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Fractal dimensions in perceptual color space: A comparison study
using Jackson Pollock’s art

J. R. Mureikaa�

Department of Physics, Loyola Marymount University, Los Angeles, California 90045-8227

�Received 10 May 2005; accepted 20 September 2005; published online 16 November 2005�

The fractal dimensions of color-specific paint patterns in various Jackson Pollock paintings are
calculated using a filtering process that models perceptual response to color differences �L*a*b*

color space�. The advantage of the L*a*b* space filtering method over traditional red-green-blue
�RGB� spaces is that the former is a perceptually uniform �metric� space, leading to a more
consistent definition of “perceptually different” colors. It is determined that the RGB filtering
method underestimates the perceived fractal dimension of lighter-colored patterns but not of darker
ones, if the same selection criteria is applied to each. Implications of the findings to Fechner’s
“principle of the aesthetic middle” and Berlyne’s work on perception of complexity are
discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2121947�

The use of fractal analysis to explain aesthetic properties
of art is becoming a subject of great interdisciplinary in-
terest to physicists, psychologists, and art theorists. Pre-
vious studies have addressed the classification of abstract
expressionist art by the fractal dimension of the pigment
patterns on the canvas as a method of artist authentica-
tion. Moreover, it has been proposed that the fractal
structure of the pigment patterns is somehow connected
to the aesthetic “value” of the painting. The patterns in
question have traditionally been selected using filtering
algorithms of red-green-blue (RGB) primaries, a percep-
tually nonuniform color space in which “distances” be-
tween perceptually just-differentiable colors are not the
same for lighter and darker hues. Although RGB-based
analyses have had success in devising categorization
schemes for abstract paintings (see the cited literature),
the use of this color space limits analyses that seek to
cross compare the fractal dimension of different color
patterns from a perceptual stance. The following summa-
rizes the results of a fractal analysis performed on several
paintings by the renowned artist Jackson Pollock, this
time in a perceptually uniform color space that more
closely replicates how the visual cortex would identify
and differentiate individual colors. The data provide bet-
ter insight into the fractal dimension and aesthetic nature
of specific light and dark pigment patterns, and posit that
the artist may have primarily used darker colors to en-
gage the viewer.

I. FRACTALS IN ABSTRACT EXPRESSIONIST ART

Fractals are implicitly tied to the notions of chaos and
irregularity,1–3 and over the past 15 years have been increas-
ingly associated with human perception issues. The problem
of structure identification and discrimination in music, art,
and visual processing has benefited greatly from this cross-
disciplinary endeavor. For example, the authors of Refs. 4

and 5 pose the question of whether or not humans are “at-
tuned” to the perception of fractal-like optical and auditory
stimuli. Similarly, the results reported in Ref. 6 show that the
quantitative accuracy of human memory possesses a fractal-
like signature that can be measured in task repetition. Spe-
cifically, when subjects were asked to perform tasks such as
repeatedly drawing lines of specific lengths or shapes, the
statistical variations in the lengths have been shown to be not
purely random noise, but fractally ordered “1/ f” noise.

Recently, the use of fractal dimension analysis tech-
niques for the study of paintings has become of interest,7–12

which in the case of works by Jackson Pollock suggests that
the fractal dimension of the paint patterns clusters suspi-
ciously around the value DF�1.7. In Refs. 11 and 12, the
analysis is extended to paintings by different artists, and ad-
dresses the full multifractal spectrum of the patterns. Further-
more, to overcome the problem of proper color choice �the
focus of discussion in this paper�, the notion of a visual
fractal was introduced.11 Instead of direct observation of col-
ors, the focus instead shifted to edge structures. This is ef-
fectively an analysis of luminance gradients within the im-
age, and not directly on the RGB color field distribution.

Implicitly related to this topic, the authors of Ref. 13
discuss the perceptibility of hierarchical structures in abstract
or nonrepresentational constructs. In fact, rapid object recog-
nition and categorization via boundary isolation versus
“blob” identification is a subject of growing scientific inter-
est �see Ref. 14 and related references therein�. Similarly, the
degree of complexity present in a scene is largely believed to
be critical in maintaining the interest of an observer.15,16 The
fractal dimension is a natural measure of such complexity.

The predominant question remains: “Where is the frac-
tal?” Does one calculate this statistic based on a pattern of a
specific color? If so, how is this color selected and specified?
A simple choice would be to pick the most abundant values
of RGB primaries and digitally deconstruct the image to re-
move the appropriate matching pieces. Patterns which match
this selection criteria can be called “physical colors,” sincea�Electronic mail: jmureika@lmu.edu
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the RGB primaries define the image as it appears �on the
canvas�.

