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Intersection Graphs for String Links

Blake Mellor

Mathematics Department

Loyola Marymount University

Los Angeles, CA 90045-2659

bmellor@lmu.edu

Abstract

We extend the notion of intersection graphs for chord diagrams in the theory of finite type knot
invariants to chord diagrams for string links. We use our definition to develop weight systems for string
links via the adjacency matrix of the intersection graphs, and show that these weight systems are related
to the weight systems induced by the Conway and Homfly polynomials.
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1 Introduction

The theory of finite type invariants allows us to interpret many important knot and link invariants in purely
combinatorial terms, as functionals on spaces of chord diagrams. For knots, there is an obvious intersection
graph associated with these diagrams, first studied (in this context) by Chmutov, Duzhin and Lando [6].
In many cases, these graphs contain all the relevant information for the functionals coming from knot
invariants [6, 12]. Some of the most important knot invariants, such as the Conway, Jones, Homfly and
Kauffman polynomials, can be interpreted in terms of these intersection graphs [2, 13].

However, it is not obvious how to extend the idea of the intersection graph to finite type invariants of
other objects, such as braids, links and string links. The goal of this paper is to introduce a reasonable
definition of the intersection graph for chord diagrams associated with string links. As evidence that this is
the ”right” definition, we use these intersection graphs to construct weight systems for string links, and show
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that these weight systems are related to (though weaker than) the weight systems arising from the Conway
and Homfly polynomials. In future work we will show that in some cases the intersection graph contains
all the relevant information in the string link chord diagram [14, 15], and that it can be used to give a new
interpretation of Milnor’s homotopy invariants [16].

In section 2 we will review the necessary background, including finite type invariants, chord diagrams,
intersection graphs and Lando’s graph bialgebra [9]. In section 3 we will define intersection graphs for string
links, and provide the space of graphs with a bialgebra structure similar to Lando’s. In section 4 we look
at chord diagrams modulo the 2-term relations introduced by Bar-Natan and Garoufalides [2], and use the
adjacency matrices of their intersection graphs to construct weight systems related to those arising from the
Conway and Homfly polynomials. Finally, in section 5 we pose some questions for further research.

Acknowledgement: The author thanks Loyola Marymount University for supporting this work via a Summer
Research Grant in 2003.

2 Preliminaries

2.1 Knots, Links and String Links

An (oriented) knot is an embedding of the (oriented) circle S1 into the 3-sphere S3. A knot invariant is a
map from these embeddings to some set which is invariant under isotopy of the embedding. We will also
consider invariants of regular isotopy, where the isotopy preserves the framing of the knot (i.e. a chosen
section of the normal bundle of the knot in S3). A link with k components is simply an embedding of the
disjoint union of k copies of S1 into S3; each component is a knot. A string link can be defined as follows:

Definition 1 (Habegger and Lin [7]) Let D be the unit disk in the plane and let I = [0,1] be the unit interval.
Choose k points p1, ..., pk in the interior of D, aligned in order along the the x-axis. A string link σ of k
components is a smooth proper imbedding of k disjoint copies of I into D × I:

σ :
k⊔

i=1

Ii → D × I

such that σ|Ii
(0) = pi × 0 and σ|Ii

(1) = pi × 1. The image of Ii is called the ith string of the string link σ.

Link and string link invariants are defined in the same way as for knots. Note that any string link can
be closed up to a link in a unique way by joining the top and bottom of each component by an arc which
lies outside of D × I (and which is unlinked with the other such arcs). So any link invariant gives rise to a
string link invariant by evaluating it on the closure of the string link.

2.2 Finite Type Invariants

Our treatment of finite type invariants will follow the combinatorial approach of Birman and Lin [3]. We
will give a brief overview of this combinatorial theory, and its natural extensions to links and string links.
For more details, see Bar-Natan [1].

