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REVIEW

Thermal variation, thermal extremes and the physiological
performance of individuals
W. Wesley Dowd1,*, Felicia A. King2 and Mark W. Denny2

ABSTRACT
In this review we consider how small-scale temporal and spatial
variation in body temperature, and biochemical/physiological
variation among individuals, affect the prediction of organisms’
performance in nature. For ‘normal’ body temperatures – benign
temperatures near the species’ mean – thermal biology traditionally
uses performance curves to describe how physiological capabilities
vary with temperature. However, these curves, which are typically
measured under static laboratory conditions, can yield incomplete or
inaccurate predictions of how organisms respond to natural patterns
of temperature variation. For example, scale transition theory predicts
that, in a variable environment, peak average performance is lower
and occurs at a lower mean temperature than the peak of statically
measured performance. We also demonstrate that temporal variation
in performance is minimized near this new ‘optimal’ temperature.
These factors add complexity to predictions of the consequences of
climate change. We then move beyond the performance curve
approach to consider the effects of rare, extreme temperatures.
A statistical procedure (the environmental bootstrap) allows for long-
term simulations that capture the temporal pattern of extremes
(a Poisson interval distribution), which is characterized by clusters
of events interspersed with long intervals of benign conditions. The
bootstrap can be combined with biophysical models to incorporate
temporal, spatial and physiological variation into evolutionary models
of thermal tolerance. We conclude with several challenges that
must be overcome to more fully develop our understanding of
thermal performance in the context of a changing climate by explicitly
considering different forms of small-scale variation. These challenges
highlight the need to empirically and rigorously test existing theories.

KEY WORDS: Thermal performance curve, Jensen’s inequality,
Scale transition theory, Extreme events, Environmental bootstrap,
Spatial variation, Thermal biology

Introduction
Many of the ground-breaking developments in biochemical
adaptation address two related questions: (1) how have biochemistry
and physiology evolved across generations and among species in
response to the environment? (2) Within a generation, how do
inducible responses indicative of physiological plasticity differ among
species from different environments? These questions have yielded a
wealth of mechanistic insights into how organisms cope with
environments that differ in average conditions (e.g. tropical versus
polar) and environmental variability (Hochachka and Somero, 2002).
In the quest for answers to these overarching questions, physiologists

and biochemists have focused on the mean of performance, often
glossing over variation (Bennett, 1987). However, this focus draws
attention away from the fact that contemporary patterns in
biochemistry and physiology are products of selection on the
variation that existed in the ancestors of present-day organisms.
When confronted with changes in their environment, different
individuals within a species can be quite variable in their response
(Crawford andOleksiak, 2007; Krebs and Feder, 1997; Nikinmaa and
Waser, 2007; Williams, 2008). The sources and consequences of this
variation are pivotal to understanding species’ potentials to cope with
changing environments (Whitehead and Crawford, 2006). As Steven
Jay Gould (1985) eloquently put it:

In short, we view means and medians as the hard ‘realities,’ and the
variation that permits their calculation as a set of transient and imperfect
measurements of this hidden essence. … But all evolutionary biologists
know that variation itself is nature’s only irreducible essence. Variation is
the hard reality, not a set of imperfect measures for a central tendency.
Means and medians are the abstractions.

A growing literature in behavioral ecology (Dingemanse et al.,
2010), climate change biology (Estay et al., 2014), chronobiology
(MacDougall-Shackleton et al., 2015), sex differences in human
physiology and medicine (Mendelsohn and Karas, 2005), disease
ecology (Raffel et al., 2013), ecology (Ruel and Ayres, 1999),
community ecology (Violle et al., 2012) and endocrinology
(Williams, 2008) supports this perspective, showing that there is
much to be gained by embracing the sources and consequences of
variation.

Here, we identify several key opportunities and challenges for
incorporating the role of variation into our understanding of
organismal thermal biology and its ecological and evolutionary
consequences. We focus on three forms of variation that
interactively contribute to differences in organisms’ abilities to
perform the physiological tasks necessary for survival and
reproduction: (1) temporal variation in an individual’s body
temperature; both ‘normal’ variation (fluctuations that individuals
encounter day to day in a typical lifetime) and extreme events (rare
fluctuations that impose severe stress on individuals and possibly
decimate populations); (2) spatial variation in body temperature
among individuals; (3) inter-individual variation in the biochemical
and physiological capacities to cope with thermal variation.

