control to outsourced data with attribute-based cryptosys-
tems. In Proc. 7th Int. Conference on Information Security Practice
and Experience, ISPEC’11, Berlin, Heidelberg, 2011, 83–97, Springer-
Verlag.

[52] Sahai, A.; Seyalioglu, H.; Waters, B.: Dynamic credentials and
ciphertext delegation for attribute-based encryption. In Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, Springer, 2012, 199–217.

[53] Zhang, F.; Li, Q.; Xiong, H.: Efficient revocable key-policy attribute
based encryption with full security. In IEEE 8th Int. Conf. on Com-
putational Intelligence and Security 2012, 2012, 477–481.

[54] Chase,M.:Multi-authority attribute based encryption. In 4thTheory
of Cryptography Conf., volume 4392 of Lecture Notes in Computer
Science, Springer, 2007, 515–534.

[55] Chase, M.; Chow, S.S.M.: Improving privacy and security in multi-
authority attribute-based encryption. In Proc. 2009 ACM Conf. on
Computer and Communications Security, 2009, 121–130.

[56] Lewko, A.B.; Waters, B.: Decentralizing attribute-based encryption.
In Advances in Cryptology – EUROCRYPT 2011, volume 6632 of
Lecture Notes in Computer Science, Springer, 2011, 568–588.

[57] Ahn, G.-J.; Sandhu, R.: Role-based authorization constraints speci-
fication. ACM Trans. Inf. Syst. Secur., 3 (2000), 207–226.

[58] Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E.: Role-based
access control models. Computer, 29 (2) (1996), 38–47.

[59] Narayanan, H.A.J.; Gunes, M.H.: Ensuring access control in cloud
provisioned healthcare systems. In 2011 IEEE Consumer Communi-
cations and Networking Conf. (CCNC), January 2011, 247–251.

[60] Atallah, M.J.; Blanton, M.; Fazio, N.; Frikken, K.B.: Dynamic and
efficient key management for access hierarchies. ACM Trans. Inf.
Syst. Secur., 12 (3) (2009), 18:1–18:43.

[61] De Capitani di Vimercati, S.; Foresti, S.; Jajodia, S.; Paraboschi, S.;
Samarati, P.: Encryption policies for regulating access to outsourced
data. ACM Trans. Database Syst., 35 (2) (2010), 12:1–12:46.

[62] Samarati, P.; De Capitani di Vimercati, S.: Data protection in out-
sourcing scenarios: issues and directions. In Proc. 5th ACM Symp.
on Information, Computer and Communications Security, 2010, 2010,
1–14.

[63] Zhu, Y.; Ahn, G.-J.; Hu, H.; Wang, H.: Cryptographic role-based
security mechanisms based on role-key hierarchy. In Proc. 5th ACM
Symp. on Information, Computer and Communications Security,
2010, 2010, 314–319.

[64] Zhu, Y.; Hu, H.; Ahn, G.-J.; Wang, H.; Wang, S.-B.: Provably secure
role-based encryption with revocation mechanism. J. Comput. Sci.
Technol., 26 (4) (2011), 697–710.

[65] Zhou, L.; Varadharajan, V.; Hitchens, M.: Enforcing role-based
access control for secure data storage in the cloud. Comput. J., 54
(10) (2011), 1675–1687.

[66] Delerablée, C.: Identity-based broadcast encryption with constant
size ciphertexts and private keys. In Proc. Advances in Crypotology



16 chun-ting huang et al.

13th Int. Conf. on Theory and application of cryptology and infor-
mation security, ASIACRYPT’07, Berlin, Heidelberg, 2007, 200–215,
Springer-Verlag.

[67] Richard Kuhn, D.; Coyne, E.J.; Weil, T.R.: Adding attributes to role-
based access control. Computer, 43 (6) (2010), 79–81.

[68] Hong, C.; lv, Z.; Zhang, M.; Feng, D.: A secure and efficient role-
based access policy towards cryptographic cloud storage. In Proc.
12th Int. Conf. on Web-age Information Management, WAIM’11,
Berlin, Heidelberg, 2011, 264–276, Springer-Verlag.

[69] Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G.: Public
key encryption with keyword search. In Advances in Cryptology
– EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, 2004, 506–522.