We first note that we can extend any link invariant to an invariant of singular links, where a singular
link is an immersion of a disjoint union of copies of S1 in 3-space which is an embedding except for a finite
number of isolated double points. Given a link invariant v, we extend it via the relation:

An invariant v of singular links is then said to be of finite type, specifically of type n, if v is zero on any link
with more than n double points (where n is a finite nonnegative integer). We denote by Vn the vector space
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(1-term relation)

= 0   

(4-term relation)

- + = 0   -

Figure 1: The 1-term and 4-term relations. No other chords have endpoints on the arcs shown. In the 4-term
relations, all other chords of the four diagrams are the same.

over C generated by (framing-independent) finite type invariants of type n. We can completely understand
the space of finite type invariants by understanding all of the vector spaces Vn/Vn−1. An element of this
vector space is completely determined by its behavior on links with exactly n singular points. In addition,
since such an element is zero on links with more than n singular points, any other (non-singular) crossing of
the knot can be changed without affecting the value of the invariant. This means that elements of Vn/Vn−1

can be viewed as functionals on the space of chord diagrams:

Definition 2 A chord diagram of degree n with k components is a disjoint union of k oriented circles,
together with n chords (line segments with endpoints on the circles), such that all of the 2n endpoints of the
chords are distinct. The circles represent a link of k components and the endpoints of a chord represent 2
points identified by the immersion of this link into 3-space. The diagram is determined by the orders of the
endpoints on each component. For string links, chord diagrams involve oriented line segments rather than
circles.

Functionals on the space of chord diagrams which are derived from finite type link invariants will satisfy
certain relations:

Definition 3 A weight system of degree n is a linear functional W on the space of chord diagrams of
degree n (with values in an associative commutative ring K with unity) which satisfies the 1-term and 4-term
relations, shown in Figure 1. For knots, the three arcs all belong to the same circle; for links (resp. string
links), they may belong to the same or different circles (resp. line segments).

The natural map from elements of Vn/Vn−1 to functionals on chord diagrams is a homomorphism into
the space of weight systems [1, 3, 20, 21]. Kontsevich proved the much more difficult fact that these spaces
are isomorphic [1, 8] (the inverse map is the famous Kontsevich integral). For convenience, we take the dual
approach, and simply study the space of chord diagrams of degree n modulo the 1-term and 4-term relations.
The 1-term relation is occasionally referred to as the ”framing-independence” relation, because it arises from
the framing-independence of the invariants in Vn (essentially, from the first Reidemeister move). Since most
of the interesting structure of the vector spaces arises from the 4-term relation, it is common to look at the
more general setting of invariants of regular isotopy, and consider the vector space Ak

n of chord diagrams of
degree n on links with k components modulo the 4-term relation alone. Linear functionals on Ak

n are called
regular weight systems of degree n. Similarly, we define the vector space Bk

n for chord diagrams of degree n
on string links of k components.

It is useful to combine all of these spaces into graded modules Ak =
⊕

n≥1 Ak
n and Bk =

⊕
n≥1 Bk

n via

direct sum. For k = 1, we can define a product on A1 via connect sum [1]; however, this does not extend
to k > 1. But we can give the module Bk a bialgebra (or Hopf algebra) structure for any k by defining an
appropriate product and co-product:

• We define the (noncommutative) product D1 · D2 of two chord diagrams D1 and D2 as the result of
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placing D2 on top of D1 (joining the components so the orientations agree), as shown below:

D1 D2

D1

D2

=

• We define the co-product ∆(D) of a chord diagram D as follows:

∆(D) =
∑

J

D′
J ⊗ D′′

J

where J is a subset of the set of chords of D, D′
J is D with all the chords in J removed, and D′′

J is D
with all the chords not in J removed.

∆(     )= + + +

It is easy to check the compatibility condition ∆(D1 · D2) = ∆(D1) · ∆(D2).

3 Intersection Graphs for String Links

For knots, there is a very natural notion of intersection among the chords of a chord diagram - two chords
intersect if their endpoints alternate around the bounding circle. The intersection graph then has a vertex
for each chord, and connects two vertices by an edge if the corresponding chords intersect. The difficulty
with extending this idea to links and string links is how to deal with chords which have their endpoints on
different components of the diagram - specifically, if they each have one endpoint on a given component, and
their other endpoints are on different components. In what sense, if any, do these chords intersect?

3.1 Definition

The essential value of the intersection graph for knots is that it can detect when the order of two endpoints
for different chords along the bounding circle is switched (as happens in the 4-term relation), since this
changes the pair of chords from intersecting to non-intersecting or vice-versa. To usefully extend the notion
of intersection graphs to links or string links, we need to retain this ability. For string links, the existence
of a ”bottom” and ”top” for each component allows us to give a linear (rather than cyclic) ordering to the
endpoints of the chords on each component, and so the notion of one endpoint being ”below” another is
well-defined.