Although we focus our examples on the effects of variation in
body temperature, analogous arguments apply to other types of
variation; for example, variation in oxygen availability, pH, salinity
or water availability. The three forms of variation listed above
manifest at spatial and temporal scales relevant to individuals, but
explicit consideration of all three types of small-scale variation is
crucial for developing a robust ability to predict large-scale
responses to the environment and for addressing the pressing
issue of anthropogenic global change.
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We begin with an analysis of thermal performance curves, the
traditional approach to thermal variation, and discuss how variation
in body temperature can affect their interpretation in the context of
climate change. Next, we move beyond the performance-curve
approach to consider the effects of extreme thermal events. We then
review the importance of considering both spatial variation in how
individuals experience their environment and inter-individual
variation in the biochemical and physiological capacities to cope
with thermal stress, and we finish with a discussion of challenges
and opportunities for future research.

Performance curves: quantifying the effects of variation in
sublethal temperature
Body temperature has profound effects on physiological processes
at the level of molecules, cells and whole organisms (Dell et al.,
2011; Hochachka and Somero, 2002). These myriad effects can be
described by a performance curve (Fig. 1A), where the x-axis
characterizes the organism’s body temperature and the y-axis
indicates some quantitative measure P of the individual’s

performance (Huey and Stevenson, 1979). Performance in a static
environment, which we refer to as the ‘nominal’ performance
function P(T ), peaks at some ‘optimal’ temperature (Topt,stat). Below
some minimum critical temperature (CTmin) the organism cannot
maintain the functions necessary to survive and reproduce, and
above some maximum critical temperature (CTmax) performance is
similarly compromised. Typically, the curve is asymmetric with a
relatively gentle rise to the peak followed by a steep decline.
Eurythermal organisms have a relatively large thermal breadth
(CTmax−CTmin), stenothermal organisms have a narrower breadth
(Fig. 1B). The magnitude of performance at any point along the
curve can vary from organism to organism. The generality of
unimodal responses to temperature was recently corroborated by
two broad surveys: one of a variety of traits at different levels of
biological organization across a wide range of taxa (Dell et al.,
2011) and the other of thermal dependency of growth rates across
the three domains of life (Corkrey et al., 2012). Later, we raise
concerns regarding the applicability of performance curves in
variable environments, but given their widespread use in the
literature they warrant a detailed review.

Despite the assumption by the metabolic theory of ecology that
the underlying parameters controlling the shape of the performance
curve are universally constrained (Brown et al., 2004; Gillooly et al.,
2001), considerable variation exists in the shape of performance
curves among taxa and among performance traits (Ehnes et al.,
2011). Consequently, a variety of mathematical functions have been
used to fit experimental performance data (Angilletta, 2006). For
biochemical and physiological rate data, the ascending leg of the
performance curve is often assumed to result from thermodynamic
effects that increase reaction rates with increasing temperature
(according to the Boltzmann–Arrhenius equation), while
deceleration near the peak and on the descending leg is assumed
to result from destabilizing effects of high temperatures on rate-
limiting enzymes (Dell et al., 2011; Johnson and Lewin, 1946;
Knies and Kingsolver, 2010; Ratkowsky et al., 2005). In aquatic
organisms, recent attention has focused on the roles of limitations in
oxygen-carrying capacity and resulting oxidative stress in setting
thermal performance bounds (Pörtner, 2002, 2010). For
‘integrative’ traits (such as running speed, fecundity, survivorship
or population growth rates), the Boltzmann–Arrhenius family of
functions often do not fit well to available data (Knies and
Kingsolver, 2010) and other functions (e.g. Gompertz×Gaussian,
polynomial, beta) or statistical approaches (such as generalized
additive models) have been used. As we discuss below, differences
in the shape of the performance curve, particularly in the nature of
its first and second derivatives, have important implications for
predicting the effects of thermal variability.

Despite the importance of the shape of performance curves,
relatively few studies have measured performance at a large enough
number of temperatures to effectively distinguish between possible
underlying shapes (Knies and Kingsolver, 2010). Typically,
organisms are exposed to fewer than five discrete body
temperatures (Dell et al., 2011). Often, these temperatures are
clustered near the central region of the performance curve, and our
understanding of performance near the extremes remains relatively
undeveloped. It is also likely that the shape of thermal performance
functions varies for the same organism at different levels of
organization [e.g. mitochondria versus whole organism (Schulte
et al., 2011)], for different performance traits (Huey, 1982) and for
different ontogenetic stages (Kingsolver et al., 2011).