However, the human visual processing system has
evolved in such a way that the actual physical world is not
always what is perceived by the brain. There is a long-
standing argument addressing the questions of how we pro-
cess scenes, what elements are important to a visual field,
and so forth. As previously mentioned, the analysis in Refs.
11 and 12 studies the edge structure of paintings, based on
the notion that we perceive contrast changes separately �or
independently� from individual colors.

Similarly, perceived differences between colors them-
selves are nontrivial to quantify. In fact, use of RGB prima-
ries for perceptual image analysis is flawed because the color
space in question is not perceptually uniform. In this paper,
previously reported fractal dimensions for various paintings
by Jackson Pollock are recomputed using what will be
termed “perceptual color selection,” as opposed to physical
color selection. The latter uses the simple RGB primaries,
while the former involves computations in the Commission
Internationale de l’Eclairage �CIE� L*a*b* color space.

The following will analyze six paintings by Jackson Pol-
lock by determining the fractal dimension of specific patterns
formed in the L*a*b* color space. These data will be com-
pared to the fractal dimensions of the same color patterns in
the usual RGB color space, and thus the results can be un-
derstood to represent the perceptual distinctions of colors on
the canvas.

II. THE BASICS OF PERCEPTION

Before attacking the problem of detecting visual fractals,
a brief primer on color vision and perception is in order. In
fact, it was physicists who had the first major say in the
foundations of this science, known in the literature as “psy-
chophysics.”

In the early 1800s, the trichromacy theory of vision was
postulated by Young, and was later expanded upon by Helm-
holtz and Maxwell �later dubbed the Young-Helmholtz
theory, much to the dismay of Maxwell�.17 The assertion was
that color vision is the result of simultaneous stimulation of
three photoreceptors in the eye, based on the RGB primary
breakdown. Physiological confirmation of this hypothesis did
not come until the 1960s, when three distinct cellular recep-
tors in the eye �cones� were discovered to have peak sensi-
tivities to light of �=440 nm �blue�, 540 nm �green�, and 580
nm �actually more yellow than red�.

Meanwhile, the late 1800s saw the emergence of
Hering’s Opponent Theory of Vision.17 Instead of a trichro-
matic basis for vision, Hering proposed that the perception of
colors was derived from the contrasting of opposite color/
intensity pairs: red-green, yellow-blue, and light-dark. Again,
experimental physiological evidence for such a mechanism
was revealed in the 1950s. In this case, two chromatic sig-
nals and a third achromatic one were detected in the optical
nerve under various stimulation experiments.

Note that, unlike the trichromacy theory, the Opponent
theory allows for object recognition based on luminosity or
hue gradients alone, and hence no explicit color information

is required. So, while the raw color stimuli may be per-
ceived, it may not be this information which is transmitted to
the visual cortex for eventual processing.

Most modern theories of color perception tend to consti-
tute a mixture of the two aforementioned postulates in some
fashion. This, of course, leads to the immediate question: is
there a preferential order for object and color detection? Is
one a primary mechanism, and the other secondary? Or, are
they mutually independent processes that serve to provide
diverse information about the scene considered? There is still
no clear answer to these musings, although much work has
been devoted to such studies �see texts such as, e.g., Ref. 18
and references therein for further reading�.

III. CIE COLOR SYSTEMS

The Commission Internationale de l’Eclairage, or CIE
as it is more often known, was formed in an attempt to ad-
dress and standardize the myriad aspects of color definition,
reproduction, and perception via a rigorous set of mathemati-
cal standards and transformations. Since actual color percep-
tion can vary depending on the external conditions �ambient
lighting� and internal conditions of the observer �neurophysi-
ology of vision mechanism�, a set of “invariant” standards is
useful in describing ideal conditions under which observa-
tions and comparisons can be made.

In order to establish consistent external lighting vari-
ables, the CIE defined the standard illuminants to be those
conditions which represent the complete spectral power dis-
tribution of a particular state. The most widely used of these
standards are the D illuminants, which characterize the con-
ditions of “average daylight.” In the present work, all CIE
conversions will reference the D65 illuminant, which corre-
sponds to standard average daylight with a spectral tempera-
ture of 6500 K.17,19 Note that the D-illuminants standards
cannot be reproduced by any known physical source of light.
Conversely, the earlier A-, B-, and C-illuminants were based
on the spectral power distributions of �filtered� incandescent
tungsten light �2854 K�.17 This mild lack of chromatic repro-
ducibility is an inherent problem with digital analyses of
images; however, with a 24-bit color system it is doubtful
that it constitutes a large concern.

