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ALEXANDER AND WRITHE POLYNOMIALS FOR VIRTUAL KNOTS

BLAKE MELLOR

ABSTRACT. We give a new interpretation of the Alexander polynomial Ag for virtual knots due to Sawollek
[18] and Silver and Williams [19], and use it to show that, for any virtual knot, Ao determines the writhe
polynomial of Cheng and Gao [4] (equivalently, Kauffman’s affine index polynomial [13]). We also use it to
define a second-order writhe polynomial, and give some applications.

1. INTRODUCTION

Virtual knots were introduced by Kauffman [11] as a generalization of classical knot theory, and since
then many invariants have been developed to help distinguish virtual knots, and to determine when a virtual
knot is equivalent to a classical knot. In the past few years, several authors have developed invariants that
generalize the classical writhe of a knot [3, [4, 6] @, [12] 13, [I7]. These invariants have been used to define
Vassiliev invariants of virtual knots [9] [I3], give bounds on the unknotting number (when it exists) and
forbidden number of virtual knots [1I7, [5], and distinguish mutant virtual knots [6], among other applications.
These invariants can be unified in a single polynomial invariant, variously called the writhe polynomial [4],
the affine index polynomial [I3] and the wriggle polynomial [6]. We will refer to it as the writhe polynomial.

Other authors have extended the classical Alexander polynomials to virtual knots [2] [I8,[19]. As for knots,
there is a sequence of Alexander polynomials Ay for virtual knots, with each polynomial defined modulo
the lower-order polynomials. For classical knots the lowest-order invariant Ag is always trivial, so the most
interesting polynomial in the sequence is Ay; for virtual knots, however, Aq is generally not trivial, and it
has many applications. In this paper we will provide a new way to look at the polynomial Ag, and use this
new interpretation to show that the writhe polynomial can be obtained from the Alexander polynomial.

In Section [2] we will review the definitions of virtual knots and Gauss diagrams, and define the index
of a crossing. In Section [3| we define the Alexander polynomial Ag(K)(u,v) and give a new interpretation
using indices. In Section [4| we define the writhe polynomial Wik (t), and show how it is determined by the
Alexander polynomial. In Section [f] we extend these ideas to define a “second-order” writhe polynomial
Vi (t). Finally, in Section |§| we present some applications of our results. We end with an appendix listing
the values of Wi (t) and Vi (t) for all virtual knots with at most 4 crossings.

2. VIRTUAL KNOTS

Our approach to virtual knots will be combinatorial. Kauffman [IT] showed that virtual knots can be
defined as equivalence classes of diagrams modulo certain moves, generalizing the Reidemeister moves of
classical knot theory. Diagrams for virtual knots contain both classical crossings (positive and/or negative
crossings, if the knot is oriented) and wvirtual crossings, as shown in Figure[l] Two diagrams are equivalent if
they are related by a sequence of the Reidemeister moves shown in Figure [2| Note that moves (I)—(III) are
the classical Reidemeister moves. Kauffman [I1] showed that classical knots are equivalent by this expanded
set of Reidemeister moves if and only if they are equivalent by the classical Reidemeister moves, so classical
knot theory embeds inside virtual knot theory.

One motivation for virtual knots comes from Gauss codes and Gauss diagrams. Any oriented classical knot
can be represented by its Gauss code. We first choose a labeling of the crossings, from 1 to m. The Gauss
code is found by selecting a point on the knot, and then making a complete circuit along the knot until we

return to this point. Whenever we pass a crossing, we write down a triple indicating whether it is an over or
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FIGURE 2. Reidemeister moves for virtual knots

under-crossing (O or U), the number of the crossing, and the sign of the crossing (so each crossing appears
twice in the code, once as an over-crossing and once as an under-crossing). We can represent this code
visually using a Gauss diagram. The Gauss diagram is an oriented circle with 2m points marked along the
boundary, corresponding to the 2m triples in the Gauss code. We connect the pair of points corresponding
to each crossing with a chord directed from the over-crossing to the under-crossing, and label the chord with
the sign of the crossing. For example, Figure [3| shows the knot diagram and Gauss diagram for the knot
with Gauss code U1-02+U3401-O3+U2+.

However, it is easy to write down plausible Gauss codes (i.e. each crossing appears in two triples, with
the same sign, once with O and once with U) which do not come from classical knots; these codes, and the
associated Gauss Diagrams, correspond to virtual knots (where the virtual crossings are ignored in the Gauss
code). Kauffman [II] showed that the correspondence between Gauss diagrams (modulo equivalents of the
classical Reidemeister moves) and virtual knots (modulo the classical and virtual Reidemeister moves) is a
bijection.

FiGUrE 3. Knot diagram and Gauss diagram for knot with Gauss code U1-O2+U3+01-034+U2+.
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We will assign several indices to the chords of a Gauss diagram. First, we label the endpoint of each chord
with a sign. Let ¢ = ]@ be a chord in Gauss diagram G, oriented from P to @, with sign £(c). We label
point P (the over-crossing) with sign —e(c) and point @ (the under-crossing) with €(¢). Now let a be the
arc of the bounding circle from P to @, and 8 be the arc of the bounding circle from @ to P (both following
the orientation of the circle). So « is the part of the bounding circle to the right of ¢, and 8 is the part of
the bounding circle to the left of c.

e The right over-indez of ¢, denoted RO(c), is the sum of the signs of the over-crossing points on arc
. %he right under-index of ¢, denoted RU(c), is the sum of the signs of the under-crossing points on
) fl[}r}(;eal.eft over-indez of ¢, denoted LO(c), is the sum of the signs of the over-crossing points on arc 5.
e The left under-indez of ¢, denoted LU (c), is the sum of the signs of the under-crossing points on arc
. ?‘.he indez of ¢ is Ind(c) = RO(c) + RU(c), i.e. the sum of all signs on arc £.

Note that Ind(c) = —LO(c) — LU(c), since the sum of all signs around the Gauss diagram is 0. Figure
shows a labeled Gauss diagram and its indices.

Chord | RO | RU | LO | LU | Ind
1 T [ 11 ][-1]o0
s 0] 0000
s | 1] 0] 101
s 0] 221 0] =2
cs 0] 1] 0] 1]

FIGURE 4. Indices of a Gauss diagram.

3. ALEXANDER POLYNOMIAL

The Alexander polynomial was extended to virtual knots by Sawollek [I8] and then, using a different
approach, by Silver and Williams [19]. Silver and Williams proved that Sawollek’s polynomial was equivalent
to their first Alexander polynomial, Ay. We will use Silver and Williams’ polynomial, but we will use a
definition presented in [I9, Prop. 4.1] that incorporates Sawollek’s approach. Given a virtual knot diagram
D with n classical crossings, labeled from c; to ¢,, an arc of the diagram extends from one classical crossing
to the next classical crossing (ignoring any virtual crossings). Note that these go from crossing to crossing,
not undercrossing to undercrossing (which is the usual notion of an arc in a classical knot diagram). So D
has 2n arcs, which we label from a; to as,. We choose the labels so that the arcs coming into crossing c;
are labeled ag;—1 and asg;, as shown in Figure [5] For each ¢;, we define a 2 x 2 matrix M; to be either M
or M_, as shown in Figure [5| depending on the sign of the crossing.