Thermal performance models have been used to infer a variety of
organismal- and population-level responses to temperature change,

Temperature (°C)

0 10 20 30 40

Pe
rfo

rm
an

ce

CTmin CTmaxTopt,stat

Maximal performance

P

A

0 10 20 30 40 50

∆P

∆P
∆T

∆T

Temperate eurytherm

Tropical stenotherm
B

Fig. 1. Thermal performance curves based on a modified beta function.
(A) Performance curves typically have a characteristic, unimodal shape
exemplified by the thermal reaction norm: performance as a function of body
temperature. Often the reaction norm’s peak is shifted to the right of center,
such that performance increases relatively slowly up to Topt, but decreases
rapidly above Topt. Although performance curves are generally modeled as
functions, performance is typically only measured at a small number (4–8) of
discrete temperatures in empirical studies. (B) A given increase in temperature
(ΔT ) results in an increase in nominal performance (ΔP) for a temperate
eurytherm, but the same temperature increase results in a decrease in nominal
performance for a tropical stenotherm. Starting temperatures are based on
typical mean body temperatures reported in the literature (see, e.g. Deutsch
et al., 2008), with mean body temperature much closer to Topt for stenotherms.
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from effects on individual processes such as metabolic rate (Schulte
et al., 2011) to potentially complex consequences that might lead to
range shifts (Sunday et al., 2012) and influence ecological
interaction strengths (Rall et al., 2012). For example, thermal
biologists have quantified performance curves for species from
different latitudes, often concluding that species near the tropics –
where temperatures are generally high and relatively stable – tend to
live closer to their thermal optimum than do species living in
temperate latitudes (Deutsch et al., 2008; Morley et al., 2012;
Stillman and Somero, 2000), where short-term and seasonal
variation is greater. A common corollary to these conclusions is
that tropical species – many, but by no means all, of which are
stenotherms – are at greater risk of population decline or extinction
in the context of global warming (Bonebrake and Deutsch, 2012;
Deutsch et al., 2008; Huey et al., 2012), whereas temperate species
may benefit from warming as a result of their position on the
ascending arm of the performance curve (Fig. 1B).
In the next section, we explore how consideration of short-term

variation in body temperature may modify the interpretation of
thermal performance curves.

Temporal variation in body temperature and its effects on
performance
Average performance and Jensen’s inequality
For ectotherms and regional endotherms, body temperature can
fluctuate rapidly, with concomitant effects on an organism’s
performance. Often, the consequences of the variability in
performance are quantified by integrating performance over time
to calculate average performance (e.g. average metabolic rate) or net
performance (e.g. reproductive output).
However, several recent studies have highlighted important

complications inherent in calculating the average (or net) of a
nonlinear function such as a thermal performance curve (Estay et al.,
2014; Martin and Huey, 2008; Vasseur et al., 2014). In each, the
authors use Jensen’s inequality (Jensen, 1906; Ruel and Ayres,
1999) to show that, when temperature varies, mean performance –
the average over a portion of the nominal performance function,
PðTÞ – does not equal the performance at the mean temperature (the
function’s value at the average temperature, Pð�TÞ). Building on
Jensen’s inequality, scale transition theory (e.g. Chesson et al.,
2005) estimates the difference between the average of the function
and the function of the average (Estay et al., 2014). To a first
approximation:

PðTÞ � Pð�TÞ þ 1

2
P00ð�TÞs2

T ; ð1Þ
where P00ð�TÞ is the performance curve’s second derivative at the
average temperature �T , and σT is the standard deviation of body
temperature encountered by the organism. When P00ð�TÞ is positive,
average performance in a variable environment is greater than the
nominal performance at the average temperature; when P00ð�TÞ is
negative, average performance is less than the nominal
performance. Eqn 1 is accurate when σT is a small fraction of the
thermal breadth. For larger variations, PðTÞ must be calculated
using numerical simulations in which temperatures are drawn at
random from a distribution (usually Gaussian); the calculated P(T )
values are averaged to give PðTÞ (Benedetti-Cecchi, 2005).
From Eqn 1, it is clear that the effect of temporal variation (σT) on

average performance depends on the shape (that is, on the second
derivative) of P(T ). In some cases (e.g. Boltzmann–Arrhenius-
based thermal performance curves, Fig. 2A), the ascending arm of
the curve is initially concave up from CTmin, an indication that P

