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Several different approaches to quantum gravity suggest the effective dimension of spacetime reduces
from four to two near the Planck scale. In light of such evidence, this Letter re-examines the
thermodynamics of primordial black holes (PBHs) in specific lower-dimensional gravitational models.
Unlike in four dimensions, (1 + 1)-D black holes radiate with power P ∼ M2

BH, while it is known no
(2 + 1)-D (BTZ) black holes can exist in a non-anti-de Sitter universe. This has important relevance to the
PBH population size and distribution, and consequently on cosmological evolution scenarios. The number
of PBHs that have evaporated to present day is estimated, assuming they account for all dark matter.
Entropy conservation during dimensional transition imposes additional constraints. If the cosmological
constant is non-negative, no black holes can exist in the (2 + 1)-dimensional epoch, and consequently
a (1 + 1)-dimensional black hole will evolve to become a new type of remnant. Although these results
are conjectural and likely model-dependent, they open new questions about the viability of PBHs as dark
matter candidates.

© 2012 Elsevier B.V.

1. Introduction

It has long been known theories of gravitation have a much
simpler formulation in (2 + 1)-D [1–10] and (1 + 1)-D [11–28],
where associated quantum theories are exactly solvable [12].
A resurgence of interest in lower-dimensional physics has been
spurred by a confluence of evidence that the effective dimen-
sionality of spacetime may depend on the energy scale at which
interactions take place [29–44]. Instead of revealing extra dimen-
sions at very short distances [45,46], it is conceivable that the
number of spatial dimensions decreases as the Planck length is
approached.

Dynamical or spontaneous dimension reduction has been stud-
ied in various contexts, mostly focusing on the energy-dependence
of the spacetime’s spectral dimension ds . The latter is the ef-
fective dimension seen by a diffusion process on the manifold
over some time σ , characterized by a probability return func-
tion P (σ ) [47,48]. The spectral dimension is formally defined as
ds = −2 d log P (σ )

d logσ , which for flat space is ds = 4 [47], indicating this
quantity is a probe of the underlying geometry. The causal dy-
namical triangulation approach was the first to demonstrate the
spectral dimension decreases to ds = 2 as the energy scale in-
creases [47]. This effect is replicated in a noncommutative-inspired
geometry [49], as well as through the anisotropic scaling factors
in Lifshitz gravity [48]. In each model, the described mechanism
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“hides” structure of the manifold at scales approaching the quan-
tum regime, turning gravity into an effective lower-dimensional
theory.

From a string theory perspective, it has been shown that an
energy-dependent dimension emerges from a smooth transforma-
tion of a three-brane to a one-brane [51]. Similarly, this idea has
been extended to model a three-brane as a collection of one-
branes at every point [52]. Alternate dimensional reduction sce-
narios include fractal spacetimes [39,50,56–59], with additional
approaches concerning new techniques in gauge coupling unifica-
tion [34] and a strong coupling expansion of the Wheeler–DeWitt
equation [35].

A geometric dimensional reduction framework was recently
proposed wherein a (d + 1)-dimensional spacetime is a recur-
sive lattice-network of lower-dimensional substructures [30,31,29,
32,33]. Each has a fundamental length scale Lk that becomes rel-
evant at the energy Ek ∼ L−1

k . This concept naturally addresses
the hierarchy problem, and provides a range of phenomenolog-
ical signatures — including dimensionally-dependent scattering
cross-sections and gravitational wave frequency thresholds — that
could be observable in present or future experiments. The idea is
motivationally-similar to, but formally distinct from, the cascading
DGP scenarios previously discussed in the literature [53,54].

A lower-dimensional Planckian arena for gravity is thus nat-
ural and attractive. It is therefore important to fully understand
the roles of the spectral and geometric dimensions as they re-
late to gravitational phenomenology. Since the characteristics of
spacetime are unknown at quantum scales, one is tempted to take
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advantage of this ambiguity and interpret the spectral dimension
as the geometric dimension of the manifold. This presents sev-
eral intriguing questions: is the universe itself effectively lower-
dimensional at high energies? If so, how does the transition from
one dimension to another affect the dominant physics, and ideally
is it possible to observe evidence of such transitions?

