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Abstract

Based on the idea that tensor unparticles can enhance the gravitational interactions between standard model particles, potential black hole
formation in high energy collisions is examined. Modifications to the horizon radius rH are derived, and the corresponding geometric cross-
sections of such objects are calculated. It is shown that rH increases dramatically to the electroweak scale for masses MBH ∼ 1–10 TeV, yielding
a geometric cross-section σBH = πr2

H
on the order of � 50 pb. This suggests that unparticle physics provides a mechanism for black hole

formation in future accelerators, without the requirement of extra spatial dimensions.
© 2008 Elsevier B.V. All rights reserved.

PACS: 11.15.Tk; 14.80.-j; 04.50.Kd; 04.50.Gh

1. Introduction

Anticipation of the stream of collider data to flow from the
LHC has induced theorists to uncover a wealth of new physics
that might be lurking just beyond the TeV-energy scale. This
had led to the prediction of new extensions to particle physics,
as well as modifications to accepted general physical laws.
One of the most popular and innovative of these proposals is
the possible existence of large sub-millimetre extra dimensions
that could radically alter phenomenology at the electroweak
scale [1].

Recently, it was proposed that there could be a scale-
invariant high-energy particle sector of unknown composition
with a non-trivial fixed point [2]. This would normally be
weakly-coupled to the standard model, but below some thresh-
old energy scale—possibly in the TeV range—a dimensional
transmutation in the hidden sector operator would allow for
stronger interactions. Dubbed “unparticle physics” because of
the non-intuitive phase space structure, its introduction has once
again caused a flurry of research into modifications to known
physics, including high energy particle phenomenology [3],
astrophysical and cosmological events [4–6], and low to ultra-

E-mail address: jmureika@lmu.edu.

high energy neutrino physics [7]. Basically, unparticle physics
stands to modify high energy events in the same spirit of large
extra dimensions, and signatures of unparticle-driven events at
the LHC have largely been the topic of choice in the literature.

One of the most intriguing effects from large extra dimen-
sions is the possibility of black hole production at the LHC and
other future accelerators, originally proposed by the authors of
[8] and later expanded upon (see Refs. [9–11] and others cited
within). The unusually large gravitational attraction at scales
below the dimensional compactification scale will inflate the
size of the horizon distance of TeV-sized masses, allowing for
the potential of copious numbers of such events. These black
holes will evaporate quickly, but will be observable primarily
through their unique Hawking temperature signature and sub-
sequent decay shower. Unparticle-driven interactions will also
alter the classical laws of gravitation, and several papers have
examined the possible limits of observational signatures that
might result in table-top Cavendish-like experiments [12], as
well as long range [13] and solar system-scale effects in orbital
precession [14].

To date, there has been no attempt to estimate the likelihood
that the enhanced gravitational attraction from unparticle inter-
actions can play a role in black hole formation, particularly at
the TeV-scale. This note will thus examine such a possibility,
subject to the known properties of tensor unparticles. A review
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of the unparticle foundations and literature will be given, fol-
lowed by a discussion of higher dimensional black holes, and
their creation in particle collisions. The unparticle black hole
formalism will then be outlined, and the likelihood of black hole
formation in the LHC will be discussed.

2. An overview of unparticle physics

At the time this manuscript was written, there were approx-
imately 90 papers on unparticle physics theory and phenom-
enology. A full citation of the existing literature would be ex-
haustive, so only key references to related subjects are provided
herein. The interested reader is urged to follow up on the appro-
priate paper, or search the appropriate on-line databases.

The inspiration for unparticles physics, as outlined in the
pioneering papers by Georgi [2], is derived from the Banks–
Zaks (BZ) high energy field theory with non-trivial IR fixed
point, whose interactions are mediated by exchange particles
of mass MU [17]. Such a field is assumed to interact with the
Standard Model (SM) fields according to the scale-suppressed
non-renormalizable Lagrangian density

(1)L = 1

Mk
U
OSMOBZ,

where the O represent the respective field operators of di-
mensions dSM and dBZ, respectively, and k = dSM + dBZ − 4
to ensure a dimensionless action. Below some other energy
scale ΛU < MU , the Banks–Zaks operator undergoes dimen-
sional transmutation to a new “unparticle” operator OBZ →
CUλdBZ−dUOU of dimension dU �= dBZ, yielding a structurally-
identical Lagrangian

(2)L = κ

ΛkU
OSMOU , κ = CU

(
ΛU
MBZ

)k

,

with kU = dSM + dU − 4.
From the propagator matrix element

(3)

〈0|OU (x)O†
U (0)|0〉 =

∫
d4p

(4π)4
eiPx

∣∣〈0|OU (0)|P 〉∣∣2
ρ
(
P 2),

for an unparticle of four-momentum P , the spectral density
function can be shown to have the form

(4)
∣∣〈0|OU (0)|P 〉∣∣2

ρ
(
P 2) = AdUθ

(
P 0)θ(

P 2)(P 2)dU−2
,

with

(5)AdU = 16π5/2

(2π)2n

	(n + 1/2)

	(n − 1)	(2n)
.