00ð�TÞ

in this portion of the curve is positive (Fig. 2C). The remainder
of the curve is concave down [P00ð�TÞ is negative]. In such cases,
variation in body temperature produces an average performance
curve in which the mean temperature associated with highest
average performance (Topt,var) is lower than the Topt,stat (Estay et al.,
2014; Vasseur et al., 2014) (Fig. 3A). Displacement of optimum
temperature increases as σT increases. For a given σT, the difference
between Topt,var and Topt,stat is a larger fraction of a stenotherm’s
narrow thermal breadth than for a eurytherm’s broad thermal
breadth (Martin and Huey, 2008).

The difference between Topt,var and Topt,stat has been used to
explain why some organisms, such as lizards, choose mean body
temperatures in the field below their optimal static temperature in the
laboratory (‘suboptimal is optimal’, Martin and Huey, 2008).
However, lizards’ choice of preferred temperature cannot be fully
explained by Jensen’s inequality, and the remaining discrepancy has
been at least partially attributed to thermodynamic effects on
performance (Asbury and Angilletta, 2010). A suboptimal-is-
optimal strategy could also arise from bet-hedging behaviors that
reduce the risk of experiencing high temperatures that would push
an individual onto the rapidly descending arm of the curve,
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Fig. 2. Different performance curve functions exhibit varying
mathematical characteristics. (A–C) A performance curve (A) and its first (B)
and second (C) derivatives. This curve, typical of processes such as metabolic
rate, has the initial upward concavity typical of curves based on the Arrhenius
equation. Note that the zero crossing of the second derivative indicates the
inflection point in the ascending leg of the curve. (D–F) A performance curve
typical of ‘integrative’ whole-organism performance; the second derivative is
negative throughout (F).
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particularly when information about variation in the environment is
incomplete (Angilletta, 2009; Martin and Huey, 2008).
For curves adhering to the general shape of Fig. 2A, variation in

temperature can augment performance to the left of the inflection
point at the low end of an organism’s temperature range, and in
some cases the operative range may be extended below the nominal
CTmin (Estay et al., 2014) (Fig. 3A). Meanwhile, performance in a
variable environment suffers at the warm end of the range,
plummeting at mean temperatures below the nominal CTmax

(Fig. 3A). These predictions are supported by studies of thermal
variability and development in malaria parasites (Blanford et al.,
2013).
In other cases for which the performance curve is concave down

throughout (typically curves related to integrative, whole-organism
functions such as running speed or fecundity, Fig. 2D), average
performance in a variable environment is predicted to be less than
the nominal value across the entire range of mean temperatures
(Fig. 3B), constricting the realized thermal niche (i.e. the breadth of
the curve) at both high and low temperatures (e.g. for reproduction
of a pseudoscorpion, Zeh et al., 2014).
In summary, application of scale transition theory to

performance curves implies that: (1) the highest level of average
performance achieved in a variable environment is lower than
maximal performance in a static environment; (2) organisms in

varying thermal environments should choose mean conditions
below Topt,stat to maximize mean performance; (3) for a given σT,
the displacement of Topt,var is a greater fraction of total thermal
breadth – and the reduction in performance is a greater fraction of
nominal peak performance – for stenotherms than for eurytherms;
(4) variability may extend the lower range of mean temperatures
over which performance is feasible for some performance
functions but not others, while it almost certainly reduces the
upper bound of mean temperatures at which organisms can
perform adequately (Fig. 3A–C).

These conclusions are generally robust to different choices of the
function used to describe performance curves, so long as the curve is
asymmetrical and left-skewed, including modified Boltzmann–
Arrhenius (Dell et al., 2011), modified beta (Niehaus et al., 2012)
(Fig. 1A), Gaussian×Gompertz (Martin and Huey, 2008) and Briere
three-parameter (Estay et al., 2014). Although previously popular
because of their simple parameterization, symmetrical Gaussian
performance curves generate dramatically different results and
should be avoided for describing performance (Asbury and
Angilletta, 2010; Dell et al., 2011; Gilchrist, 1995).