We then let M be the 2n x 2n block diagonal matrix with blocks My, ..., M,,. The rows and columns of
M correspond to arcs aq,...,a2,, in order. We also let P be the matrix for the permutation 7w of the arcs
of D that is the cycle we read as we go around the knot. So the entry of P in the ith row and jth column
is 1 if m(a;) = a; and 0 otherwise. Then we define

Ao(D)(u, v) = det(M — P).
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F1GURE 6. Virtual knot with arc labels, and the permutation 7 induced by the orientation

of the knot.

Example 1. As an example, we again consider the virtual knot from Figure[3] In Figure [l we label the arcs
of the graph. The permutation 7 of the arcs induced by the orientation is the cycle m = (ajagasazaqas).
Now we can write down the matrices M and P, and compute the Alexander polynomial.

v 0 O 0 0 0
Mo 0 0 1—uv wu (_)1 0 B 0 0
0 0 u 1— (uw) 0 0
M= 0 M, 0 |= -1
0 Y 0 0 0 v 0 0
+ 0 0 0 0 ul 1 — (uw)™?

0 0 O 0 0 -1

00 0 0 01

0001 0O

01 00 O0O

P= 00 0 01O

10 0 0 0 O

001 0O0O0

Ag(D)(u,v) = det(M — P) = (1 —u)(1 —v)(1 — uv)u '}

To turn Ag from an invariant of diagrams into an invariant of virtual knots, we look at how it changes
under the virtual Reidemeister moves. The virtual moves have no effect on the invariant, so we only need to
consider the classical moves. When we add orientations to the moves shown in Figure 2] there are quite a few
cases, but Polyak [15] showed these are all generated by the four oriented Reidemeister moves I, Iy, I1,, 11,

shown in Figure [7]
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FIGURE 7. Generating set for oriented Reidemeister moves

The following proposition is a straightforward exercise in analyzing det(M — P) before and after each of
the Reidemeister moves.

Proposition 1. Let D be a virtual knot diagram, and D’ the result of applying one of the moves I, I, I1,,I11,.
Then

I: Ao(D')(u,v) = Ag(D)(u,v)
Iy: Ao(D')(u,v) = (uv) Ao (D) (u,v)

IT,: Ao(D")(u,v) = Ag(D)(u,v)

I11,: Ao(D')(u,v) = Ag(D)(u,v)

So Ag is well-defined for virtual knots, modulo multiplication by powers of uv. So we can normalize
the polynomial by multiplying by (uv)*, where k is the minimum among all powers of v (this matches the
normalization used by Silver and Williams [19]). We will use Ag(K) to refer to this normalized polynomial,
which is now an invariant of virtual knots.

Silver and Williams prove several properties of Ag(K), including the following;:

Proposition 2. [I9] Let K be an oriented virtual knot. Then (1 — u)(1 — v)(1 — uv) divides Ao(K)(u,v).

Proposition 3. [19] Given a diagram D of a virtual knot K , let D¥ be the result of switching every (classical)
crossing of D, D* be the reflection across a vertical line in the plane of the diagram, and —D the result of
reversing all orientations. Let K#, K* and —K be the corresponding virtual links. Then for all i > 0,

(1) Ad(K#)(u,0) = A (K)(v,0)

(2) Au(K*)(u,v) = Ai(K) (w0

(3) Ai(—K)(,0) = ~Ag(K)(u L0

3.1. Indices and the Alexander polynomial. Let D be a diagram for a virtual knot K. If we denote
the entries of the matrix M — P by b;;, then

AO(D)(U7U) = det(M - P) = Z (_l)gbl,a(l) t b2n,0(2n)

ocESap

In this section, we will show how the terms of this sum can be interpreted as counting crossings in links
associated to the diagram D. First, we need to define some terminology. Let 7 be the permutation on
{1,...,2n} given by the cycle read around the diagram D (so if a; is an arc into a crossing, a,(; is the
corresponding arc leaving the crossing). Then we have:

e For each i, b; ;) = —1.

e If ¢; is a positive crossing, then bg; 1 2;—1 = u™!, by;0; = v~ and by;_1.2; = 1 — (uv) L.
o If ¢; is a negative crossing, then by;_1 2,—1 = v, ba; 2; = u and bg; 2,1 = 1 — uv.
o All other b; ; = 0.
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The two exceptions to this are when ¢; is a positive crossing and 7(2i — 1) = 2 or when ¢; is negative and
7(2i) = 2i — 1 (we will refer to these as special curls). In the first case we have bg;_12; = (1 — (uv)~!) - 1=
—(uv)~! and in the second we have by; 9,1 = (1 —uv) — 1 = —uw.

Let C be a subset of the (classical) crossings of D. A permutation o € Sa, correspondsto C'if o(2i—1) = 24
for any positive crossing ¢; in C, 0(2i) = 2¢ — 1 for any negative crossing ¢; in C, and o(t) =t or 7 (t) for
all other ¢t € {1,...,2n}. Notice that if a permutation does not correspond to some set of crossings, then
b0ty = 0 for some ¢, and the corresponding term in det(M — P) is trivial. So when computing Ag(D)(u,v),
we are only interested in permutations which correspond to some set of crossings.

If C has a special curl ¢; and o is a permutation corresponding to C, we will find it convenient to split
the term associated to o in det(M — P) into two terms. If ¢; is positive, then one term has by;_1 5(2i—1) =
b2i—1.2; = 1—(uv)~! and the other term has b2i—1,0(2i—1) = b2i—1,x(2i—1) = —1 (and similarly if ¢; is negative).
We then consider the first term as coming from the permutation o corresponding to C', and the second term
as coming from the permutation o corresponding to C/ = C' — {¢;}. With this convention, we do not need
to consider special curls separately in the proofs in this section.

A set of crossings C' is alternating in D if, as we go around the knot, we alternate between overcrossings and
undercrossings in C' (ignoring the other crossings). The corresponding chords in the Gauss diagram for D are
called an alternating configuration; their endpoints will alternate between overcrossings and undercrossings
as we go around the boundary circle. There are exactly two alternating configurations of 2 chords, shown in
Figure|8] There are five alternating configurations of 3 chords. In general, there are fewer than n! alternating
configurations of n chords, found by alternating n O’s and n U’s around a circle and matching them. The
exact count is somewhat complicated, because many configurations may be equivalent by a rotation of the
diagram. Our next lemma shows that only permutations corresponding to alternating sets of crossings
contribute nonzero terms to Ag(D).

—€ €)
C)
€ —&2
Configuration 4 Configuration B

FIGURE 8. Alternating configurations of pairs of chords (i.e. crossings).

Lemma 1. Let C be a set of crossings in a virtual knot diagram D. If C is not an alternating configuration,
then the contribution of a permutation corresponding to C to Ag(D)(u,v) is 0.