Definition 4 Let D be a string link chord diagram with k components (oriented line segments, colored from
1 to k) and n chords. The intersection graph Γ(D) is the labeled, directed multigraph such that:

• Γ(D) has a vertex for each chord of D. Each vertex is labeled by an unordered pair {i, j}, where i and
j are the labels of the components on which the endpoints of the chord lie.
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{i,j}

{i,j}

{i,j}

{i,j}

=

i j

{i,i}

{i,i}{i,i}

{i,i}

{i,i} {i,i}

=
i

{i,j}

{i,j}

{i,j}

{i,j}

=

i j

{i,j}

{j,k}
i j k

i j k
{i,j} {j,k}

{j,k}

{k,k}

{i,i}

{i,i}

Figure 2: Examples of intersection graphs for string links

• There is a directed edge from a vertex v1 to a vertex v2 for each pair (e1, e2) where e1 is an endpoint
of the chord associated to v1, e2 is an endpoint of the chord associated to v2, e1 and e2 lie on the same
component of D, and the orientation of the component runs from e1 to e2 (so if the components are
all oriented upwards, e1 is below e2). We count these edges ”mod 2”, meaning that if two vertices are
connected by two directed edges with the same direction, they cancel each other. If two vertices are
connected by a directed edge in each direction, we will simply connect them by an undirected edge.

Examples of chord diagrams and their associated intersection graphs are given in Figure 2. Note that
when the two chords have both endpoints on the same component i, our definition of intersection graph
corresponds to the usual intersection graph for knots. Our definition also matches our intuition in the case
of chord diagrams of two components, as shown in Figure 2.

Note also that the total number of directed edges between a vertex v labeled {i, j} and a vertex w labeled
{l, m} is given by the sum of the number of occurrences of i in {l, m} and the number of occurrences of j
in {l, m}. In particular, if a vertex v has a label {i, i}, this number will be even (0, 2 or 4). Since we count
directed edges modulo 2, this implies there is an (uncancelled) directed edge from v to another vertex w
if and only if there is also an (uncancelled) directed edge from w to v. We will say that labeled directed
multigraphs which have this property are semisymmetric.
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Definition 5 A directed multigraph G, with each vertex labeled by a pair {i,j}, is semisymmetric if for
every vertex v labeled {i,i}, and any other vertex w, there is a directed edge from v to w if and only if there
is a directed edge from w to v.

3.2 Graph bialgebra for String Links

Following Lando’s work for knots [9], we can define a bialgebra structure on the space of intersection graphs
for string links so that Γ becomes a bialgebra homomorphism from the space of chord diagrams for string links
to the space of intersection graphs. The key is to define the analogue of the 4-term relation for intersection
graphs.

Definition 6 Consider the graded vector space (over C) of formal linear combinations of labeled semisym-
metric directed multigraphs, with vertices labeled by unordered pairs {i,j}, 1 ≤ i, j ≤ k, graded by the number
of vertices in the graphs. For any graph G and vertices A and B in V(G), with labels {i,j} and {i,l} respec-
tively (j and l may be equal, or equal to i), we impose on the vector space the relation:

G − G′
AB − G̃AB + G̃′

AB = 0

Here G′
AB is the result of complementing the edge AB in G (i.e. adding a directed edge between the vertices

in each direction, and then cancelling ”mod 2”). G̃AB is the result of changing the label on A to {j,l},
complementing the edge AB if i 6= l (and leaving it unchanged if i = l), and adding a directed edge from A to
C (respectivley C to A) for every vertex C in V(G) for which G has a directed edge from B to C (respectively

C to B), and then cancelling mod 2. Finally, G̃′
AB is the result of complementing the edge AB in G̃AB. Here

is an example of such a relation:

A B A B A B A B

+- - = 0{i, j}

{j, l}

{i, i}

{i, l}

{l, k}

{i, j}

{j, l}

{i, l}

{l, k}{i, i}

{j, l}

{j, l}

{l, k} {l, k}{i, i} {i, i}

{i, l} {i, l}{j, l}

{j, l}

The bialgebra F is defined as this graded vector space, together with a product and a coproduct. The product
is a map · : F × F → F , defined as follows. Given graphs G1 and G2, G1 · G2 is the disjoint union of the
graphs, together with a directed edge from v1 ∈ V (G1) to v2 ∈ V (G2) for each color in the label {i,j} for v1

which is also in the label for v2. An example is shown below:

G  =1 G  =2
{i,i} {i,j} {j,l} {i,j} {j,k}

{i,i} {i,j} {j,l}

{i,j} {j,k}

G1 G  =2

The coproduct is a map µ : F → F ⊗ F , defined as follows. For any graph G, and subset J ⊆ V (G) of its
vertices, let GJ denote the subgraph induced by J . Then:

µ(G) =
∑

J⊆V (G)

GJ ⊗ GV (G)\J

6



An example is shown below:

µ(     ) = + + +
{j,k}

{i,j}

{j,k}

{i,j}
1

{j,k} {i,j}
{j,k}

{i,j}
1{j,k}{i,j}

Theorem 1 The product and coproduct defined above induce the structure of a co-commutative (but not
commutative) bialgebra on the space F of labeled, directed multigraphs modulo the 4-term relation.