[70] Song, D.X.; Wagner, D.; Perrig, A.: Practical techniques for searches
on encrypted data. In 2000 IEEE Symp. Security and Privacy, 2000,
SP 2000, Proc., 2000, 44–55.

[71] Kamara, S.; Lauter, K.: Cryptographic cloud storage. In Financial
Cryptography and Data Security, volume 6054 of Lecture Notes in
Computer Science, Springer Berlin/Heidelberg, 2010, 136–149.

[72] Abdalla, M. et al.: Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. J. Cryptol.,
21 (3) (2008), 350–391.

[73] Bellare, M.; Boldyreva, A.; O’Neill, A.: Deterministic and efficiently
searchable encryption. In Proc. of the 27th Annu. Int. Cryptology
Conf. on Advances in Cryptology, CRYPTO’07, Berlin, Heidelberg,
2007, 535–552, Springer-Verlag.

[74] Kamara, S.; Papamanthou, C.: Parallel and dynamic searchable sym-
metric encryption. In Financial Cryptography, 2013, 258–274.

[75] Kamara, S.; Papamanthou, C.; Roeder, T.: Dynamic searchable sym-
metric encryption. InACMConf. onComputer andCommunications
Security, 2012, 965–976.

[76] Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R.: Searchable sym-
metric encryption: Improved definitions and efficient constructions.
J. Comput. Secur., 19 (5) (2011), 895–934.

[77] Kuzu, M.; Islam, M.S.; Kantarcioglu, M.: Efficient similarity search
over encrypted data. In Proc. 2012 IEEE 28th Int. Conf. on Data
Engineering, ICDE ’12, 2012, 1156–1167.

[78] Wang, C.; Cao, N.; Ren, K.; Lou, W.: Enabling secure and efficient
ranked keyword search over outsourced cloud data. IEEE Trans.
Parallel Distrib. Syst., 23 (8) (2012), 1467–1479.

[79] Boldyreva, A.; Chenette, N.; Lee, Y.; O’Neill, A.: Order-preserving
symmetric encryption. In Proc. 28th Annu. Int. Conf. on Advances
in Cryptology: the Theory and Applications of Cryptographic
Techniques, EUROCRYPT ’09, Berlin, Heidelberg, 2009, 224–241,
Springer-Verlag.

[80] Boldyreva, A.; Chenette, N.; O’Neill, A.: Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions.
In Proc. 31st Annual Conf. on Advances in Cryptology, CRYPTO’11,
Berlin, Heidelberg, 2011, 578–595, Springer-Verlag.

[81] Singh, A.; Srivatsa, M.; Liu, L.: Search-as-a-service: Outsourced
search over outsourced storage. ACM Trans. Web, 3 (2009), 13:1–
13:33.

[82] Singh, A.; Srivatsa, M.; Liu, L.: Efficient and secure search of enter-
prise file systems. In IEEE Int. Conf. on Web Services, 2007. ICWS
2007, July 2007, 18 –25.

[83] Wong, W.K.; Wai-lok Cheung, D.; Kao, B.; Mamoulis, N.: Secure
KNN computation on encrypted databases. In Proc. 35th SIGMOD
Int. Conf. onManagement of data, SIGMOD ’09, NewYork,NY,USA,
2009, 139–152, ACM.

[84] Popa, R.A.; Redfield, C.M.S.; Zeldovich, N.; Balakrishnan, H.:
Cryptdb: processing queries on an encrypted database. Commun.
ACM, 55 (9) (2012), 103–111.

[85] Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology EUROCRYPT 99,
volume 1592 of Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, 1999, 223–238.

[86] Gentry, C.: Fully homomorphic encryption using ideal lattices. In
Proc. 41st Annu. ACM Symp. on Theory of Computing, STOC ’09,
New York, NY, USA, 2009, 169–178.

[87] VanDijk,M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In Advances in Cryptology
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Sci-
ence, Springer Berlin/Heidelberg, 2010, 24–43.

[88] Stehle, D.; Steinfeld, R.: Faster fully homomorphic encryption. In
Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lec-
ture Notes in Computer Science, Springer Berlin/Heidelberg, 2010,
377–394.

[89] Brakerski, Z.; Vaikuntanathan, V.: Fully homomorphic encryption
from ring-IWE and security for key dependent messages. In Proc.
31st Annu. Conf. on Advances in Cryptology, CRYPTO’11, Berlin,
Heidelberg, 2011, 505–524, Springer-Verlag.