Scale transition theory can be applied to spatial as well temporal
variation. Rather than quantifying the mean performance through
time of one individual in a temporally variable environment (as
above), Eqn 1 can be used to describe the instantaneous mean
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Fig. 3. Small increases in temporal thermal variation (σT) have significant effects on mean performance, the temporal variation of an individual’s
performance (σP), and the coefficient of variation of performance (CVP). The effects of Jensen’s inequality on mean performance for a temperate eurytherm
characterized by a Boltzmann–Arrhenius-type curve (A), a temperate eurytherm characterized by an integrative curve with negative second derivative throughout
(B) and awarm stenotherm (C). In each panel, the performance curve is based on amodified beta function. (D–F) Corresponding values for the standard deviation
of performance as a function of mean temperature. (G–I) The CVP is calculated by dividing σP by P for each given temperature. Lines indicate values for the
nominal, static performance curve (solid lines; σP is zero) and the realized curveswhen σT is 10% (dashed lines) or 20% (dotted lines) of the nominal curve breadth
(CTmax–CTmin). In this example, temporal variation in body temperature produces a local minimum in σP near Topt,var that is more pronounced in stenotherms (F)
than in eurytherms (D), even though the absolute magnitude of σT for the dotted lines is smaller in F (1.5°C) than it is in D (3°C). Even small increases in σT lead to
dramatic increases in CVP for stenotherms. These curves could be generated using Eqn 2 (A–C) and Eqn 3 (D–F), but owing to the limitations noted in the text, we
used simulations to better account for the curve’s behavior near the bounds of the nominal performance curve. In this example, we assume linear costs of
temporarily exceeding the bounds of the nominal performance curve (descending the ends of each curve below the x-axis in A–C). The nature of these costs
requires further experimental documentation.
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performance of a group of individuals distributed in a thermally
variable landscape. Furthermore, spatial and temporal variation
can be combined. Because an individual’s thermal history is
determined by its location, which, for motile species, can change
through time, it is important to consider these combined effects
(Sears et al., 2011). For example, an individual’s thermal history as
a function of temporal and spatial variability can be used in
conjunction with the individual’s performance curve to calculate
that individual’s average performance. [Note that individual
organisms sample their environment temporally regardless of
whether the underlying variation is perceived by biologists as
temporal or spatial (Woods et al., 2014).] The procedure can be
repeated for each individual in a population to estimate average
performance across the population.

Effects of thermal fluctuations on the variance of performance
As temperature fluctuates, performance fluctuates and these
fluctuations may be more detrimental than the reductions in mean
performance discussed in the previous section, especially when the
costs of instantaneous poor performance are great. To take an
extreme example, even if an organism performs well on average, a
single fluctuation beyond the limits of the performance curve can be
fatal (Kingsolver et al., 2011).
This aspect of performance has received scant attention in

the literature. It can be shown (see derivation in Appendix 1) that
the variation in an individual’s performance, represented here by the
standard deviation of performance σP, is positively correlated with
the magnitudes of both the first and second derivatives of the
performance curve at the mean body temperature. Variation in
performance also increases nonlinearly with increasing variation in
body temperature, σT. To a first approximation:

sP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P0ð�TÞ�2s2

T þ 1

4
½P00ð�TÞ�2ðs2

T Þ
2

r
: ð2Þ

As with the estimate of PðTÞ (Eqn 1), this estimate of σP is accurate
when σT is a small fraction of the thermal breadth. For larger values
of σT, σP must be calculated by simulation.
Perhaps of greater physiological relevance than the absolute

magnitude of σP is its magnitude relative to mean performance; that
is, the coefficient of variation of performance CVP:

CVP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P0ð�TÞ�2s2

T þ 1

4
½P00ð�TÞ�2ðs2

T Þ
2

r

Pð�TÞ þ 1

2
P00ð�TÞs2

T

: ð3Þ

CVP can be large (Fig. 3G-I). For the representative per-formance
curve shown in Fig. 3A, when temperature varies with a standard
deviation of 10% of the nominal curve breadth (3°C in this
example), σP is ∼15% of the individual’s mean performance
at Topt,var.
CVP is minimal near Topt,var, indicating that performance is most