Proof. Since C' is not alternating, it contains at least two consecutive overcrossings (and at least two con-
secutive undercrossings). So there are crossings ¢; and ¢; in C such that there is a segment of D running
from the overcrossing of ¢; to the overcrossing of ¢; without passing through any other crossings of C'. We
will assume that ¢; and ¢; are positive crossings (the other cases are similar).

A permutation o corresponding to C' must have ¢(2¢ — 1) = 2i and o(2j — 1) = 24, where arcs ag; and as;
are the overcrossing arcs. Hence, 0(2i) # 21, so the only other possibility where by; 5(2i) 7# 0 is 0(21) = 7(2i).
Then 02(2i) = o(m(2i)) # m(2i) (since 2i # 7(2i)), so 02(2i) = 7%(2i) (otherwise the term is 0). Continuing
in this way, o%(2i) = 7%(2i), until 0" (2i) = 7"(2i) = 2j. But then 0"~ 1(2i) = 7" ~(2i) = 07 1(27) = 2j — 1.
But then the segment from the overcrossing of ¢; goes first to the undercrossing of c;, which is a contradiction.
So there must be some b, (), o++1(2;) Which is 0, and therefore the term is 0. ]

An alternating configuration C' of k crossings in a virtual knot divides the knot into 2k segments. Of
these segments, k run from an undercrossing in C' to a subsequent overcrossing in C' (possibly going through
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other crossings that are not in C); we will call these segments ascending. The other k, called descending
segments, run from overcrossings in C' to undercrossings in C'. A smoothing of a configuration C' is the result
of smoothing every crossing in C' as shown in Figure [0] Note that the smoothing joins the two ascending
segments at a crossing and the two descending segments.

Ko X — )

FIGURE 9. Smoothing a crossing in a configuration C'.

After we've smoothed the configuration C, we are left with a link where each component is composed
entirely of ascending or descending segments from the original knot; we refer to the components as ascending
or descending accordingly.

Proposition 4. Let C be an alternating configuration of m crossings in a virtual knot diagram D (where
m >1). Let L = LyUL, be the link formed by smoothing the crossings in C, where Ly is the sublink formed
from the descending components of L, and L, is the sublink formed from ascending components of L. Then
at most one permutation corresponding to C' makes a non-zero contribution to Ag(D), and its contribution
is:

(1 _ uv)neg(C)(l _ (uv)—l)pos(C)(_1)m+\Ld\u—U(La)U—O(La)

where U(L,) and O(Lg) are the number of under- and over-crossings along the components of L,, counted
with sign, neg(C) and pos(C') are the number of negative and positive crossings in C, and |Lg| is the number
of components of Lg.

Proof. Let o be a permutation corresponding to C. In other words, ba; s(2:) = 1 — uv or by;_1 5(2i-1) =
1 — (uv)~! if and only if ¢; is in C. Suppose that, for all ¢, by ;) # 0.

Let ¢; and ¢; be two adjacent crossings in C' (so there is a segment of D from ¢; to ¢; that does not pass
through any other crossings of C'). Assume that ¢; and ¢; are both positive (the other cases are similar).
Then 0(2i — 1) = 2¢ and o(2j — 1) = 2j.

We will first suppose that the descending segment of D running from the overcrossing of ¢; to the un-
dercrossing of ¢; does not pass through any other crossings in C. So for some r, 77(2i) = 2j — 1. Since
bai,o(2i) 7 0, we must have o(2i) = 2i or 0(2i) = 7(2i). But 0(2i — 1) = 2i, so the only possibility is
o(2i) = w(2i) # 2i. But then, 0%(2i) # 0(2i), so 0%(2i) = m(c(2i)) = 7%(2i). Continuing in this way,
o¥(2i) = 7*(2i) for 1 < k < r. If a; is on this segment, so t = 7*~1(2i) for some 1 < k < r, then
bt,a(t) = bt,'n'(t) =-1

Now suppose instead that the ascending segment of D running from the undercrossing of ¢; to the over-
crossing of ¢; does not pass through any other crossings in C. So for some r, 77(2i — 1) = 2j. Since
A" (2 — 1) # 25 — 1, and bar—1(2i—1),0(x—1(2i—1)) 7# 0, We must have o(r" (2 — 1)) = 7" 1(2i — 1).
Continuing in this way, o(7"7%(2i — 1)) = 7" 7%(2i — 1) for 1 < k < r — 1. If a; is on this segment, so
t =" (2i — 1) for some 1 < k <r —1, then by 51y = by = u*! or v*!, depending on the crossing (as shown
in Figure [10)).

So there is a unique permutation o corresponding to C with b, ;) # 0 for all £. o has a one-cycle
for each arc on a component of L,. o also has a cycle for each component of Ly of length a + s, where
a is the number of arcs in the component and s is the number of smoothings. This cycle has the form
(...,20 — 1,26, 7(2i), 7%(2i),...,7""1(2i),25 — 1,24,...). So the sign of the permutation o is the product
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FIGURE 10. Values of b, ; at each crossing along a.

over all components of Ly of (—1)**sT1. Then the contribution to the determinant is:

(—l)abl,a(l) v b2n,o’(2n) = (—1)2Ld (a+s+l)(1 — uv)ne.‘](c)(l _ (uv)*l)POS(C)(_l)ZLd au*U(La),Ufo(La)
= (1 — uw)™9(O) (1 — (wv)~1)Pos(O) (—1)2ry H 1y ~U(La)yy=O(La)
= (1 — uw)™9() (1 — (up)~1)Pos(O) (—1)m+ILaly=U(La)yy=O(La)

It is possible that a segment of D will run from a crossing ¢; back to ¢;. However, the arguments above
work equally well if j = . O

-8-8-8

FIGURE 11. Contributions of alternating configurations to Agy(D).

Example 2. As an example, consider the virtual knot 3.1 in Green’s table [8], shown in Figure This knot
has three crossings, a, b and c; a is a positive crossing while b and ¢ are negative crossings. Each crossing by
itself is an alternating configuration, and {a, b} is an alternating configuration of two crossings. We will use
Proposition [4] to compute the contributions from (1) configuration {c} and (2) configuration {a, b}.

(1) The result of smoothing crossing ¢ is shown on the left in Figure L4 is shown in gray. Observe
that |Lg4| = 1, U(L,) = 1 (since a is a positive crossing) and O(L,) = —1 (since b is a negative
crossing). So the contribution of this configuration to Ag(D) is:

(1 —ww) (=) u ol = uto — o2
(2) The result of smoothing configuration {a, b} is shown on the right in Figure[[1} Again, Lq is shown in

gray. Observe that |L4| = 2 and U(L,) = O(L,) = 0 (since L, has no crossings). So the contribution
of this configuration to Ag(D) is:

(1 —uw)(1 = (uw) N (=1)*2u° =2 —uv —uto™!

We can group the terms in the sum for det(M — P) according to how many factors of (1 — uv) or
(1 — (uv)~1) they contain (after splitting any special curls as described previously). Note that 1 — (uv)~! =
—(uv)™1(1 — uv). Then we can write

Ao(D)(u,v) = (1 — ww)* fi(u,v)

k=0
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We will give precise descriptions of fy, f1 and f2. Recall that the writhe of a knot diagram D, denoted
Wr(D), is the sum of the signs of all crossings in the diagram.