Whatever the underlying framework, it will be assumed that
the quantum geometry is described semiclassically by an effective
(1+1)-D or (2+1)-D metric. In this Letter, the former case will be
represented by a dimensionally-reduced limit of Einstein gravity,
and the latter will employ the three-dimensional BTZ metric. Pri-
mordial black holes play a critical role in a range of early-universe
processes, from baryogenesis [60–62] to large-scale structure for-
mation [63–66], and even potentially determining the entropy con-
tent of the universe [67]. Since PBHs are possible dark matter can-
didates [66,68–73], understanding their evolution and abundances
in dimensionally-reduced spacetimes can shed new light on this
dilemma of modern cosmology.

2. Lower-dimensional black hole thermodynamics

A number of models have addressed gravity in two-dimensional
spacetimes, all of which require the additional presence of a cou-
pled scalar field (see e.g. [26] for a comprehensive review). It has
been demonstrated that such general models will exhibit slightly
different temperatures depending in part on the nature of the dila-
ton coupling. A generic dilaton gravitational theory in two dimen-
sions can be derived from the action

S = 1

2

∫
d2x

√−ge−2φ
[

R + 4a(∇φ)2 + Be2(1−a−b)φ
]

(1)

where the coefficients a, b, and B depend on the model in question
(see [26] for details). For minimally-coupled fields, one finds the
Hawking temperature to be

T (α) ∼ Mα
BH, α = a − 1

a
(2)

so a variety of possible temperature profiles are possible depend-
ing on the value of α.

For the purposes of the present discussion, however, the theory
of choice is one whose action is [19]

S2 =
∫

d2x
√−g

(
ψ R − 1

2
(∇ψ)2 +Lm − 2Λ

)
, (3)

which can be derived as a dimensionally-reduced form of D-
dimensional Einstein gravity. A strength of this model — and hence
the rationale for its use in this study — is that it is the best clas-
sical and semiclassical approximation for general relativity in the
2-D limit [19,20,23].1 On variation, the dilaton decouples from the
background and one obtains

R − Λ = 8πG1T ; ∇b T ab = 0 (4)

as the effective field equations. This model guarantees a conserved
stress–energy tensor, which is a desired consequence that en-
hances the traditional Jackiw action [13] (corresponding to (a = 0,
b = 1) in (1), with the general transformation e−2φ → ψ ). This
theory also has a one-dimensional Newtonian limit, and can be
generalized to the case of a (1 + 1)-dimensional non-commutative
geometry [74].

1 Ref. [28] also notes the favorability of Liouville gravity, whose solutions and
metric structure are virtually identical.

The solution to (4) is

ds2
1 = −

(
−1

2
Λx2 + 2G1M|x| − C

)
dt2

+ dx2

(− 1
2 Λx2 + 2G1M|x| − C)

(5)

where R and T are the Ricci and energy–momentum scalars, G1 is
the one-dimensional gravitational constant, r1 ≡ |xH | and C is an
arbitrary constant of integration [16]. The black hole’s entropy and
Hawking temperature are respectively

S1 = 2π

h̄
ln

(√
G2

1M2
BH − Λ + G1MBH

M0

)
, (6)

T1 = h̄

2π

√
M2

BH − CΛ

2
. (7)

Here, M0 is an arbitrary constant of integration with dimensions of
mass. When the product CΛ is reasonably small, the temperature
runs linearly with the mass: T1 ∼ MBH.

In (d + 1) dimensions, the relation between the radiative power
of a black hole of mass MBH and temperature Td is described by
the generalized Stefan–Boltzmann law [75]

Pd =
[

dM

dt

]
d
= −σd Ad−1T d+1

d , (8)

where Ad−1 ∼ rd−1
H is the horizon area and σd ∼ kd+1

Boltzmann. The
black hole decay time is

τd =
0∫

MBH

dM

Pd
. (9)

It is well known that d = 3 black holes have a Hawking tempera-
ture T3 ∼ M−1

BH and emit radiation as P3 ∼ M−2
BH .