predictable around this optimal temperature. Notably, the minimum
of CVP shifts further to the left of Topt,var as σT increases (compare
positions of dashed and dotted lines in Fig. 3G-I). Furthermore, the
rate of increase in CVP with a shift away from Topt,var is greater in
warm stenotherms than in temperate eurytherms (compare Fig. 3D,F),
perhaps helping to explain observed differences between these
groups. Warm stenotherms tend to live at mean temperatures close
to their nominal thermal optimum. Because their environments
tend to vary less in the first place, Eqn 3 suggests that choosing
temperatures near the nominal thermal optimum ensures the most

consistent performance through time (Fig. 3I). Meanwhile,
temperate eurytherms tend to choose mean temperatures on the
ascending arm of their nominal performance curves. In the less
predictable environments where most eurytherms live, this strategy
mitigates risk of accidentally exceeding CTmax with only a small
reduction in mean performance (due to the left shift in optimal
temperature and the generally broader curve shape) and a relatively
small increase in the standard deviation of performance. Organisms’
thermal choices may reflect trade-offs between the magnitude and
variability of performance on one hand and the risk of exceeding
thermal limits on the other (Angilletta, 2009).

Interpreting thermal performance curves in the context of
climate change
The theoretical effects outlined above add complexity to previous
predictions, such as a global analysis of insect vulnerability to
climate change (Deutsch et al., 2008). In particular, Eqns 1–3
predict more-exaggerated consequences of thermal variation for
stenotherms than for eurytherms. Because the narrow curves of
stenotherms are more intensely concave than the broad curves of
eurythermal organisms (Fig. 1B), stenothermal species typically
have second derivatives that are more negative in the vicinity
of Topt,stat. Thus, even though tropical stenotherms may experience
less thermal variation than mid-latitude organisms (i.e. σT is
relatively small), the large magnitude of P00ð�TÞ suggests that their
average performance might be more heavily impacted by even small
increases in temporal variation. Indeed, recent studies suggest that
increases in temperature variability may pose a larger threat to
ectotherms than the shift in average temperature as the planet warms
(Paaijmans et al., 2013; Terblanche et al., 2010; Vasseur et al.,
2014). [Increased temperature variation may also have negative
fitness consequences for endotherms such as birds (Pendlebury
et al., 2004).]

Our analysis of the temporal variation in an individual’s
performance may also have important implications for predicting
organisms’ responses to climate change. For example, even though
many tropical species may experience less temperature variability
than their extra-tropical cousins – and therefore a smaller difference
between Topt,stat and Topt,var – even a small increase in mean
temperature could lead to a considerable increase in the temporal
variation in performance (σP; moving rightward along the dashed
line in Fig. 3F). Simultaneous increases in thermal variability in the
tropics would compound this effect (Eqn 2). Indeed, climate data
show that both mean temperature and daily temperature variation in
the tropics have increased by similar amounts over recent decades,
though these changes are smaller than those observed in polar
and temperate regions (Wang and Dillon, 2014). It is an open
and complex question as to how the effects of changes in the mean
and variation of temperature might manifest themselves in macro-scale
phenomena such as the range limits and persistence of species.

Caveats regarding the application of thermal performance
curves
There are several additional caveats regarding the interpretation of
performance curves. It is necessary to acknowledge the possibility
that organisms can adjust their performance when exposed to
thermal variation. In our analysis thus far we have assumed that an
individual’s performance curve does not change during the period
over which performance is averaged. This is probably reasonable for
the short-term fluctuations associated with hourly and perhaps daily
variation, at least in long-lived organisms. However, fluctuations at
lower frequencies (e.g. seasonal fluctuations in temperature)
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provide sufficient time for organisms to acclimatize, which has the
potential to change CTmin, CTmax, Topt,stat, and the shape of the
nominal curve (Angilletta, 2009). Consequently, caution must be
exercised when applying Eqns 1–3 or the analogous simulations.
Indeed, Estay et al. (2014) characterized the predictions generated
by scale transition theory as ‘null’ models to which the realized
performance of individuals and populations in variable
environments can be compared: any deviation from the null
model implies the existence of biochemical or physiological
mechanisms that dynamically adjust performance in response to
variation. Similarly, Schulte et al. (2011) divided physiological
responses to thermal variation into passive responses due to the
shape of the performance curve alone and active forms of plasticity
due to compensatory biochemical processes that depend on thermal
history. To accurately discern how performance deviates from the
passive response, more experimental data are needed for organisms
subjected to different combinations of mean temperature and
temperature variation.
The nature of physiological and biochemical costs imposed when