Proof: It is easy to check that F is a bialgebra (i.e. that µ(G1 · G2) = µ(G1) · µ(G2)), and that it is
co-commutative, but not commutative. We also need to check that the product and coproduct respect
the 4-term relation, i.e. that the product of a graph and a 4-term relation yields a 4-term relation, and
that the coproduct of a 4-term relation yields a sum of 4-term relations. To begin with, consider a product
(G−G′

AB−G̃AB +G̃′
AB)·H = G·H−G′

AB ·H−G̃AB ·H+G̃′
AB ·H . It is clear that G′

AB ·H = (G·H)′AB , since

complementing the edge AB is independent of any edges between G and H . Moreover, G̃AB ·H = G̃ · HAB,
since in each case there is an directed edge from a vertex v ∈ V (H) to A for each occurrence of j or l in the

label of v (with cancellation mod 2). It is then clear that G̃′
AB · H = G̃ · H

′

AB, and so the product of the
4-term relation and another graph is another 4-term relation.

For the coproduct, consider µ(G−G′
AB − G̃AB + G̃′

AB). The sum in the coproduct splits into two groups
- terms where both A and B belong to either J or its complement, and terms where one of the two vertices
is in J and the other is in its complement. The first group gives a sum of 4-term relations, while the terms
of the second group already sum to zero in µ(G − G′

AB) and µ(G̃AB − G̃′
AB). This finishes the proof of the

theorem. ✷

It is now easy to check that Γ is a bialgebra homomorphism from the bialgebra Bk of chord diagrams for
string links with k components modulo the 4-term relation to the bialgebra F k of directed, labeled graphs
with labels 1,..., k, since the 4-term relation for graphs was defined to mimic the 4-term relation for the chord
diagrams. As a result, any functional on F k will induce, by composition with Γ, a regular weight system.
We call such a functional a regular graph weight system.

4 2-term relations for String Links

Any particular weight system will satisfy relations in addition to the 1-term and 4-term relations, and it
can be useful to look at weight systems which lie in the subspaces determined by these additional relations.
In particular, Bar-Natan and Garoufalides [2] noted that the weight system associated with the Conway
polynomial for knots satisfies a set of 2-term relations which induce the 4-term relations. We can extend
this notion to define a set of 2-term relations for string links, shown in Figure 3. Clearly, these relations

- = 0   

Figure 3: The 2-term relations for string links

imply that the weight system satisfies the 4-term relation as well. As a result, the product and coproduct
of section 2.2 are still well-defined. So we can give the vector space of chord diagrams for string links with
k components modulo the 2-term relations the structure of a bialgebra. We will denote this bialgebra (and
the underlying vector space) by Dk. There is a natural projection from Bk to Dk.

7



Similarly, we can look at the quotient space of F by the 2-term relations

G − G̃AB = 0

Since G̃′
AB = G̃′

AB, the 2-term relations imply the 4-term relations, and the quotient space is a bialgebra E
with the product and coproduct induced from F . Γ is then a bialgebra homomorphism from Dk to Ek.

4.1 Chord diagrams for String Links modulo 2-term relations

Bar-Natan and Garoufalides [2] analyzed the space of chord diagrams for knots (equivalently, string links
of one component) modulo the 2-term relations. They found that D1 is generated (as a vector space) by
(m1, m2)-caravans of m1 ”one-humped camels” (isolated chords which intersect no other chords) and m2

”two-humped camels” (pairs of chords which intersect each other, but no other chords). An example of such
a caravan is shown in Figure 4.

Figure 4: Example of an (m1, m2)-caravan

Our goal in this section is to find a similar ”normal form” for string link chord diagrams with more than
one component; this will be useful in the remainder of the paper. We will prove the following theorem:

Theorem 2 Any connected string link chord diagram is equivalent, modulo the 2-term relations, to a chord
diagram with components numbered 1,..., n (possibly after renumbering) such that:

• Every chord either has both endpoints on component 1, or endpoints on components i and i+1 for some
i.