Proposition 5. Given a virtual knot diagram D of a virtual knot, then
(1) fo(u,v) = () WrP) — 1, and
(2) fi(u,v) = Z —e(c) (uw) =~ (Fe(D/2q = LU, LO) yyhere the sum is over all classical crossings c.
(3) f2(u7v) _ c Z 6162(uv)_(61+1)/2—(62+1)/2u—LU(01)+RU(02)+62,ULO(C1)—RO(C2)+€2
{c1,c2}€51
_ Z £160 (ww) (1 +1)/2=(e21)/2, ~LU(e1)= LU (c2) , LO(€1)+ LO(ez)
{c1,c2} €S2

where Sy is the set of all (unordered) pairs of crossings in configuration A and Sy is the set of all
pairs of crossings in configuration B (in the Gauss diagram), as shown in Figure @

Proof. The proof of the first part was contained in the proof of part (2) of Proposition |2 given in [I9]. We
repeat it here for clarity, using the terminology we’ve developed. As before, we can write the determinant
of B=M — P as

Z (71)0171,0(1) T b2n,o(2n)

ocESap

To find fp, we assume that we do not use any entries equal to 1 — uv or 1 — (uv)~! (i.e. we consider
permutations corresponding to the empty set of crossings). So we only consider o where o(i) = i or
o(i) = (i) for every i. Suppose there is some i for which o (i) = 7(i) # i. But then 02(i) # (i), so we must
have 02(i) = n(o(i)) = 7%(i). Continuing in this way, o*(i) = 7*(i) for all k. Since 7 is a single 2n-cycle,
this means ¢ = 7. So there are only two permutations we need to consider: ¢ = id and ¢ = 7. Since 7 is a
cycle of even length, (—1)™ = —1. Hence,

Jo(u,v) = (b1,1 tee bzn,zn) - (bl,ﬂ(l) T b2n,7r(2n))
(U’U)# negative crossings—# positive crossings _ (_1)2n

(’U,’U) Wr(D) _ 1

Now we consider f;. So we are considering sets of crossings with only one element, C' = {c}. The
link created by smoothing this crossing will have two components, one ascending and one descending. By
Proposition the contribution is (1 —uv)(—1) 1y =VEa)y=0a) = (1 — yp)u~ULa)y=OLa) if ¢ is negative,
and (1 — (uv)~Hu~VEa)y=OLa) if ¢ is positive. Since 1 — (uv)~! = —(uv)~'(1 — uv), once we factor out
1 — uw the contribution to fi(u,v) is —e(c)(uv)~(1H+e(€)/24=U(La)y=O(La),

Since C' contains only one crossing, there is only one ascending segment of the knot diagram. In the Gauss
diagram, this corresponds to the arc of the boundary circle to the left of the chord ¢. Hence —U(L,) =
—LU(c) and —O(L,) = LO(c) (remember that we label overcrossings with —e(c), hence the change in sign).
So then the contribution of ¢ to fi is —e(c)(uv)~(1He(€)/2q=LU()4)LO(e) a5 desired.

Finally, we turn to fa(u,v). Let C = {¢;,¢;} be a set of two crossings; by Lemma (1| we only need to
consider when C' is alternating. Then by Proposition [4| (with m = 2), the contributions of the permutations
corresponding to C to det(M — P) is

(1 — )9 (1 — (up)~1)Pos(©) (1) Laly=U(La)y=O(La)

In configuration A, |Lg4| = 2. The two ascending segments of the boundary circle are on the left side of
both chords. Counting the crossings along these arcs is equivalent to counting the difference between those
to the left of chord ¢; (except chord c¢; itself) and those to the right of chord ¢;. So the term is

(1 = uw)™9O) (1 — (up)~1yPos(C) = (LU (e0) =RU(e)=(ej))y LO(er) ~RO(e; ) +(es)

— (1 _ u,U)neg(C)(l _ (uv)—l)pos(C’)u—LU(ci)—&-RU(cj)—&-e(cj)ULO(ci)—RO(cJ)+s(cj)
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If the crossings are in configuration B, then |Ly| = 1. One of the two ascending segments is on the left of
chord ¢;, and the other is on the left of chord ¢;. So the term is

7(1 7 uv)neg(C)(l o (uv)71)p05(c)u7(LU(Ci)+LU(C]‘)),ULO(Ci)JFLO(Cj)

_ _(1 _ uv)neg(C)(l _ (uv)—l)pos(C)u—LU(ci)—LU(cj),ULO(c,-)—i-LO(cj)
As with fi, (1 —uv)"9(O) (1 — (uv) ~1)Pos(©) = g;e; (uv)~(EFD/2=(E+D/2 completing the proof. O

Remark. If we switch the roles of ¢; and ¢ in the first sum in the formula for fo(u,v), we will get the same
exponents, since LU (¢1)+ RU(¢1)+¢e1 = LU (c2)+RU (¢2) +e2 = Wr(D), and similarly for the overcrossings.

A similar result could be found for each f;(u,v). In general, we would need to look at each of the
alternating configurations of n chords. However, the formulas will quickly become very complex; even f3
involves five different terms.

4. WRITHE POLYNOMIAL

Now we turn our attention to writhes. We have already mentioned the writhe of a virtual knot diagram,
Wr(D). This has been generalized by several authors [12) [3, 4, [17]. We will use the n-writhe defined by
Satoh and Taniguchi [I7]. Unlike the writhe, where we sum the signs of all crossings, for the n-writhe we
sum the signs of crossings with index n (see Section . So given a knot diagram (or, equivalently, Gauss
diagram) D, the n-writhe of D is wn (D) = 3_1,,4(0)= €(C)-

o+
4

FIGURE 12. A labeled Gauss diagram D

Example 3. Consider the Gauss diagram D of degree 5 shown in Figure The indices of the chords are:
Ind(cy) =1, Ind(cg) =3, Ind(cs) = —1, Ind(cy) = —1, Ind(cs) =2
and the n-writhes are
w_1(D) =0, wy (D) =1, wa(D) =1, ws(D) = —1, wp (D) = 0 (for all other n)

Satoh and Taniguchi showed that w,, is a virtual knot invariant for n # 0. We will extend this result,
with a modification, to n = 0.

Lemma 2. Let D and D’ be virtual knot diagrams related by a finite sequence of Reidemeister moves. Then
(1) wn(D) = wy (D) for any n # 0. [17]
(2) wo(D) — Wr(D) = wo(D') — Wr(D').