It should be noted that CIE color systems are primarily
designed for industrial �textile� color-matching and color-
gamut consistency in color displays. While many of their
intricacies are based on human perception principles, they
are not meant to fully represent the neural processes that
occur in vision. For the purposes of this paper, however, they
are certainly a good first-pass approach to the problem.

IV. FILTERING VISUAL FRACTALS

To date, the color-filter process has relied on the fact that
the target colors are the mixture of RGB triplets. Such a
color basis is certainly not unreasonable, and in fact forms a
large base of the tristimulus theory of color vision. However,
further inspection of color theory reveals that the three-
dimensional RGB space is not perceptually uniform. That is,
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two colors that are a fixed distance �RGB away from a base
stimulus may not be equally different from a perceptual
stance.

A. Alternate color representations

Furthermore, the RGB specification is deficient in the
sense that, as an additive color scheme, it cannot reproduce
all observed colors. In 1931, the CIE set out to formulate an
accurate color space. Known as the CIE XYZ space, these
tristimulus primaries themselves are not visible in the same
sense as R, G, and B, but are rather an “imaginary” basis
introduced to allow for reproduction of all observable colors.
Specific colors C��� are matched by combining appropriate
amounts of red, green, and blue primaries �denoted r, g, and
b�. However, in many cases, it was noted that perfect
matches could not be made in such a fashion. Instead, one
could match combinations of two of the three primaries with
a suitable combination of the target color and the third pri-
mary. Arithmetically, this implies

C��� + rR = bB + gG , �1�

and so the target C��� is formed by a negative contribution
from one of the primaries. The CIE XYZ system thus repro-
duces the entire spectrum of observable colors.

For a standard D65 illuminant observer, the transforma-
tion is a simple linear one of the form

�X

Y

Z
� = �0.412 424 0.212 656 0.019 332 4

0.357 579 0.715 158 0.119 193

0.180 464 0.072 185 6 0.950 444
��R

G

B
� ,

�2�

with the inverse transform yielding negative coefficients, as
indicated above. The exact form of the matrix in Eq. �2� is
somewhat dependent on the color gamut and standard white
being used for display purposes. In the case of this paper, the
matrix values are for the sRGB color scheme �for “standard
RGB”�, and will primarily be adopted for the analysis herein.
However, comparison with other transformation schemes
will be discussed.

Unfortunately, while the XYZ space is more physically
realistic in terms of color reproducibility, it is still not per-
ceptually uniform. The CIE addressed these issues, and of-
fered several solutions as recently as 1976.

B. CIE-L*a*b* space: Perceptual uniformity

A truly perceptually uniform space, the CIE-L*a*b* color
space is a nonlinear transformation of the XYZ space

L* = 116 f�Y/Y0� − 116,

a* = 500�f�X/X0� − f�Y/Y0�� , �3�

b* = 200�f�Y/Y0� − f�Z/Z0�� ,

where f�X /X0�= �X /X0�1/3 if �X /X0��0.008 856, and
f�X /X0�=7.787�X /X0�+16/116 otherwise.17 Here, the values
�X0 ,Y0 ,Z0�= �0.3127,0.3290,0.3583� are the standard
�white� tristimulus values for a 2° observer in the D65 illu-

minant �in general, one can make the approximation X0

=Y0=Z0=1/3�. The coordinate L* represents the perceived
luminosity, and covers the range of luminance scales �0 be-
ing black, 100 being white�. The remaining coordinates a*

and b* are the relative red-green and blue-yellow content,
analogous to Hering’s Color Opponent theory and more re-
alistic ocular color detection processes.17

The perceptual color difference is then the Euclidean
distance in L*a*b* space,

�L*a*b* = ���L*�2 + ��a*�2 + ��b*�2. �4�

One immediately notes from the form of Eq. �4� that the
structures of the RGB and L*a*b* color spaces are quite dif-
ferent. This suggests that the relative structures obtained by
color-filter processes are largely dependent on the color-
matching system at hand. Specifically, one might expect that
the patterns selected by RGB filtering criteria do not conform
to those of an L*a*b* filter. That is, the physical distribution
of like colors may not correspond to the perceived distribu-
tion of colors. If the structures are sufficiently different, then
this can weaken arguments that suggest that patterns of spe-
cific fractal dimension are pleasing to observers.

The difference in measured spectra may indeed be a vi-
sual effect, if the eye functions on a similar uniform “cutoff”
level for like-color discrimination. However, the actual color
information of the system may not be the most important
contributor to first-order visual processing systems.