organisms temporarily move below CTmin or above CTmax also
requires due consideration. For example, if one assumes that
individuals can tolerate conditions below CTmin for short periods,
the positive P″(T ) for Boltzmann–Arrhenius type curves near CTmin

can result in a leftward extension of the organism’s functional
temperature range (Estay et al., 2014). By contrast, if any excursion
below CTmin is very costly or lethal, as predicted by the theory of
oxygen and capacity-limited thermal tolerance (Pörtner, 2002,
2010), increasing thermal variation narrows the functional range of
mean temperatures. It remains to be seen which of these two
scenarios – expansion or contraction of thermal breadth under
temperature variability – is more representative of real-world
performance at mean temperatures near the lower performance
bounds, but in an ecological context, the answer may be irrelevant.
Species seldom live at average temperatures near the lower bounds
of their performance curves. Only in extenuating ecological
circumstances would this be likely (e.g. displacement
competition, sudden weather changes) and then probably only for
short periods of time. Ultimately, brief extreme events near (or
beyond) the nominal performance bounds may have greater effect
on overall performance (Hoffmann, 2010) (see next section).
Finally, and perhaps most importantly, it is apparent that the

pattern of thermal variation (i.e. thermal history, the order of events
in time) matters. During and after challenging events, mechanisms
are activated (e.g. changes in gene, microRNA and protein
expression) to repair damage and, in some cases, to prepare the
organism for subsequent insults. Depending on the timing and
intensity of the next challenge, the consequences of thermal history
might include acclimation or acclimatization (e.g. Buckley et al.,
2001; Roberts et al., 1997), latent effects (Pechenik, 2006),
hormesis or preconditioning (Calabrese et al., 2007), intensified
stress responses and increased energetic costs (e.g. Petes et al.,
2007) or even death (e.g. Dowd and Somero, 2013). In short,
an individual’s response to the variation in the timing, intensity,
duration and interval between stressful events can alter its
performance. Thus, a nominal performance curve generated under
constant conditions in the laboratory may not adequately
characterize performance in nature in all but the most predictably
variable environments (i.e. those with moderate standard deviations
and strictly rhythmic patterns of temporal variation). Indeed,
predictions derived from nominal performance curves do not
always match with data obtained under variable conditions (Niehaus
et al., 2012). Organismal performance has evolved in the face of

constant variation, and only when measured in the presence of
realistic variation are performance curves likely to be accurate
representations of reality.

The importance of the order of thermal experience has been noted
by theoreticians (e.g. Asbury and Angilletta, 2010), although such
factors are rarely considered in modeling efforts. In cases where the
time-course of events affects overall performance, an expansion of
performance-curve theory might prove valuable. For example,
Schulte et al. (2011) propose that performance curves should be
multi- (rather than 2-) dimensional; the extra dimensions could be
used to account for the pattern in which temperature is varied and for
other factors such as duration of exposure to extreme conditions
(Rezende et al., 2014).

The physiological importance and temporal distribution of
extreme events
So far, we have discussed the ‘normal’ variations that induce
sublethal responses. However, in the evolution of at least some
aspects of thermal performance (such as CTmax and Topt,stat),
extreme (that is rare and potentially lethal) thermal events may be
the driving factor for many taxa (Clusella-Trullas et al., 2011;
Hoffmann, 2010). This primacy of discrete episodes has been
emphasized in the global change literature [‘events, not
trends’(Jentsch et al., 2007; Parmesan et al., 2000; Wethey et al.,
2011)] and it garners support from modeling studies of thermal
adaptation. For example, we have shown that mean thermal
tolerance in intertidal limpets appears to be set by rare events of
elevated body temperature that are unlikely to occur within any
individual’s lifespan (Denny and Dowd, 2012). Similarly, others
have concluded that acute thermal tolerance may be more relevant
to survival in natural environments than responses to chronic
exposures (Angilletta, 2009). Unfortunately, because extreme
events are by definition rare, they are difficult to observe in the
field, forcing us to rely on statistical inference. However, the
distribution of inter-event intervals derived from these statistical
approaches has important implications.