There is a pathological issue in (1 + 1)-D that hinders the
calculation of (8). The radiative power is a function of the hori-
zon area, which in this case is ill-defined. It has recently been
shown this problem may be circumvented by re-interpreting the
d-dimensional area in terms of holographic information bits Ad =
NbitsGd+1, where Nbits is an intrinsic bit-count on the horizon
[55]. In the case of a two-dimensional black hole, the horizon
consists of antipodes and the bit-count is constant. The energy
radiated from a generic (1 + 1)-D black hole with temperature
(2) is thus P1(α) ∼ M2α , which in the case considered herein
is P1 ∼ σ1G1M2

1. As expected, more massive PBHs will radiate
away quicker than smaller ones, which can subsequently lead to
a model-specific population distribution different from (3 + 1)-D
models.

In (2 + 1)-D, the conformal tensor vanishes and the Riemann
tensor can be written uniquely in terms of Rμν and R . The BTZ
metric solution and temperature are [4,5,9]:

ds2
2 = −(

G2M + Λr2)dt2 + dr2

G2M + Λr2
, (10)

T2 = √−G2MΛ (11)

where Λ = −
−2 defines the anti-de Sitter scale. Since the temper-

ature (11) and the horizon rH =
√

− G2 MBH
Λ

are explicitly dependent
on the cosmological constant, this introduces the curious side-
effect that there are no black holes in (2 + 1) dimensions unless
the spacetime is anti-de Sitter. Furthermore, from the parameters
given in (11), the lifetime is infinite unless there is a lower cut-off
mass for the black hole stemming from quantum gravity effects.
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In both cases considered above, new aspects of PBH physics
are introduced by the idea of dimensional evolution. For the two-
dimensional case, PBH population distributions can shift due to the
radiative power’s quadratic mass dependence, which would lead
to a fewer large black holes and a higher number of microscopic
ones. In three dimensions, the vanishing of the temperature would
halt the evaporation process during this epoch. Although extremely
speculative, a dimensional evolution scenario provides several dis-
tinct consequences that could in principle influence early-universe
mechanisms that rely on PBH populations.

3. PBH remnants from evaporation

The end stage of black hole evaporation is not well understood
when the horizon size approaches the scale at which quantum
gravity becomes important. One possibility that cannot be ruled
out is that there are stable remnants [76–79]. As a (3 + 1)-D PBH
radiates away, it will shrink to the point where its horizon size be-
comes commensurate with the length scale L2 at which the spec-
tral dimension reduces. If Λ � 0, an evaporating PBH will enter
this domain and become a remnant with mass Mremnant = L2/2G3.
If this transition occurs at the terascale, one finds Mremnant =
1032 TeV, or 108 kg.

According to standard black hole thermodynamics, at present
all PBHs of mass MBH � 1012 kg will have evaporated. If these ex-
clusively account for the mass of dark matter MDM (an overly sim-
plistic but straightforward scenario), the total number can be esti-
mated as NPBH ∼ MDM/108 kg. The mass of the visible universe is
on the order of 1052–1054 kg [80], and with a dark matter content
of roughly 20% [81] it can be deduced there are NPBH ∼ 1045–1047

such remnants.
This situation — evaporating black holes in a (3 + 1)-D uni-

verse that eventually reach the (2 + 1)-D threshold — could be
called a “top-down” evolution process. What might have happened
to PBHs created in an initially lower-dimensional universe, which
survived long enough to make the transition to a higher dimension
(i.e. “bottom-up” evolution)? The exact form of the population dis-
tribution would depend on the cosmological model employed. In a
standard Friedmann universe, the mass of a PBH created t seconds
following the Big Bang is M ∼ c3t

G3
[70], which assumes the event

horizon is on the order of the particle horizon.
If the number of spacetime dimensions is lower in an ear-

lier epoch, this relationship must be modified. Such calculations
are left for future works. Assuming continuity of the behavior
across dimensional transitions, however, one can make some ini-
tial statements about the PBH population distribution just prior
to the four-dimensional era. The temperature t seconds after the
Big Bang in a purely (3 + 1)-D relativistic model drops as T (t) ∼
10−6t−1/2 TeV, and so tTeV ∼ 10−12 s. The maximum mass of a
PBH created at a terascale (2 + 1) → (3 + 1)-D “transition” is thus
MPBH ∼ 1023 kg, which would evaporate in the standard fashion
and still be present in today’s universe. The age of the universe
when the (1 + 1) → (2 + 1)-D shift occurred (at scales of at least
100 TeV [30]) would be approximately t100 TeV ∼ 10−16 s, allowing
PBHs of mass M ∼ 1019 kg to have been created at this stage.