Proof. The first part was proved by Satoh and Taniguchi [I7]. Reidemeister moves of type (II) add (or
remove) two crossings of opposite sign and the same index, while moves of type (IIT) preserve the signs
and indices of all crossings [I7]. So these moves preserve both w,, and the writhe. A Reidemeister move of
type 1 adds or removes a crossing of index 0 (since all other chords have both endpoints on one side), so
both wy and the writhe are increased or decreased by 1 (all other w,, are unchanged). Hence the difference
wo (D) — Wr(D) is preserved. O
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So for any virtual knot K with diagram D, we can define wy,(K) = wy,(D) (for n # 0) and (slightly
abusing notation) wo(K) = wo(D) — Wr(D); these are well-defined invariants of the virtual knot. We can
combine these to define a writhe polynomial Wi (t) by

= an(K t"

nez

Since at most a finite number of the w,,’s are nonzero (in particular, w,, = 0 whenever |n| is larger than the
number of crossings), Wi (¢) is a well-defined Laurent polynomial. In a classical knot K, all crossings have
index 0, so Wk (t) = 0. Wi (t) is equivalent to both Kauffman’s Affine Index Polynomial [13] and Cheng and
Gao’s writhe polynomial [4]. As remarked by Satoh and Taniguchi [I7], it also determines Henrich’s index
polynomial [9].

By Proposition [2] we can define Aj(K) by Ag(K)(u,v) = (1—uv)Aj(K)(u,v). Our main result describes
how Wik (t) is determined by Af(K).

Theorem 1. For any virtual knot K, Wi (t) = —Ay(K)(t,t71).

Proof. Let D be a diagram for K. Recall that Ag(D)(u,v) = fo(u,v)+ (1 —uv) f1(u,v) + (1 —uv)? fo(u,v) +
+ (1 — uv)™ £, (u,v). From Proposition [5} fo(u,v) = (uv)~V"P) — 1 = (uw)="V"P)(1 — (un)W7(P)) =
(uv) =W (1 — ww) ZS(D)_l (uv)t. So then

Wr(D)—1
AY(D)(u,v) = (o) WOV T (o)’ | faw) + (L= o) falu,v) o (L= w0)" T (u,0)
i=0
When we set t = u = v~ !, then uv = 1, so all terms after f;(u,v) disappear. From Proposition |5 we get

Wr(D)—-1 .
AB(D)(t,til) _ (1)7W7’(D) Z z + Z t LU(c) +— LO(c)
=0

=Wr(D) — Zs(c)tlnd(c)

c

= —Wk(t)
O

As a corollary, since A{) has a factor of (1 —u)(1 —v) by Proposition [2] the writhe polynomial always has
a factor of (1 —¢)(1 —¢71).

Corollary 1. For any virtual knot K, (1—t)(1—t~1) divides Wi (t). In particular, the sum of the coefficients
of Wk (t) is 0.

This allows us to prove a conjecture of Benioff and the author [I] that originally motivated this investi-
gation. The odd writhe of a virtual knot (introduced by Kauffman [12]) is the sum of the n-writhes where n
is odd. Let ow(K) denote the odd writhe, and recall that Ag(K)(u,v) = (1 —u)(1 —v)(1 — uv)Ag(K)(u,v).

Corollary 2. For any virtual knot K, ow(K) = 2A¢(K)(—-1,-1).

Proof. Recall that Wi (t) = >, cpwn (K" = > 0n n Wn (K" + 37 10 n wa (K", Since the sum of
the coefficients is 0, by Corollary [l !, Y even nWn(K) = =3 4q nwn(K) = —ow(K). This means that
Wk (—1) = —20ow(K). So, by Theorem [i}

200(K) = =Wk (—1) = AH(K)(-1,-1) = (1 +1)(1 + 1)Ag(K)(—1,—1) = 4A¢(K)(-1,-1)
Hence ow(K) = 2A¢(K)(—1,—1). O
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5. SECOND ORDER WRITHE POLYNOMIAL

Given a virtual knot diagram D (equivalently, a Gauss diagram), let S; and S be the sets of pairs of
chords in configurations A and B (as in Figure [8). Then we define Vp(t) by

V() =D 4 (et 00 - (<59)]

+ Z E(Ci)€(Cj)t1nd(ci)+lnd(cj) _ Z E(Ci)E(Cj)tlnd(ci)+lnd(cj)
{Ci,(;j}Gsl {Ci,C]’}GSQ

In our next proposition, we analyze how Vp(t) behaves under Reidemeister moves.

Proposition 6. Let K be a virtual knot with diagram D, and D’ the result of applying one of the moves
I, Iy, 11,111, from Figure[. Then

Loz Vpi(t) = Vb (t)
Ibi VD/ (t) VD(t) ( )

IIaZ VD/(t) == VD( )

I11,: Vp(t) = Vp(t)

Proof. Moves I, and I, each add a chord ¢ to the Gauss diagram for D, as shown in Figure [I3] In both

cases, the writhe of the diagram increases by 1, so the first term of Vp increases by Wr(D) + 1, as shown:

(Wr(D)+1)(Wr(D)+2)  Wr(D)(Wr(D)+1) +2(Wr(D)+1)  Wr(D)(Wr(D)+1)
2 - 2 B 2

+(Wr(D)+1).

F1GURE 13. Gauss diagrams for moves I, Iy, I1,. No other endpoints are on the solid arcs.

For move I,, RO(c) = RU(¢) =0, LU (¢) = Wr(D) and LO(c) = =Wr(D), so Ind(c) = 0. So in the first
sum in Vp there is a new term t°(—=Wr(D) — 1) = —(Wr(D) + 1), which exactly cancels the increase in the
first term. For each other chord ¢;, both endpoints of chord ¢ are on the same side of ¢;, so Ind(c;) doesn’t
change. If the pair {c,¢;} is in Sy, then ¢ is to the left of ¢;, so LO(¢;) decreases by 1. So for each such
ci, we subtract £(c;)t!"¥¢). On the other hand, in the second sum, for each ¢; with {c,¢;} in Sy, we add
(e tindle)tInd(ei) — (¢ )tmd(e) 50 these changes also cancel. Since there are no chords in configuration B
with chord ¢, there is no change in the last sum. So Vp» = Vp for move I,.

For move I, LO(c) = LU(c) = 0, so the new term in the first sum is t°(0 — 1) = —1. If a chord ¢; is
parallel to ¢ (i.e. not an alternating configuration), then ¢ is to the left of ¢;, and LO(¢;) decreases by one,
decreasing Vp by e(¢;)t!™4¢). On the other hand, if the chord ¢; is in an alternating configuration, then
{c,c;} is in Sy, and we again subtract £(c;)t/"(¢). Hence,

Vpi(t) = Vp(t) + (Wr(D) + 1) = 1= Y e(e)t"™) = Vp(t) — Wi ()

ci
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Now we consider move I1,. This move adds two chords ¢; and ¢y of opposite sign, as shown in Figure
(c1 is the positive chord). So there is no change to the writhe. Observe that the two chords have the same
index, but LO(c2) = LO(cq) — 1. So the total contribution to the first sum is

) (LO(ey) — 1) — t142) (LO(ep)) = U (LO(¢y) — 1 — (LO(e1) — 1)) = 0.

Finally, since any other chord ¢; which alternates with ¢; also alternates with ¢y in the same configuration,
and vice versa, the contributions to the final two sums also cancel. So Vpr = Vp for move I1,.