V. ANALYSIS AND RESULTS

The images analyzed herein are digital scans at 300 dpi,
with side lengths ranging from 1000–2000 pixels. In this
case, each pixel corresponds to a length scale on the order of
a few tenths of a centimeter, corresponding to a target L*a*b*

color �within an allowed color radius�; they are filtered to
form a “perceived” representation of a particular pattern. The
fractal dimension of the resulting pattern is determined by
the traditional box-counting technique, where the covering
boxes range in size from d=1024 px to d=4 px, or length
scales of roughly 1.5–2.5 m to a few millimeters. The box-
counting analysis thus covers about three orders of magni-
tude.

The calculated fractal dimensions DF for both RGB and
L*a*b* spaces are displayed in Table I. What is immediately
apparently and interesting to note is that L*a*b* space is
much more sensitive to changes in lighter colors, implying
that the calculated dimensions for cream or white blobs with
equal � in RGB space will in general not be the same in the
perceptually uniform space. This suggests that the overall
structure of the blobs may depend on the individual who
perceives them, and hence the structures may be perceptually
different than their physical color distribution �RGB space�
suggests. Figures 1 and 2 demonstrate how the physical RGB
distribution of a light color is significantly less than the per-
ceptual L*a*b* distribution for the same color.

In fact, for an equal value of �L*a*b*, the values of DF in
L*a*b* space for lighter colors are consistently higher than
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the equivalent values in RGB space �for fixed �RGB�. This
result is justifiable based on the nature of the perceptual uni-
formity of L*a*b* space. In traditional RGB spaces, lighter
colors occupy a much larger volume than darker colors.
Thus, an analysis that uses a color radius �RGB will miss
significant portions of the space, and will filter a pattern hav-
ing a shallower range of “undistinguishable colors.” The
transformation to L*a*b* space shrinks the volume of the
lighter colors �which correspond to higher luminosity val-
ues�; thus, the associated analysis will include a much richer
depth of colors �and hence a larger pattern will result�. An
interesting “test” of such perceptual distinction of patterns
would be to study the differences in fractal dimensions cal-
culated from paintings by different artists who largely use
subtle, nonluminous colors.

In many cases, the former light color dimensions surpass
the DF for the darker colors, whereas before they were less
than or equal to them. If it is true that a viewer will have a
preference for midrange values of the fractal dimension,
DF�1.3–1.7 �as suggested by the principle of aesthetic
middle21 and also supported by recent data from Ref. 9�, then
it can be inferred that the darker patterns “fix” the fractal
dimension for the whole painting. This is a similar conclu-
sion to that observed in painting “construction” by Taylor et
al.,8 who dubbed this the “anchor layer.”

The color spaces used in this analysis correspond to av-
erage, human color receptor responses. Individual variations
in these responses, as well as those who possess color defi-
ciencies �color blindness�, could certainly impact the per-
ceived dimensionality of the patterns. Indeed, it might be that
the artist himself did not “see” the same pattern as his audi-
ence did. However, color-blindness conditions are more a
function of decreased color hue sensitivity, rather than

luminosity perception �which is the dominant channel in
L*a*b* space�. Further studies could address these perceptual
differences.

As a result, these conclusions can thus be thought of as a

TABLE I. Comparison of fractal dimensions calculated by RGB and L*a*b*

filtering processes for two different RGB-XYZ transformations �D65 illumi-
nants�. The radii in L*a*b* color space are chosen to produce approximately
the same value of DF for darker colors �in this case, �L*a*b* =15�. The num-
ber in parentheses is the error in the least-square fit used to calculate the
fractal dimension.

Color ID DF �RGB� DF �L*a*b*; sRGB D65� DF �Adobe RGB D65�

Reflections of the Big Dipper (1947)
Black 1.77 1.78 �0.04� 1.77 �0.04�
Yellow 1.35 1.53 �0.08� 1.70 �0.06�

Number One A 1948
Black 1.77 1.78 �0.03� 1.76 �0.04�
White 1.57 1.79 �0.04� 1.81 �0.03�

Undulating Paths
Black 1.76 1.75 �0.05� 1.75 �0.05�
Yellow 1.56 1.79 �0.04� 1.80 �0.04�

Number One 1949
Gray 1.73 1.82 �0.03� 1.83 �0.03�
Yellow-gray 1.71 1.83 �0.03� 1.84 �0.03�

Blue Poles (1952)
Black 1.74 1.49 �0.07� 1.52 �0.07�
Gray 1.68 1.78 �0.02� 1.79 �0.03�

Autumn Rhythm (1950)
Black 1.70 1.54 �0.05� 1.51 �0.05�
White 1.30 1.59 �0.04� 1.64 �0.03�

FIG. 1. Portion of black pigment filter of Autumn Rhythm showing �a� raw
image, �b� physical RGB distribution, and �c� perceptual L*a*b* distribution.
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preliminary assessment of perceptual color fractals. Further
experimentation, complemented by psychological behavioral
data, is certainly required before definite conclusions can be
drawn.