• The chords with both endpoints on component 1 are arranged in a caravan. Moreover, all of their
endpoints lie below the endpoints of any chords between components.

• There are at most 2 chords between components i and i+1, and if there are 2 they do not cross (so the
endpoints of one chord lie above the endpoints of the other on both components).

• On component i, the endpoints of chords connecting component i to component i+1 lie below the end-
points of chords connecting component i to component i-1.

An example is shown in Figure 5.

caravan

Figure 5: Example of a link chord diagram in normal form
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If a diagram is not connected, we simply put each connected component into normal form. The proof
proceeds in several steps. We will describe an algorithm to put any connected chord diagram into the normal
form described above via 2-term relations.

Step 1: We first deal with chords which have both endpoints on the same component. To begin with, any
pair of intersecting chords which have all four endpoints on the same component can be slid to the bottom
of the component, away from any other chords, to form a two-humped camel as in [2]. An isolated chord
with both endpoints on the same component can also be slid down to the bottom, forming a one-humped
camel. See Figure 6 for examples of these moves. We are left with chords with both endpoints on the same

Figure 6: Factoring out one- and two-humped camels

component which only intersect chords which lie between two different components. By sliding this chord
over one of the chords it intersects, its endpoints are now on two different components, as shown in Figure 7.

i j i j

Figure 7: A move from Step 1

Step 2: Our next step is to put every chord connecting two different components on a different horizontal
”level”; in particular, we will remove intersections between chords between the same two components. Say
that we have n chords between components. Select a chord arbitrarily, which we will denote chord c. Without
loss of generality, assume c connects components 1 and 2. We will move c to the top level. As we move it up,
if we come to a chord with an endpoint on components 1 or 2 which is above c we move that endpoint below
c via a 2-term relation, as shown in Figure 8. Ultimately, the endpoints of c will lie above the endpoints of

c
c

1 2 i i21

Figure 8: Moving an endpoint below c

any other chord. During this process, some chords may have had both their endpoints moved to the same
component - remove or modify these chords as in Step 1 (notice that this only reduces the number of chords

9



between components from n). We are left with at most n− 1 chords connecting components, all below c. So
we can continue the process inductively, ending with all chords between components horizontal, at different
levels (and with a caravan at the bottom of each component).

Step 3: Now we consider one component of the diagram, say component 1, and move all the chords with
an endpoint on component 1 to a higher level than all the other chords in the diagram (leaving chords with
both endpoints on the same component at the bottom). We will denote by an (i,j)-chord a chord with
endpoints on components i and j. If a (1,i)-chord lies directly below an (i, j)-chord along component i, we
can use a 2-term relation to move the (1,i)-chord above the other chord, in the process transforming it into
a (1,j)-chord, as in Figure 9. Since there are only a finite number of chords, we can successively move all

1 i i1j j

Figure 9: Step 3

chords with one endpoint on component 1 above all other chords (while the other endpoint may move, one
will always remain on component 1).

Step 4: Let c be the top chord at this point; without loss of generality, c is a (1,2)-chord. Let k1i be the
number of (1,i)-chords, and k1 =

∑
i k1i. Now move c down component 1, stripping other chords off of

component 1 by 2-term relations, transforming them from (1,i)-chords to (2,i)-chords, reversing the move
from Step 2 shown in Figure 8. Continue this until c encounters another (1,2)-chord, d. Now move c back
up as in Step 3 (see Figure 9); when it is again at the top, it will be a (1,i)-chord for some i. Repeat the
process for d, moving it up to just below c, and with all the other (1,2)-chords. This reduces k1 to k12,
though the chords may no longer be (1,2)-chords. We can relabel the components so that c is once again a
(1,2)-chord and repeat the process. Each repetition reduces k1, until we reach a point where k1 = k12 (i.e.
all chords with an endpoint on component 1 are (1,2)-chords), and the (1,2)-chords lie above all other chords
in the diagram. Finally, we can reduce k12 to 1 or 2 by noticing that whenever k12 ≥ 3, we can factor out a
2-humped camel and reduce k12 by 2, as in Figure 10.