Finally, we look at move II1,. In this case, we are not adding or removing crossings, but rearranging
their order along the knot. Depending on how the remaining arcs of the knot are drawn, there are two
possibilities for the Gauss diagram before and after the move, shown in Figure Since no crossings are
added or removed, the writhe of the diagram is unchanged.

or

FIGURE 14. Gauss diagrams for move I11,. No other endpoints are on the solid arcs.

Suppose that ¢; and c; are the positive crossings involved in the 171, move, and c3 is the negative crossing.
The indices of all three crossings are preserved by the move. LO(c;) and LO(ca) are also preserved by the
move, but LO(c3) is reduced by 1. This adds (—1)t/74(¢3)(—1) = ¢I74(¢3) to the first sum in Vp. The terms
for other crossings are unchanged.

Depending on which Gauss diagram in Figure[14]is considered, a move 111, either removes a configuration
of type A or adds a configuration of type B (in both cases involving chords ¢; and c¢z). In either case,
we subtract t/mde)tInd(e2) from Vi, So Vi (t) = Vp(t) + tindles) — ¢Ind(er)+Ind(ez) Byt notice that
Ind(c1) + Ind(cz) = Ind(cs), so Vp:(t) = Vp(t). O

Hence Vp yields a well-defined invariant of the virtual knot K, modulo Wi (t); we denote the residue class
by Vi (t). We call Vi (t) the second-order writhe polynomial for the knot. Our next theorem shows that this
invariant can, like the writhe polynomial, be obtained from the Alexander polynomial. Consider a virtual
knot K with diagram D. The Alexander polynomial for D is Ag(D)(u,v) = (1 — wv)A{(D)(u,v). From
Theorem |1} Wi (u) = —A)(D)(u, u™?). Since Aj(D)(u,v) + Wi (u) = Aj(D)(u,v) — Ah(D)(u, u™t) is trivial
when v = u~! (i.e. when uv = 1), it has a factor of 1 — uv. Define ®(D)(u,v) by AY(D)(u,v) + Wi (u) =
(1 —uw)®(D)(u,v).

Theorem 2. Let K be a virtual knot with diagram D. Then Vp(t) = ®(D)(t, t71).
Proof. Recall from the proof of Theorem [1| that

Wr(D)—1
AG(D)(u,v) = (wo) ™Y (o) |+ fu(u,0) + (1= ww) fa(u,0) 4 (1= w0)" 7 f(u,v)
=0
When we add Wi (u), we get
Wr(D)—1 .
AY(D)(u,v) + Wi (u) = | (uv) W) Z (w)" | =Wr(D) | + (fl(um) + Zs(c)umd(c)>
=0 c

(1= o) fo(u0) 4 -4 (1= wo)™ ™ i, 0)
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Looking at the first term, we find:

Wr(D)—1 Wr(D)—1

() PN ()| = Wr(D) = (wo) VTP Y ((uv)i - (uv)WT(D))
i=0 1=0
Wr(D)-1
= (u0)"V"P) (1 — uw) (uv)* (1 +uv -+ + (uv)WT(D)fz;l)
i=0
Wr(D)—1 Wr(D)—i—1
= (u0)"V"P) (1 — uw) Z (uv)™t
i=0 j=0

In the second term, we use Proposition [5| to find:

u ’U + Z Ind Z 78(6) (U’U)7(1+5(C))/ZU7LU(C)ULO(C) + Zg(c)ulnd(c)

c

_ Z uImd(e) ( (uv)—(1+s(c))/2uLO(c)vLO(c))

= Zs(c)ulnd(c) (1 _ (UU)LO(C)—(1+E(C))/2)
C

LO(c¢)—(14¢€(c))/2—1

= (1 —uv) Z e(c)ulmd Z (uv)"

c =0
So then ®(D)(u,v) is
Wr(D)—1Wr(D)—i—1 LO(c)—(1+E(c))/2—1
®(D)(u,v) =(uv) ") N > ()t 4 Z ulndle > (w)?
i=0 j=0 i=0

+ fo(u,v) + (1 —wv) f3(u,v) + -+ (1 — uv)"ian(u, v)

Now we set t = u = v~ ! and use Proposition [5| to obtain

Wr(D)—1Wr(D)—i—1 LO(c)—(1+e(c))/2—-1
D)t t )= Y ST+ (o > 1|+ fot,t™)
i=0 j=0 c i=0
Wr(D)—-1
14 ¢(c)
_ - tlnd c) L - e\
I
+ Z 6(07;)6(62)t—LU(C1)+RU(C2)+€2t—LO(C1)+RO(C2)—E2
{Cl}CQ}Gsl
_ Z €<Ci)E(cz)t—LU(C])—LU(CQ)t—LO(Cl)—LO(CQ)
{Cl CQ}GSQ
W’/‘(D)(WT )+ 1) Ind(c) 1+¢e(c)
= )t "N LO
+ Z () = { —
+ Z €(Ci)€(Cg)tlnd(cl)+lnd(62) _ Z 6(Ci)5(62)tlncl(cl)—i-17zd(02)
{Cl,CQ}Esl {(;1,62}652

=Vp (t)
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We could use the Alexander polynomial to derive higher-order writhe invariants (each defined modulo the
greatest common divisor of the lower-order invariants), but the formulas will quickly become unwieldy. In
the Appendix, we have listed Wk (t) and Vi (¢) for all virtual knots with at most 4 real crossings.

6. APPLICATIONS

6.1. Virtual crossing number. The virtual crossing number of a virtual knot K, denoted ve(K), is the
minimum, over all diagrams of K, of the number of virtual crossings in the diagram. If K is classical, then
ve(K) = 0. In this section we will prove that the breadth of the writhe polynomial is a lower bound for the
virtual crossing number.

Boden et. al. [2] defined a virtual Alexander polynomial Hk (s,t,q) for a virtual knot K, derived from a
virtual knot group. Their version of the virtual knot group included relations at virtual crossings (involving
the variable ¢), and they showed:

Lemma 3. [2, Theorem 3.4] Let K be a virtual knot with virtual Alexander polynomial H (s,t,q). Then
q—width of Hg (s, t,q) < 2vc(K)
where the q-width is the difference between the largest and smallest powers of q in the polynomial.

They also determined the relationship between the virtual Alexander polynomial and the polynomial
Ap(K) (which they called the generalized Alexander polynomial):

Lemma 4. [2] For any virtual knot K, up to normalization by multiplication by +s%t°q°,
HK(‘S, ta q) = HK(Sq_17 tQa 1) = AO(K)(Sq_17 tQ)

Both Hk (s,t,q) and Ag(K)(sq™!,tq) are divisible by 1 — st. Let H}(s,t,q) and Aj(K)(sq™!,tq) denote
the quotients. Note that the g-width of H} is the same as the ¢g-width of Hg. So then

q—width(Hg (s, t,q)) = q—width(H (s, t,q))
= -widih (g (1 1.0)
= ¢q—width(Ay(K)(¢~ ", q)) by Lemmal[d]
= q—width(Wk(q)) by Theoremm
Combining this with Lemma [3] we have shown
Theorem 3. If K is a virtual knot, then
width(W (t)) < 2ve(K)
where width(Wg (t)) is the difference between the largest and smallest powers of t in the polynomial.