Eq. (4) is identical in form to the analogous phase space derived
from the interactions of n particles of total momentum P ,

(6)Anθ
(
P 0)θ(

P 2)(P 2)n−2
,

which leads to the interpretation that unparticles “resemble” a
collection of non-integer (dU ) indivisible particles. It should be
noted that this conclusion is meant only to exemplify the non-
intuitive nature of unparticle matter, much in the same spirit as

describing a physical fractal distribution by a non-integer scal-
ing dimension. Just as in reality there cannot be a non-integer
number of spatial dimensions, it is highly unlikely that unparti-
cles actually come in fractional numbers.

Since we have yet to observe unparticle signatures in ac-
celerator experiments, the transmutation scale must be at least
ΛU > 100 GeV. Of course, this leaves door open to ΛU ∼
1 TeV, in which case the LHC and other future collider experi-
ments may well represent the testbed for such a theory. The free
parameters dU , dBZ and MU can then be used to constrain the
unparticle interactions to experimental and observational (cos-
mological) data.

The standard limits in the literature on the unparticle di-
mension are dU > 1, with the upper bound depending on the
form of the operator OU . In Ref. [5], it is shown that MU �
20–2600 TeV for 1.1 � dU � 2, based on cosmological con-
siderations. The author of [4] places more liberal limits on the
mass of the echange particle from supernovae cooling rates
due to electron–positron and photon–photon annihilation to ten-
sor unparticles, suggesting that MU � 1.8–180 TeV for 4/3 �
dU � 2. From the gravitiational perspective, it is shown [12]
that deviations to the inverse-square law will manifest them-
selves on the sub-millimetre scale if M ∼ 5–50 TeV for dU = 2,
but with MU growing significantly large for smaller dU . The
value of dBZ is unknown, but it is generally accepted that it
should fall around unity [14]. Ref. [5] shows how variation
of dBZ between 1 and 3, showing that as dBZ increases, lower
bounds on MU are possible, albeit with larger sensitivity to Λμ.

As the framework of unparticle physics is an effective field
theory, the exact form of the operators OU are unknown. It is
assumed that their algebraic properties and associated Lorentz
structures mimic those of conventional particles, though, and
thus one can expect scalar, vector, tensor, and spin unparticle
interactions. Of particular relevance to gravity are tensor un-
particle interactions that can couple to (and re-scale) the stress-
energy tensor by a perturbation

(7)T μν + T
μν

U , T
μν

U ∼ √|g|T αβOU
αβgμν,

introducing a cosmological constant-like term to the action
[12]. This coupling implies that OU

μν must represent a spin-2
particle, which one could dub an “ungraviton”. Vector unpar-
ticle operators Oμ

U may couple to baryon currents Bμ via in-
teractions of the form BμOμ

U , yielding a repulsive couping that
serves to decrease the effective strength Newtonian gravity [13].

In the non-relativistic limit, the appropriate interactions may
be computed by the usual Fourier transform method. For tensor
couplings, the result is a modified potential of the form [12,14]

V (r) = VN(r)

[
1 + 2

π2dU−1

× 	(dU + 1
2 )	(dU − 1

2 )

	(2dU )

(
R∗
r

)2dU−2]

(8)= VN(r)

[
1 + 	dU

(
R∗
r

)2dU−2]
,
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where VN(r) is the usual Newtonian potential. The effective
length-scale R∗ is defined as

(9)R∗ = Λ−1
U

(
MPl

ΛU

) 1
dU−1

(
ΛU
MU

)
dBZ

dU−1 .

If dU < 1 solutions are allowed, then the unparticle potential
can be repulsive, since 	(x) < 1 for x < 0 (and hence for dU <

1/2). In general, most unparticle treatments in the literature do
not address the latter case. The tensor rank of the operator OU
will determine the dimensionality dU .