Choice of color scheme and illuminant

As previously mentioned, there are numerous possible
choices of RGB-XYZ transformation matrices used in Eq.
�2�. These depend on the color system being used �e.g.,
NTSC, PAL�, the palette adopted by computer monitors, and
ultimately the standard white defined by the illuminant. Table
I offers a comparison to another D65 illuminant transforma-
tion labeled “Adobe RGB-XYZ,” having components

�0.576 700 0.297 361 0.027 032 8

0.185 556 0.627 355 0.070 687 9

0.188 212 0.075 284 7 0.991 248
�. �5�

It is clear from the results that the choice of scheme is mostly
inconsequential to the dimensions being calculated. Discrep-
ancies can be noted in few of the color patterns considered.
In fact, these could be explained away as an improper choice
of RGB primaries to begin with. This cross comparison
could in fact be used as a method for determining the “ac-
tual” RGB coordinates required for the analysis. In any
event, the conclusions from the previous section are still sup-
ported: For a fixed color space radius, lighter-colored pat-
terns will have a perceptually higher fractal dimension than
darker ones.

VI. DISCUSSION AND CONCLUSIONS

Calculating the fractal dimension of patterns based on
their RGB coordinates in the digital representation is not
reflective of visual selection criteria for the same colors due
to the nonmetric nature of the space. The L*a*b* color space
is a more natural choice that reflects the color response of the
human perception system, and is a consistent metric space.
This study has suggested that, if the fractal dimensions for
dark patterns are in agreement with previous analysis meth-
ods �which they should be, since the color spaces for darker
colors overlap fairly closely�, then the lighter-colored pat-
terns possess a much higher fractal dimension approaching
DF=2. This implies that the distribution of lighter colors—
having higher complexity—would saturate the visual system.

These results can be related to Fechner’s “principle of
the aesthetic middle,” which states that a viewer will tolerate
for the longest period of time a visual scene of moderate
complexity.21 This was experimentally verified by
Berlyne15,16 for statistical distributions, and more recently
applied to fractal analysis by Taylor.9,10 The latter reported
that human preference for fractals of dimension D�1.3 is
the highest.

However, this work has found that the dimensions for
the color patterns are significantly above the “aesthetic
middle” dimension of 1.3. What then are the motivations for
painting patterns that specifically are not aesthetically pleas-
ing to the average viewer? This is currently an open question
that has no single satisfactory answer. Borrowing again from
the field of aesthetic research, it is possible to explain Pol-
lock’s choice of dimensions by appealing to the peak shift
effect, one of the “eight laws of artistic experience.”22 The
peak shift effect is an experimentally verified cognitive phe-
nomenon in which visual interest or identification is
strengthened by overtly enhancing key characteristics of an

FIG. 2. Portion of white pigment filter of Autumn Rhythm showing �a� raw
image, �b� physical RGB distribution, and �c� perceptual L*a*b* distribution
corresponding to the data in Table I.
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object or image �such as the “larger-than-life” features of
caricatures in political cartoons�. These enhanced character-
istics are explicitly not aesthetically pleasing, but their pur-
pose is to grab attention and convey key recognition infor-
mation in a rapid fashion �see Ref. 23 for a detailed
discussion�.

Alternatively, the relevance to the present work can be
understood by considering the relative difference in fractal
dimensions between perceptual colors in Pollock’s work.
That is, based on the notion that lowest fractal dimensions
are more appealing to observers, this indicates that it is pri-
marily the darker patterns that play a role in capturing the
interest of the observer. This is consistent with Taylor’s ear-
lier notion of the anchor layer, and in fact serves as a method
of “identifying” the most salient pattern on the canvas. In
fact, the “attractiveness” of the pattern �based on lower frac-
tal dimension� and the assertions of this paper could be ex-
perimentally verified through eye saccade-type or other sub-
ject perception experiments.

One could speculate that Pollock deliberately “tuned”
his paintings to contain these color visual structures, based
on an intuitive understanding of the visual arts and aesthet-
ics. This would then indicate a third level of structure in his
paintings, in addition to the physical fractals of the paint
blobs, as well as the edge fractals created by the luminosity
gradients of overlapping pigments.12 If this is indeed true,
then it further exemplifies the artistic genius that he demon-
strated in creating visually complex, yet emotionally compel-
ling, nonrepresentational scenes.
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