i ji j i j i j

Figure 10: Factoring a two-humped camel from 3 parallel chords

Step 5: We can now repeat Steps 3 and 4 for component 2, and then for each component in turn. We
are left with a diagram which is almost in normal form - the final step is to move all of the caravans to
component 1. We can move a caravan from the ith component to the (i − 1)th component by sliding it
over a chord between the two components, as in Figure 11. Any other chords between the two components
can be slid over the caravan in turn by 2-term relations, leaving the caravan below the chords connecting
components i− 1 and i− 2. Continuing in this way, the caravans can be moved to component 1, and finally
pushed to to bottom of component 1 as in step 1. This completes the proof of Theorem 2. ✷
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i j

C

i j

C

i j

C

Figure 11: Moving a caravan

4.2 Adjacency Matrices for Intersection Graphs

In this section we will define the adjacency matrix for an intersection graph, and show that its rank and
determinant (over Z2) are regular graph weight systems.

Definition 7 Given a directed graph G with n vertices, {v1, ..., vn}, such that each vertex vi has a label
{ai, bi}, the adjacency matrix of G, or adj(G), is the n × n matrix defined by:

adj(G)ij (i 6= j) =

{
1 if there is a directed edge from vi to vj in G

0 otherwise

adj(G)ii =

{
1 if ai 6= bi

0 if ai = bi

These matrices can be viewed as bilinear forms over Z2, but unlike the case for knots [13], they are
not generally symmetric, so their classification is much more difficult (and still, to my knowledge, an open
question). We are interested in the notion of congruence of such matrices. We are particularly interested
in the adjacency matrices of semisymmetric graphs; which have the property (which we will also denote by
semisymmetry) that if the ith diagonal element is 0, then the ith row and column are the same.

Definition 8 We say that two n × n matrices A and B are congruent (denoted A ∼= B) if there is an
invertible matrix P such that A = PBPT .

One of our main results is that the congruence class of the adjacency matrix (over Z2) satisfies the 2-term
relation, and so induces a regular graph weight system.

Theorem 3 For any graph G in E, adj(G) ∼= adj(G̃AB).

Proof: Reordering the vertices of G changes adj(G) by a congruence; in this case, P is the result of doing
a corresponding reordering of the rows of the identity matrix. So we can assume that the first two rows and
columns of adj(G) and adj(G̃AB) correspond to the vertices A and B. The matrices are identical except for

the first row and column. Say that A has label {c, a} and B has label {c, b}, so in G̃AB A has label {a, b}. An

entry adj(G̃AB)1i (where i 6= 1, 2) is equal to adj(G)1i +adj(G)2i (mod 2), and similarly for the first column.

adj(G̃AB)12 = adj(G)12 if and only if b = c, i.e. if adj(G)22 = 0, so adj(G̃AB)12 = adj(G)12 + adj(G)22.

Finally, adj(G̃AB)11 = 0 if a = b, and 1 otherwise. We have five cases.

Case 1: a = b = c. In this case adj(G)11 = adj(G)22 = 0 and adj(G)12 + adj(G)21 = 4 (due to the

semisymmetry of the graph). So, mod 2, adj(G̃AB)11 = 0 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21.

Case 2: a = b 6= c. In this case adj(G)11 = adj(G)22 = 1 and adj(G)12 + adj(G)21 = 4. So, mod 2,

adj(G̃AB)11 = 0 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21.

Case 3: a 6= b = c. In this case, adj(G)11 = 1 and adj(G)22 = 0, and adj(G)12 + adj(G)21 = 2. So,

11



mod 2, adj(G̃AB)11 = 1 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21.

Case 4: b 6= a = c. In this case, adj(G)11 = 0 and adj(G)22 = 1, and adj(G)12 + adj(G)21 = 2. So,

mod 2, adj(G̃AB)11 = 1 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21.

Case 5: a, b, c all different. In this case adj(G)11 = adj(G)22 = 1 and adj(G)12 + adj(G)21 = 1. So,

mod 2, adj(G̃AB)11 = 1 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21.

We conclude that adj(G̃AB)11 = adj(G)11 + adj(G)22 + adj(G)12 + adj(G)21. Therefore adj(G) and

adj(G̃AB) are congruent by a matrix P , where P is the elementary matrix constructed from the identity
matrix by adding the second row to the first row. In other words, P is the same as the identity, except for

the 2 by 2 matrix in the upper left corner, which is

[
1 1
0 1

]
. ✷

Corollary 1 The congruence class of the adjacency matrix of the intersection graph is invariant under the
4-term relations.