[90] Lyubashevsky, V.; Peikert, C.; Regev, O.: On ideal lattices and learn-
ing with errors over rings. J. ACM, 60 (6) (2013), 43:1–43:35.

[91] Brakerski, Z.; Gentry, C.; Vaikuntanathan, V.: Fully homomor-
phic encryption without bootstrapping. Cryptology ePrint Archive,
Report 2011/277, 2011.

[92] Coron, J.-S.; Mandal, A.; Naccache, D.; Tibouchi, M.: Fully homo-
morphic encryption over the integers with shorter public keys.
In Proc. 31st Annu. Conf. on Advances in Cryptology, CRYPTO’11,
Berlin, Heidelberg, 2011, 487–504, Springer-Verlag.

[93] Rothblum, R.: Homomorphic encryption: From private-key to
public-key. In Theory of Cryptography, volume 6597 of Lec-
ture Notes in Computer Science, Springer Berlin/Heidelberg, 2011,
219–234.

[94] Smart,N.; Vercauteren, F.: Fully homomorphic encryptionwith rela-
tively small key and ciphertext sizes. InPublic KeyCryptography PKC
2010, volume 6056 of Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, 2010, 420–443.

[95] Gentry, C.; Halevi, S.: Implementing gentry’s fully-homomorphic
encryption scheme. In Proc. 30th Annu. Int. Conf. on The-
ory and Applications of Cryptographic Techniques: Advances in
Cryptology, EUROCRYPT’11, Berlin, Heidelberg, 2011, 129–148,
Springer-Verlag.

[96] Yun, A.; Shi, C.; Kim, Y.: On protecting integrity and confidentiality
of cryptographic file system for outsourced storage. In Proc. 2009
ACMWorkshop onCloudComputing Security, CCSW ’09,NewYork,
NY, USA, 2009, 67–76.

[97] Lu, R.; Lin, X.; Liang, X.; Shen, X.S.: Secure Provenance: the Essential
of Bread and Butter of Data Forensics in Cloud Computing, ACM,
New York, 2010, 282–292.

[98] Van Dijk, M.; Juels, A.: On the impossibility of cryptography alone
for privacy-preserving cloud computing. In Proc. 5th USENIX Conf.
on Hot Topics in Security, HotSec’10, Berkeley, CA, USA, 2010.
USENIX Association, 1–8.

[99] Storer, M.W.; Greenan, K.; Long, D.D.E.; Miller, E.L.: Secure data
deduplication. In Proc. 4th ACM Int. Workshop on Storage Security
and Survivability, StorageSS ’08, New York, NY, USA, 2008, 1–10.

[100] Guan, Q.; Zhang, Z.; Fu, S.: Proactive failure management by inte-
grated unsupervised and semi-supervised learning for dependable



survey on securing data storage in the cloud 17

cloud systems. In Proc. 2011 6th Int. Conf. on Availability, Reliability
and Security, ARES ’11, Washington, DC, USA, 2011, 83–90.

[101] Zhang, M.; Cai, K.; Feng, D.: Fine-grained cloud db damage exam-
ination based on bloom filters. In Proc. 11th Int. Conf. on Web-
age Information Management, WAIM’10, Berlin, Heidelberg, 2010,
157–168, Springer-Verlag.

[102] Rabin, M.O.: Efficient dispersal of information for security, load
balancing, and fault tolerance. J. ACM, 36 (2) (1989), 335–348.

[103] won Song, C.; Park, S.; wook Kim, D.; Kang, S.: Parity cloud ser-
vice: A privacy-protected personal data recovery service. In 2011
IEEE 10th Int. Conf. Trust, Security and Privacy in Computing and
Communications (TrustCom), November 2011, 812 –817.


	Survey on securing data storage in the cloud
	Digital Commons @ LMU & LLS Citation

	I Introduction
	II Overview of Security in Cloud Storage
	III Data Integrity
	A Introduction to POR and PDP
	B Improvement on public verifiability
	C Improvement on efficiency
	D Improvement on dynamic data support
	E Summary

	IV Data Confidentiality
	A Access control
	B Searchable encryption
	C Fully homomorphic encryption
	D Other data confidentiality approaches
	E Summary

	V Availability
	VI Conclusion and Future Work