Ref. [82] provides specific insight into the thermodynamics of
black holes from the perspective of spectral dimension reduction
in CDT-like scenarios. Consistent with the above conclusion, it is
demonstrated that evaporation ceases once the spectral dimension
becomes (2 + 1). The remnant is defined for observers outside the
horizon in the sense that they cannot probe the internal structure
of the black hole, and thus cannot observe any further dimen-
sional reduction behavior that may occur at scales smaller than
the horizon. Observers who are interior to the horizon will be able

to detect this dimensional reduction, but universally all observers
are limited to resolutions no less than (1 + 1)-D. A full thermody-
namical analysis of this model would help shed light on associated
PBH creation, evaporation, and population statistics.

4. PBH remnants from entropy conservation

The concept of dimensional transition and its effects are not
well understood, and are likely highly model-dependent. Since the
thermodynamic properties of black holes depend on the space-
time dimension in which they live, the transition itself may in-
troduce a new type “remnant”. Traditionally, this term refers to
a non-thermal end-stage of black hole evaporation. The spirit of
this definition is upheld in the mechanism discussed in Section 3.
In the following section, however, “remnant” will refer to an ob-
ject which is a black hole in d-dimensional spacetime, but not
in (d + 1) dimensions. Although the exact phenomenology aris-
ing from a dimensional transition depends largely on the underly-
ing mechanism, rudimentary assumptions can still be made about
the behavior of a PBH as it crosses the d → (d + 1)-D bound-
ary.

Let the entropy of the PBH in d dimensions be Sd , and the en-
tropy of the “evolved” PBH in (d + 1) dimensions Sd+1. Assuming
such evolution is adiabatic, one may conjecture a non-decreasing
entropy for the corresponding PBHs, Sd � Sd+1. A “dimensional
remnant” in (d + 1) dimensions is an object having the same mass
M as the d-dimensional black hole, but whose entropy sd+1(M)

is not maximized according to the area law. These quantities thus
satisfy the general relation

Sd(M) � sd+1(M) < Sd+1(M), (12)

where the object is a black hole if (and only if) its entropy is Sd+1.
Conversely, neither remnants nor black holes form if Sd > Sd+1 >

sd+1.
The above prescription requires some elaboration. Due to the

presence of Λ in the defining characteristics of (2 + 1)-D black
holes, the only possible scenario in which such objects could
consistently exist across dimensional transitions is when each
spacetime is anti-de Sitter. If Λ � 0, black holes only exist in
(1 + 1)-D and (3 + 1)-D, but not (2 + 1)-D. To maintain BHs in
the three-dimensional epoch, a mechanism must be introduced
to map Λ → −Λ (provided Λ �= 0). Although no such process is
known, a recent proposal suggests a framework for producing an
effectively-positive cosmological constant on semiclassical scales
from a wavefunction defined in a space with Λ < 0 [83].

The spacetimes that contribute to PBH formation and dimen-
sional remnants will therefore be (1 + 1)- and (3 + 1)-D. A PBH
created in the former era will survive into the latter provided
S4 � S2. Remnants are created when s4 < S4 and s4 � S2. If the
entropy condition is not met (i.e. if S2 > S4), no PBHs can form.
The remnant must satisfy S4 > s4, but since this implies S2 > s4,
the process is unphysical (entropy has decreased) and no remnant
forms.

From the expressions in Section 2, one can explicitly calculate
the bound

S2 � S4 �⇒ ln

(
2G1MPBH

M0

)
�

G2
3M2

PBH


2
P

, (13)

up to overall constant factors. Adopting the Myers–Perry definition
of the d-dimensional gravitational constant,

Gd = 2π1− d
2 Γ

(
d

2

)(
1

MPl

)d−1

(14)
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Fig. 1. An idealized representation of the gravitational entropies S2(γ ) = ln(γ M)

and S4 = M2, where G3 = 
P = h̄ = 1 and γ = 4π M−1
0 . As M0 decreases,

a parameter-dependent region is introduced in which the inequality (13) is violated.
This threshold occurs at γ ≈ 2.332 (M0 ≈ 5.39).

one can assign G1 = 2π and G3 = M−2
Pl . The above inequality is

then

ln

(
4π MPBH

M0

)
�

M2
PBH


2
P M4

Pl

. (15)

Two situations arise, depending on the value of M0. First, the
inequality (13) is always satisfied, and the PBH mass must be
MPBH >

M0
4π so that S2 > 0. Second, there may be a range of black

hole masses MPBH ∈ [M1, M2] (between the intersection points
where S2 = S4) for which S2 > S4 and the general condition (12)
is violated (see Fig. 1).