Corollary 2 The determinant (mod 2) and rank (over Z2) of the adjacency matrix of the intersection graph
are regular graph weight systems.

Proof: If P is invertible over Z2, the rank of PAPT is the same as the rank of A. In addition, det(P ) =
det(PT ) = 1 (mod 2), so the determinant is also a congruence invariant mod 2. ✷

4.3 Relations to the Conway and Homfly polynomials

For knots, the Conway and Homfly weight systems can be interpreted via intersection graphs [13]. To what
extent can we do the same for string links? In general, this is still an open problem, but we can offer a few
initial results.

Let us recall the definitions of the Conway polynomial and weight system. The Conway polynomial ∆ of
a link is a power series ∆(L) =

∑
n≥0 an(L)zn. It can be computed via the skein relation (where L+, L−, L0

are as in Figure 12):
∆(L+) − ∆(L−) = z∆(L0)

∆(unlink of k components) =

{
1 if k = 1
0 if k > 1

We define the Conway polynomials of a string link as the Conway polynomial of the link formed by closing
the string link in the natural way. The coefficient an is a finite type invariant of type n [1, 3], and therefore
defines a weight system bn of degree n. The collection of all these weight systems is called the Conway weight
system, denoted C. Consider a chord diagram D, together with a chord v. Let Dv be the result of surgery
on v, i.e. replacing v by an band which preserves the orientation of the components, and then removing the
interior of the band and the intervals where it is attached to D, as shown in Figure 13 (so Dv may have

Figure 12: Diagrams of the skein relation.
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Figure 13: Surgery on a chord v

multiple boundary circles). The skein relations for the Conway polynomial give rise to the following relations
for C:

C(D) = C(Dv)

C(unlink of k components) =

{
1 if k = 1
0 if k > 1

It is easy to show [2] that this weight system satisfies the 2-term relations of section 4. Simply surger
the two chords; the 2-term relation then says just that one band can be ”slid” over the other, which doesn’t
change the topology of the diagram. Bar-Natan and Garoufalides also showed that the weight system for
the Conway polynomial for knots is just the determinant of the adjacency matrix for the intersection graph,
mod 2. The next theorem extends this result to string links with two components.

Theorem 4 For any chord diagram D on a string link with two components, C(D) = det(Γ(D))rank(Γ(D))
(mod 2).

Proof: Since both of these weight systems satisfy the 2-term relations, it suffices to show that they agree
on diagrams in normal form (see section 4.1). For string links with two components, normal form consists
of a caravan on the first component, and 0, 1, or 2 parallel chords between the two components. Say
that the caravan has m1 1-humped camels and m2 2-humped camels, and there are l chords between the

components (l = 0, 1, 2). Then adj(Γ(D)) ∼= [1]l ⊕ [0]m1 ⊕

[
0 1
1 0

]m2

. So det(Γ(D)) = 1l+m2 · 0m1 (mod 2)

and rank(Γ(D)) = l + 2m2 ≡ l (mod 2). The product of the rank and determinant is 1 (mod 2) when l = 1
and m1 = 0, and 0 otherwise.

On the other hand, if we surger all the chords of the diagram, and close the string link, we obtain an
unlink with m1 + 2 components when l = 0, 2, and m1 + 1 when l = 1, which means that C(D) = 1 only
when m1 = 0 and l = 1. So the two weight systems agree. ✷

With more than two components, the situation is more complicated; in fact, the Conway weight system
is not always determined by the adjacency matrix of the intersection graph. Figure 14 shows two chord
diagrams D1 and D2 on 4 components which illustrate this. It is easy to see that these intersection graphs

1 2 3 4 1 2 3 4

D 1 D 2
= =

Figure 14: C(D) is not determined by the adjacency matrix

for these diagrams differ only in the labeling of the vertices, so:
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adj(Γ(D1)) = adj(Γ(D2)) =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 1 1 0 1




However, surgering the chords in D1 yields a string link whose closure has one component, and surgering
the chords in D2 yields a string link whose closure has 3 components. Therefore, C(D1) = 1, but C(D2) = 0.

However, we can at least give a sufficient condition for C(D) to be trivial which depends only on the
adjacency matrix.

Proposition 1 Let D be a string link chord diagram of degree k on n components. If either of the following
conditions holds, then C(D) = 0.

• det(Γ(D)) = 0.

• k + n is even.