Following the completion of this Letter, it was found that un-
particle interactions with normal matter introduce much more
restrictive constraints on the possible values of the dimen-
sion dU [15]. For vector interactions, unitarity is violated unless
dU � 3, while for tensor unparticles dU � 4 is required (a brief
discussion of unitarity in unparticle physics originally appeared
in [16]). It was also suggested that the forms of the propaga-
tors for vector and tensor unparticles in the existing literature
should be modified, with the interactions reflecting new contact
terms between standard model particles in addition to the un-
particle exchange. For vector unparticles, this has the effect of
re-weighting terms in the propagator as a function of unparticle
dimension dU , and can yield corrections to the pure unparticle
effects. Similar effects were noted for tensor unparticle interac-
tions.

The results in this Letter reflect the unitarity constraints im-
posed in Ref. [15], using the propagator introduced in [12]. As
such, these results should be considered a first-order estimate
of unparticle gravitational effects at the TeV scale. Accounting
for any changes to the propagator is left to future works.

3. Black holes in (4 + n)-dimensional spacetime

The usual Schwarzschild radius rS = 2m/M2
Pl for most ob-

jects is exceedingly small, due primarily to the enormity of the
Planck scale. It has been suggested that this hierarchy problem
may be solved through the introduction of large extra dimen-
sions [1] into which only gravity may propagate, and that the
actual Planck scale may not be that dissimilar from the known
electroweak energies of order ∼1 TeV. One of the many in-
teresting phenomenological consequences of extra dimensional
theories with low Planck scale is the formation of black holes.
The “classical” value of rS is strikingly altered by their pres-
ence, due to the graviton leakage into the bulk. The Schwarz-
schild metric in (4 + n)-dimensional spacetime is [11]

(10)ds2 = (
1 − h(r)n+1)dt2 − dr2

1 − h(r)n+1
− r2 dΩ2

n−2,

with

(11)h(r) = rH

r
.

In the semi-classical limit, the modified horizon distance rH can
be shown to be [9]

(12)rH = 1√
πM∗

(
MBH

M∗

) 1
n+1

(
8	(n+3

2 )

n + 2

) 1
n+1

,

for a black hole of mass MBH subject to a gravitational
scale M∗. In extra dimensional models where M∗ ∼ 1 TeV (i.e.,
M∗ 	 MPl), the resulting black holes are much larger than their
four-dimensional spacetime counterparts. These differences be-
come quite pronounced when the mass is small, and close to
(but still greater than) the new Planck scale, MBH > M∗. This
furthermore implies a distinct signature for the black hole’s
Hawking radiation spectrum and decay modes, which can likely
be detected at the LHC.

A mini-black hole will be formed if two colliding partons
with energy

√
s > 1 TeV pass within an impact parameter

b � rH , or alternatively interact within the geometric cross-
section σBH ∼ πr2

H . The latter can serve as a rough approxi-
mation for the production cross-section in the parton collisions.
For a mass MBH ∼ 1 TeV, the standard Schwarzschild radius
is rH = rs ∼ 10−31 TeV−1, or about 10−50 m. The chance of
such black hole formation in the “standard” theory is thus zero.
In the case of ADD large extra dimensions, it has been shown
that the horizon radius for TeV-scale events may be increased
to about 10−4 fm, or a cross-section of σ ∼ 100 pb (see [9–11]
and references therein). Although the structure of black holes
becomes “stringy” and vastly non-trivial as MBM ∼ MPl, the
general consensus in the literature is that the classical approxi-
mation of the horizon distance is adequate.

4. Tensor unparticle-enhanced black hole formation

From the definitions of the modified gravitational potential
energies in Eqs. (8) and (23), it is presupposed that one may re-
define the gravitational potential of a single mass m, according
to the standard definition. The modified gravitational potentials
for both tensor and vector couplings can be written in the gen-
eral form

(13)ΦU (r) = ΦN(r)

[
1 + 	dU

(
R∗
r

)2dU−2]
.

The following analysis will consider modifications to the
Schwarzschild metric due to unparticle interactions that mimic
enhancements to the gravitational potential. In that sense, it is
instructive to re-write the μ = ν = 0,1 Schwarzschild metric
terms as [18]

(14)g00 = 1 + 2Φ(r); g11 = (
1 + 2Φ(r)

)−1
.