The fate of these remnants, as well as any mass distribution
that does not meet the proposed criteria (12) is unknown and re-
quires further investigation. The process described in the following
section, however, may be one possible result.

5. PBH electroweak bursts at dimensional transition

In addition to remnants, dimensional transition may lead to
alternate end-stages for PBHs. When these objects cross into
the (3 + 1)-D universe, their temperature increases dramati-
cally. If this exceeds the electroweak symmetry breaking scale of
TEW ∼ 200 GeV, baryon number violating SU(2) × U (1) processes
become unsuppressed and the possibility of electroweak burning
exists. This scenario is similar to the recent proposal in the lit-
erature [84] of “electroweak stars”, in which the EW “thermal”
pressure balances the inward gravitational collapse of a stellar
body. In this event, the PBH (or its remnant described in Sec-
tion 4) would evaporate instead in an electroweak burst, whereby
quarks are converted into leptons. Detection of such explosions
could therefore provide support for the mechanisms proposed in
this Letter.

6. Open questions and future directions

If Planck-scale physics is indeed set against an effective lower-
dimensional background, the consequences are numerous and
potentially testable. The resulting shift in PBH population den-
sity may well have an impact on structure formation, if PBHs
are dark matter candidates. A logical future extension of this
proposal would address the impact on Reissner–Nordström and
Kerr–Newmann PBHs. Alternate but critical consideration must be
paid to the population statistics and mechanisms of PBH forma-
tion in a lower-dimensional arena, including quantum fluctuation
characteristics and BH pair production rates [85].

Other outstanding questions remain. If the proposal [29,32] is
correct and dimensions are indeed “evolving”, it is possible the
universe will eventually become (4 + 1)-D. Has it potentially done
so already, and is there evidence to support this contention? In-
deed, such a spacetime at distances on the order of the Hubble
length has been suggested [53], which could act as a potential
geometric solution to the dark energy problem [29,44]. Since the
characteristic length scale exceeds any potential horizon radius, it
is perhaps unlikely that this has interesting consequences insofar
as black holes are concerned.

Alternatively, evidence of a higher-dimensional spacetime could
be imprinted in the large-scale distribution of galaxies. At least lo-
cally, the number density of galaxies N ∼ rD F is well-described
as a fractal with D F = 2, which is consequently a signature of
the distribution’s geometry: in this case, it scales as an area.
It has been suggested that this is a holographic-like manifesta-
tion of an underlying gravitational theory: the number density
of galaxies scales as the boundary of the volume in which they
reside, N(r) ∼ ∂V (r) [86]. The D F = 2 fractal scaling does not
convincingly extend to the largest of redshifts, however, with
transitions to homogeneity (D F = 3) beginning somewhere be-
tween 100–1000 Mpc. Combining the idea of dimensional evo-
lution with fractal holography, this change in clustering behav-
ior might simply reflect a transition to a higher-dimensional vol-
ume.

Lastly, an intriguing consequence of dimensional evolution is
the potential observation of fractional dimensions governing grav-
itational physics. The notion of a fractal spectral dimension is not
new, and some related phenomenology has been considered in
the literature. These include fractional black hole horizon areas
[87] and “un”-spectral dimensional reduction [88] from a quantum
gravitational perspective, as well as the range of quantum field
theory modifications discussed in references [39,47–49,56–59]. De-
tection of non-integer spectral dimensions would certainly lend
support to reduction/evolution theories such as those discussed
herein. Probing higher energies may one day reveal such results,
provided the transition occurs in a time t > Ln,n+1 constrained by
the energy scale En,n+1 ∼ L−1

n,n+1.
Regardless of the possible dimensional reduction mechanism,

the proposals addressed in this Letter can ultimately lead to a new
and fascinating understanding of primordial cosmology. If borne
out by observation, such key evidence of a dynamical spacetime
dimension would represent a tantalizing new perspective on the
evolution and fundamental structure of the universe in which we
live.
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