6.2. Forbidden number. There are two additional Reidemeister-like moves for virtual knots, known as the
forbidden moves, illustrated in Figure[I5] Move FO moves a strand of the diagram “over” a virtual crossing,
while move F'U moves a strand “under” a virtual crossing.

\/FOQS(/

X I\

FIGURE 15. Forbidden moves.

Unlike the other virtual Reidemeister moves, the forbidden moves do change the Gauss diagram of a
virtual knot. The move F'O has the effect of switching the tails of two chords ¢; and ¢s in a Gauss diagram,
while the move F'U switches the heads, as shown in Figure Nelson [T4] notes that we can move a head
past a tail by using one forbidden move of each type.



16 BLAKE MELLOR

C Cy C Cy C Cy C

FIGURE 16. Forbidden moves on Gauss diagrams.

Taken together, the forbidden moves are an unknotting operation [7, 10, I4]. The forbidden number of
a virtual knot is the minimum number of forbidden moves required to transform the knot into the unknot
(with the minimum taken over all diagrams of the knot). Crans, Ganzell and the author [5] found an upper
bound for the forbidden number based on the crossing number, and a lower bound based on Cheng’s odd
writhe polynomial [3]. Sakurai [I6] found another (usually stronger) lower bound using Henrich’s polynomial
[9). Since both the odd writhe polynomial and Henrich’s polynomial are derived from the writhe polynomial
Wik (t), we can find a lower bound as strong (or stronger) as either of these using the writhe polynomial.

From Figure it is clear that the FO and FU moves subtract e(cg) from Ind(c;) and add e(c;) to
Ind(ca) (going from the diagram on the left to the one on the right). The indices of all other chords are
unchanged. So if K is a virtual knot, and K’ is the result of applying a forbidden move to crossings ¢; and
Co, then

WK(t) _ WK/(t) _ i[g(cl)(tlnd(cl)fs(@) _ tInd(cl)) + E(62)(tlnd(cz)+s(cl) _ tlnd(@))]
_ i[E(Cl)tlnd(Cl)(t_E(02) o 1) + g(CQ)tInd(CQ)(tE(Cl) _ 1)]
— :I:tlnd(cl)(t:l:l _ 1) :I: tlnd(CQ)(t:l:l _ 1)

tInd(cl) + tlnd(cz)
tlnd(cl)—l :ttlnd(cz)
=£(t-1)- ¢Ind(er) 4 gInd(cs)—1

tlnd(cl)—l + tlnd(CQ)—l
If we define Wy (t) by Wi (¢) = (t — 1)W(¢), then we have shown:

Theorem 4. Suppose K is a virtual knot, and Wi (t) = Y b;t". If K’ is the result of performing a forbidden
move, and Wi, (t) = > ¢;t’, then |(3 |bs] — X |ei|)| < 2. In particular, the forbidden number of K is bounded
below by £ 3 [b;].

The lower bound on the forbidden number given by Wi is at least as good as those derived from Henrich’s
polynomial or the odd writhe polynomial, and is sometimes significantly better. For example, consider
the virtual knot K shown (with its Gauss diagram) in Figure Wi(t) = t74 —2t72 + 212 — 4 =
(t—1)(Q—t*—t3+¢t2+¢t71 +¢t—t>—t3). Both the Henrich and odd writhe polynomials are 0, so give
us no information about the forbidden number. But from Theorem [ we get that the forbidden number of
K is at least 4. (It is not hard to see that K can be unknotted using 9 forbidden moves; we do not know
whether it can be done with fewer.)

The second order writhe polynomial Vi (t) can also give us information about the forbidden number.
Since the pair of chords altered by a forbidden move aren’t in an alternating configuration either before or
after the move, the only part of Vi (¢) changed is the first sum, and the only parts of the sum which change
are the terms corresponding to ¢; and cs. So at most four coefficients of the polynomial change, those
corresponding to ¢/nd(c1)  gInd(ci)—e(e2) plnd(c2) g ¢Ind(c2)+e(c1) - The amount by which the coefficients
change is determined by the indices of the crossings, and can be relatively large. However, we have shown

Proposition 7. Suppose K is a virtual knot with forbidden number 1. Then Vi (t) can be written with at
most four terms, of which at most two involve even powers of t and at most two involve odd powers of t.

For example, consider knot 4.2 from Jeremy Green’s table of virtual knots [8], shown in Figure The
writhe polynomial for this knot is trivial, so gives no lower bound for the forbidden number. The second
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Ficure 17. K = 01-U24+03-U1-04+U5-06+U3-02+U6+05-U4+.

order writhe polynomial is Vi (t) = 2+u~2 —2u~! — 2u+u?; since the writhe polynomial is trivial, the second
order polynomial is well-defined. Vi (¢) has five terms, so the forbidden number is at least 2. However, the
Gauss code for this knot is O1-02-U1-U2-03+04+U3+U4+, and it is easy to see that it can be unknotted
with two forbidden moves (one move to uncross chords 1 and 2, and a second to uncross chords 3 and 4).
So the forbidden number for knot 4.2 is exactly 2.

FIGURE 18. Virtual knot 4.2 (from Green’s table of virtual knots [g]).

6.3. Positive reflection mutations. Given a virtual knot K, a Conway mutation of K is the process of
cutting out a tangle (cutting the knot K in four places), transforming the tangle by a horizontal flip, vertical
flip, or 180° rotation, and gluing it back in. The rotation is positive if the orientation of the strands of
the tangle are the same before and after the mutation. A positive rotation is a positive mutation which
rotates the tangle, while a positive reflection flips the tangle. Folwaczny and Kauffman [6] showed that
the writhe polynomial could distinguish some pairs of positive rotation mutants, but could not distinguish
positive reflection mutants. We will show that the second order writhe polynomial can sometimes distinguish
positive reflection mutants. In fact, we will give an infinite family of pairs (K, M K) of a virtual knot and
its positive reflection mutant which are distinguished by the second order writhe polynomial.

Consider the virtual knot K shown on the top in Figure [19|and its positive reflection mutant M K shown
on the bottom of Figure[I9] The table below shows the index and left over-index for each crossing.

K MK
crossing LO Index | LO | Index
1<i<kl|i—-k—-2| -1 i—k -1
k+1 k-1 | k+1|-k—-2| k+1
k+2 -1 0 —k—1 0
E+3 0 -1 | —-k-1| -1
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k+2 k+3
X
k
f - ’)] k chords
1 —>
+
\\+
k+1
X
+
k +
lt N :) ] k chords
M
35

k crossings

FIGURE 19. Top: Gauss diagram and knot diagram for virtual knot K. Bottom: Gauss
diagram and knot diagram for positive reflection mutant M K. All crossings are positive in
both knots.

Since the indices of the crossings are all the same, the knots have the same writhe polynomial (as expected
from [6]). The writhe polynomial is Wy (t) = Wy (t) = —k — 2 + kt =1 + t*+1. However, the second order
writhe polynomials are not the same. Note that, in both K and M K, the only pair of alternating chords is
k41 and k+ 3. In K these chords are in configuration B, while in M K they are in configuration A.