This is an appropriate expression for any number of spacetime
dimensions, and can be understood to incorporate unparticle in-
teractions for two reasons. First, the modified Newtonian poten-
tials should be recovered in the weak-field limit. Secondly, for
interactions below the scale r < R∗, the unparticle contribution
will dominate and the metric will resemble the Schwarzschild
solution of a spacetime with (2dU − 2) extra dimensions. Thus,
the metric can now be written in the form

ds2 =
[

1 − 2GM

r

(
1 + 	dU

(
R∗
r

)2dU−2)]
dt2

(15)+ dr2

1 − 2GM
r

(1 + 	dU (R∗
r

)2dU−2)
+ r2 dΩ2.
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A full derivation of the unparticle-enhanced gμν stemming
from unparticle corrections to the stress-energy tensor would
ultimately shed definitive light on the situation.

The value of the mass scale MU and dimension dU , along
with the BZ operator dimension dBZ, will uniquely deter-
mine R∗. The value of dBZ is most likely not significantly
different from unity, so for the purposes of simplicity one can
assume dBZ ∼ 1. Setting ΛU = 1 TeV, the scale length simpli-
fies to

(16)R∗ =
(

MPl

MU

) 1
dU−1

TeV−1.

This relation is algebraically similar to the order-of-magnitude
estimate for the size of extra dimensions [1], with MU taking
the place of M∗. Since it is likely that MU 	 MPl, this result
implies R∗ will be unusually large and will ultimately dom-
inate the solutions for the ungravity-modified horizons rH if
rs 	 R∗.

Of particular interest in this regard will be the formation of
mini-black holes in future accelerator experiments. For the pur-
poses of this analysis, a similar assumption for the formation
of a semi-classical black hole in the extra dimensional case—
namely MBH > M∗—will hold with ungravity-ehanced singu-
larity creation. The “threshold” value of MBH can be obtained
by approximating the potential as the dominant unparticle con-
tribution

(17)Φ(r) ∼ GMBH	dU

r

(
R∗
r

)2dU−2

.

Inserting this into the metric and solving for the horizon radius
gives an MPl-free expression

(18)rH ≈
(

2MBH	dU

M2
UΛ−1

U

) 1
2dU−1

Λ−1
U .

In this case, the ungravity-enhanced interactions will yield
black hole formation of mass MBH = M2

UΛ−1
U . For ΛU ∼

1 TeV, MU ∼ 10 TeV, and MBH ∼ 10 TeV, one finds rH ∼
10−5 fm for all values of du � 4, which corresponds to a geo-
metric cross section σBH ∼ 10 pb. This places the likelihood of
unparticle-driven black hole formation at the LHC in a favor-
able light.

5. Results and discussion

Numerically-speaking, the goal is thus to see if the mecha-
nism can increase the standard horizon radius by roughly 30 or-
ders of magnitude, to be commensurate with accelerator scales.
At the same time, the value of the interaction scale R∗ should
be below constraints imposed by current experiments. As Fig. 1
demonstrates, values of dU � 4 produce such conditions, with
ΛU ∼ 1 TeV and MU ∼ 10 TeV.

An unparticle sector of dimension dU = 1 will induce a cor-
rection to the usual Schwarzschild solution of the form

(19)rH = rs(1 + 	1).

Since 	1 = 1, this will always result in a modification of the
“standard” solution by a factor of 2, and thus can be absorbed

Fig. 1. Unparticle interaction scale R∗ (in metres) as a function of dimen-
sion dU , with ΛU = 1 TeV, MU = 10 TeV, and MPl = 2.4 × 1015 TeV.

Fig. 2. Geometric black hole cross-section σBH = πr2
H

as a function of dimen-

sion dU , with ΛU = 1 TeV, MU = 10 TeV, and MPl = 2.4 × 1015 TeV.

into a re-scaled gravitational constant. This solution is thus not
of particular interest, and furthermore violates unitarity.

As the unparticle dimension grows, however, the factor

(MPl/MU )
1

dU−1 is re-introduced and the solutions become
greatly affected. For higher values of dU , the horizon condi-
tion will yield multiple solutions (real and complex), but only
the positive values are taken to have physical significance. The
horizon radii rH for various values of dU and MBH have been
solved using the singularity condition imposed on Eq. (15), and
are displayed in Fig. 2. The desired dimensional range for a
tensor unparticle operator coupling to the gravitational sector
is dU � 2.