Proof: The first condition means that, in the normal form, there will be an isolated chord in the caravan,
so C(D) will be trivial. The second condition comes from observing that every surgery of a chord in D the
number of components in the closure of D by 1 (either adding or removing a component). Since we begin
with n components, the number of components after all the chords are surgered is congruent to k+n modulo
2. So C(D) can be non-trivial only if k + n ≡ 1 mod 2. Hence, if k + n is even, then C(D) = 0. ✷

Now we will consider the (framed) Homfly weight system for string links. The Homfly invariant is the
Laurent polynomial P (l, m) ∈ Z[l±1, m±1] defined by the following skein relations [11] (L+ is the result of
adding a positive kink to the link L):

P (L+) − P (L−) = mP (L0)

P (L+) = lP (L)

P (L ∪ O) =
l − l−1

m
P (L)

P (O) = 1

If we make the substitutions m = eax/2 − e−ax/2 and l = eabx/2, and expand the resulting power series, we
transform the Homfly polynomial into a power series in x, whose coefficients are finite type invariants (of
regular isotopy). These invariants give rise to regular weight systems which we can collect together as the
Homfly regular weight system H . The skein relations above give rise to the following relations for H , by
looking at the first terms of the power series (as before, Dv is the result of surgering the chord v in D):

H(D) = aH(Dv)

H(D ∪ O) = bH(D)

H(O) = 1

So if D is an unlink of k components, H(D) = bk−1. Since the first of these relations is almost the same as for
the Conway weight system C, the same argument shows that H satisfies the 2-term relations. We can now
consider string link diagrams with two components (as with the Conway weight system, the Homfly weight
system is not necessarily determined by the adjacency matrix of the intersection graph for chord diagrams
on more than two components).

Theorem 5 For any chord diagram D of degree k on a string link with 2 components, let r = rank(Γ(D)).
If r is odd, then H(D) = akbk−r; if r is even, then H(D) = akbk−r+1.
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Proof: As with Theorem 4, it suffices to show that the weight systems agree on diagrams in normal form.
Let D be the diagram with m1 one-humped camels and m2 two-humped camels on component 1, and l
chords between the two components (l = 0, 1, 2) (so the degree of D is k = l + m1 + 2m2). As before,

adj(Γ(D)) ∼= [1]l ⊕ [0]m1 ⊕

[
0 1
1 0

]m2

, so the rank is r = l + 2m2. r is even when l = 0, 2 and odd when

l = 1.
On the other hand, if we surger all the chords (each time multiplying H by a), the resulting link has

m1 + 2 components when l = 0, 2 (and r is even), and m1 + 1 components when l = 1 (and r is odd). So
when r is even, H(D) = akbm1+1 = akbk−r+1, and when r is odd, H(D) = akbm1 = akbk−r. ✷

Remark: If we let a = 1 and b = 0, then H(D) = C(D). According to Theorem 5, if D is a string
link chord diagram with two components, we will have H(D) = 0 in this case unless r = k is odd (in which
case H(D) = 00 = 1). But this is exactly the case when det(Γ(D)) = 1 (since the matrix has full rank) and
rank(Γ(D)) ≡ 1 mod 2, so C(D) = 1. So the formulas for the Conway and Homfly weight systems agree in
this case.

5 Further Questions and Problems

There are several obvious questions and directions for further research.

Question 1 To what extent are the Conway and Homfly weight systems for string links with more than two
components determined by the intersection graph?

Figure 14 gives an example of chord diagrams on 4 components where the adjacency matrix of the
intersection graph is insufficient to determine the Conway and Homfly weight systems. However, this example
seems to depend strongly on there being 4 components - it is not clear how to find connected examples with,
say, 5 components where the adjacency matrix is insufficient. And certainly the adjacency matrix (as shown
by the example in Figure 14 does not contain all the information of the intersection graph - in particular,
the information contained in the vertex labels. This leads to our next question:

Question 2 Can we find invariants of intersection graphs other than the adjacency matrix which give rise
to weight systems?

Question 3 Can we find other invariants of string links whose weight systems can be computed via inter-
section graphs?

The author has looked at Milnor’s homotopy invariants for string links [16], but there are many others.

Question 4 To what extent does the intersection graph determine the chord diagram?

This question is still open for knots, as well, though some progress has been made [6, 12]. Some work
has been done by the author [14] for the case when the intersection graph is a tree, but this is only a bare
beginning.

Question 5 Can we generalize these constructions from string links to links?

We should be able to define intersection graphs for links as a quotient space of the intersection graphs
for string links. It is yet to be seen whether this is useful.
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