VK(t) _ (/ﬂ + 3)2(]€ +4) + <Z tlnd(c)(Lo(C) _ 1)) _ tk

c

(k+3)(k+4) a . -1 k+1 -1 Kk
SR AL AN N A — k- +(—k—2 —2—¢t -
5 ;12 k=3t 4 (—k —2)t Tt —t

_ (k:+3)2(k—|—4) - ((k+2)2(k+3) _3) U (e a1
2 2
k +;k+8_ (k +Zk+2>t_1—(k+2)tk+l—tk

By a similar computation, we find

E2+5k+8 [(k2—k—4\
Vi (t) = 5 —( 5 )tl—(k—i—i’))tk“—i—tk

The difference is
Vic(t) = Vi (t) = k — 3(k 4+ 1)t =1 4 ¢tF 1 — otk
This is not a multiple of W (t), since the writhe polynomial for the two knots does not have a t* term.
Hence the second order writhe polynomials are not congruent modulo W (t). So the second order writhe
polynomial distinguishes K from M K.
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7. APPENDIX: TABLE OF WRITHE POLYNOMIALS
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These tables list the writhe polynomials Wk (t) and second order writhe polynomials Vi (t) (modulo
Wik (t)) for all virtual knots with at most four crossings. The knots were taken from Green’s table of virtual

knots [§].

Knot K WK(t) VK(t)
0.1 0 0
2.1 —24t7 14t t—1
3.1 1—t24t71 —¢ 22t
3.2 22—t T —¢ 1—t
3.3 3—t2-2t 3-—3t
3.4 —1—t2 4271 =11
3.5 2—t2—¢2 2 — 2t2
3.6 0 0
3.7 2172 ¢ 2 — 212
4.1 4 -2t T -2t —t 242t T —¢2
4.2 0[24+t2—2t7 1 —2t+¢2
4.3 —44+ 27T+ 2¢ 34+t 24t 1T
44 22—t 1 —t¢ t—t?
4.5 2t Tt =2 ¢ 1
4.6 0 —1+2t—¢?
4.7 4 -2t~ T —2¢ 2— 2t
4.8 0 0
4.9 24+t T+t 1—¢t 1

4.10 1—t2+t -t 292t
4.11 3—t 2 -2t 4—t T2t —¢2
4.12 0 t72 =2t 42t — 2
4.13 0 —1—t242t71
414 | =t 2+t T4t — 42 14+t — 262
4.15 3—t2-2t 5—t-1 —4t
4.16 0 0
4.17 1—t24+t71 ¢ T —¢
4.18 —24tT4+¢ t—1
4.19 1—t 1+t —+2 1—¢2
4.20 1+t 2 -2t 1 1—t 1
4.21 2 —t72—¢2 1+t 11—t —¢2
4.22 1—t3+t72 -t 1+t T —t¢
4.23 —1+t T —t+¢ -1
424 1—t34+¢ T4 24+t T —¢t—2t2
4.25 —A4 42T+ 2t t—t 1
4.26 I —2—t T 4+3t
4.27 22—t —¢ 1—t
4928 2+t 3 —t T2t —1-2t7T+3t
4.29 3+t 22 4+t T2t 412
4.30 2—¢t 1T —¢ —2—t 243t T
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Knot K Wik (t) Vi (t)
4.31 0 1—2t+¢2
4.32 —1+t 22—t T4t —2 42t
4.33 2—t71—¢ —14+¢!
4.34 —1—t242t7 1 1+t 1
4.35 —1+t T —t+¢? —1+¢
4.36 24t 2442 1—t 22—t T41¢
437 | 4+t 24+t Lt +2 | —6+2t71 4 ¢+ 342
4.38 1—2t+¢2 —1+t
4.39 1—t3+t72 -t 1+t 1T -2t
4.40 —24t T 4¢ —1+t
4.41 0 0
4.42 11—t 34247t —1+t2
4.43 4—2t71—2¢ 22t
4.44 —24t 1 4¢ —1+t
4.45 —24¢t 3 —¢ T4 2 —3—t T 44t
4.46 0 2t~ —t
4.47 t3— 2t T4 ¢ —2t7 T 4+ 2¢
448 | 4 —t2 -t T —¢t—¢2 1+4+¢71 —2¢2
4.49 —14+2t—t2 1—¢
4.50 —1+t 72—t T4t -2+ 2t
4.51 0 1—2t+¢2
4.52 2—t71—¢ —14+¢t!
4.53 —4+ 27T+ 2 2 — 2t 1
4.54 2—tT—¢ t—t?
4.55 0 0
4.56 0 0
4.57 1—t2 4+t —¢ 1 —¢
4.58 0 0
4.59 0 0
4.60 —24t T 4+¢ —1+t
4.61 —24t 14t —1+t
4.62 3—t S —t—t2 —24t—t2
4.63 3—t2 -2t —14+2t72 — ¢!
4.64 —t 24t T4t —¢2 3t — 32
4.65 2 —t72—¢2 1+t 11—t —+¢2
4.66 I—t 3+t —¢2 24+t T —t—2t2
4.67 1—t 24+ttt =T —¢
4.68 0 0
4.69 2—t1—¢ 11—t
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Knot K Wik (t) Vi (t)
4.70 —1+t 22—t 4t -2+ 2t
4.71 0 0
4.72 0 0
4.73 —A+2t T 42| 2t 22t +¢2
4.74 22—t —¢ 2 —3t+1¢°
4.75 0 0
4.76 0 0
4.77 0 0
4.78 3—t S —t—t2 4—t—3¢t?
4.79 1t 3 +t2 47! —1+t2
4.80 —4+t73 13t —6 + 6t
4.81 24¢3 -3t 1 3—3t 1T
482 -4+t 2+t T +t+¢2 3—2t 2t 1T
4832 -t 4¢t72 —¢t7 1 —¢2 4—t71 -3¢
4.84 t2—t Tt 4 ¢2 1—2t724¢7 T
4.85 24t 2442 2t — 2
4.86 2t 22 2 —2t2
4.87 4—t=3 —¢~ 1 —2¢2 6 —t—t —b5t2
4.88 3 -2t 24 ¢ 1 — 72 4t 1
4.89 —442t72 4247 2 -3t 2+t
4.90 0 0
4.91 4—t3 ¢t Tt -3 6—t"1—2t—3¢3
4.92 24+t 3448 -3+ 33
4.93 24t3 -2t —¢ 3—t—2 -2t
4.94 2ttt 1—t¢
4.95 24+t 3+ -3+ 3t
4.96 24+t 24¢2 —2 + 212
4.97 72—t T2 4¢3 1—-3t 242t 1
4.98 0 0
4.99 0 0
4.100 —4 42T+ 2 22t T
4.101 2t 3 —¢3 3 — 3¢t3
4.102 —t St Tt t—1 2t — 3¢2
4.103 —24 272 ¢ 1443 3—5t 24271
4.104 24+t 3+ —3+ 383
4.105 0 0
4.106 2172 ¢ 2 —2t?
4.107 0 —24+t 2442
4.108 0 0
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