The prognosis for unparticle-enhanced black hole creation at
the LHC or other future TeV-scale collider is hopeful. The most
promising area of parameter space that would allow for black
hole formation is when dU is large and MU ∼ 10 TeV. For this
range of values, the geometric cross-section σBH is in the range
σ ∼ 1–50 pb, with higher values being caused by larger values
of MBH. Note also that for dU � 4, the interaction scale is in the
range R∗ < 10−13 m, which is much smaller than the current
limits on deviations from Newtonian gravity.
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The largest cross-sections (σBH ∼ 50 pb) arise for MBH =
15 TeV, corresponding to the maximum possible center-of-
mass energy at the LHC. Since the actual collisions will have√

s much less than this, it is reasonable to assume that the pos-
sible values of σBH are constrained to lie in the parameter space
between the upper and lower lines of Fig. 2, or σBH ∼ 10 pb, in
agreement with the approximation derived from Eq. (18).

Due to the form of R∗ given in Eq. (16), it can been shown
that as the scale MU grows and R∗ approaches the electroweak
regime. The corresponding cross-sections would thus suggest a
very low probability of event observation. The values in Fig. 2
can be taken to be an upper limit on the mechanism parameters,
since increasing MU and ΛU will result in vastly smaller cross-
sections.

Experimentally, if such black holes are created at the LHC
they will occur with lower frequency than for their extra di-
mensional counterparts. The latter has been liberally estimated
as a 1 Hz production for a beam luminosity of 30 fb−1/y
and cross section of 100 pb [10]. Using the σBH < 100 pb
figures culled from this analysis as an ideal interaction cross-
section, unparticle-enhanced black holes should be produced
with a similar frequency, at least to within an order of mag-
nitude (hence a black hole every few seconds). These holes are
also potentially distinguishable via their Hawking temperature,
which scales as the inverse horizon radius:

(20)TH = 1

4πrH
= ΛU

4π

(
2MBH	dU

M2
UΛ−1

U

)− 1
2dU−1

.

The possible temperature spectra are much richer than those
for extra dimensional black holes, which grow as TH ∼
M∗(MBH/M∗)−1/(1+n), with n restricted to integer values.

6. A comment on vector unparticle enhanced black holes

If the OU is vector-like, the unparticles couple to baryon
currents with (dimensionless) strength λB according to the in-
teraction

(21)L= λBΛ
1−dU
U BμOμ

U
will yield a new interaction potential of the form [13]

(22)VU (r) ∼ λBB1B2

r2dU−1
→ λBm1m2

u2r2dU−1
,

where the baryon numbers for the interacting masses are Bj ≈
mj/u. The modified gravitational potential is then

Φ(r) = ΦN(r)

[
1 − 1

2π2dU

× 	(dU + 1
2 )	(dU − 1

2 )

	(2dU )

(
R∗v

r

)2dU−2]

(23)= ΦN(r)

[
1 − 	̄d

(
R∗v

r

)2dU−2]
,

with the new length scale R∗v dependent on the coupling
strength λB and the other unparticle parameters.

Since vector unparticle couplings to baryons will result in
a repulsive correction to gravity, such a mechanism will not

contribute to black hole formation if dU � 1. Note that the vec-
tor unparticle contribution will become attractive for dU < 1/2,
but this also results in a potential which weakens as r → 0.
This is thus unlikely to greatly affect black hole formation. It is
nevertheless enlightening to examine possible black hole-like
solutions that result from the modified potential, as the mod-
ified potential has a very important consequence: chargeless,
spinless black holes can possess two horizons.

In particular, for the case dU = 1.5:

(24)Φ(r) = rs

r

(
1 −

(
R∗v

4π3r

))
.

The corresponding horizon condition that results from insertion
of this potential into the metric yields a Reissner–Nördstrom-
type solution with two horizons

(25)rH± = rs

2

(
1 ±

√
1 − R∗−

π3rs

)
,

with the constraint MBH > R∗−/2π3. It is thus possible in
principle to distinguish such an object from its Schwarzschild
equivalent through its temperature, which for a Reissner–
Nördstrom black hole is [19]

(26)TH = r+ − r−
4πr2+

= T+(1 − δ),

where T+ is the Hawking temperature of a black hole with ra-
dius r+, and

(27)δ = r−
r+

=
1 −

√
1 − R∗−

π3rs

1 +
√

1 − R∗−
π3rs

.

Although such temperatures are difficult to measure due to their
extremely small magnitude, in principle such a deviation should
be in some way detectable. Orbits around the object might also
be discernible from those of a regular black hole, but such a
calculation is beyond the scope of this discussion.
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