If we assume that the probability p of encountering an extreme
event in a given interval of time is small and constant (an assumption
we return to below), intervals between events (i.e. return times)
adhere to the Poisson interval distribution (Berg, 1983; Denny et al.,
2009). Specifically, the probability that the next extreme event will
occur between time t and t+dt after the last event is:

ProbðtÞ ¼ pe�ptdt: ð4Þ

This relationship (a probability density function, Fig. 4A) bears
some counter-intuitive messages. The most probable inter-event
intervals are the shortest, while long intervals are rare. As a result,
the mean interval between events (the average return time, 1/p) is
hardly characteristic of what organisms experience. Approximately
63% of intervals are shorter than the mean, their brevity being
balanced by the relatively rare intervals much longer than the mean.
Thus, for randomly occurring extreme events, a typical time series
consists of clumps of events delivered in quick succession (e.g. heat
waves), interspersed with long periods of benign circumstances
(Fig. 4B). If, as suggested above, thermal history plays an important
role in determining performance, it will be necessary to take into
account the random, episodic pattern of extreme events when
designing experiments and when predicting the physiological
consequences of thermal variation. It is also likely that climate
change will alter the probability of extreme events (Parmesan et al.,
2000).
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As noted above, the Poisson interval distribution rests on the
assumption that the probability of encountering an extreme event is
small and constant: an assumption made likely by the manner in
which extremes arise. Environmentally driven extreme events are
often caused not by an excessive value of any single aspect of the
physical environment (e.g. air temperature), but rather by the savage
alignment of multiple factors that are individually benign (Denny
et al., 2009). Consequently, there is a low probability that the
requisite values of all parameters will arrive in synchrony to
generate extreme conditions. Indeed, estimated return times of
extreme events in the rocky intertidal zone, which depend on the
confluence of numerous environmental parameters (low tide, bright
sun, low wind speed, no wave splash), conform well to the
predictions of Eqn 4 (Denny and Dowd, 2012; Denny et al., 2009).
Analogous mechanics apply in other aspects of environmental
physiology, suggesting that a constant probability of extreme stress
(and thereby a Poisson distribution of return times) may be
common.
A useful tool in this context is the environmental bootstrap, which

resamples relatively short time series (e.g. a 7-year time series of the

environmental parameters that determine the body temperatures of
intertidal organisms) to generate realistic hypothetical time series of
any desired length. These time series allow one to estimate the
probability of encountering extreme thermal events, which in turn
allows the distribution of inter-event intervals to be calculated (see
above). The details of the environmental bootstrap can be found in
Denny et al. (2009) and we have recently reviewed the salient
features of the approach (Denny and Dowd, 2012).

The environmental bootstrap is particularly useful when
combined with biophysical models that calculate time series of
body temperatures based on the stochastically varying
environmental conditions (an ecomechanical approach, Denny
and Gaylord, 2010). For example, we used a 2000-year hypothetical
time series of environmental conditions (data for every 10-min
interval) generated by the environmental bootstrap as input to a
species-specific heat-budget model to simulate the time course of
body temperature in a population of intertidal limpets. From these
data, we then modeled the effects of environmental stochasticity on
the evolution of limpets’ thermal tolerance (Denny and Dowd,
2012). Our simulations suggest that this realistic, stochastic
variation of limpet body temperature drives the evolution of a
substantial ‘safety margin’, a difference of 5–7°C between the
average lethal temperature in a population and the average annual
maximum temperature. This predicted safety margin approximates
the results of thermal tolerance studies on wild-caught limpets from
our study site.

Spatial variability among individuals in how they experience
the environment
Although it may seem intuitively obvious that different individuals
experience the environment in different ways, this type of variation
is frequently overlooked in theoretical and empirical studies.
Indeed, the majority of biological studies of spatial variation in
temperature address latitudinal, altitudinal or similar large-scale
gradients that span scales of 10s to 10,000s of meters, orders of
magnitude larger than the scales experienced by most individuals
(Potter et al., 2013). For example, a recent study of the effects of
spatial variation on insect warming tolerance considered data from
grid cells that span 0.5 deg of latitude by 0.5 deg of longitude
(Bonebrake and Deutsch, 2012). There is conclusive evidence from
this and many other studies that mean conditions do vary in
systematic ways over such large spatial extents. However, numerous
studies have demonstrated that variation over very small scales can
rival or even exceed mean differences observed over much larger
scales (e.g. Bartlett and Gates, 1967; Denny et al., 2011; Elvin and
Gonor, 1979; Miller et al., 2009; Pincebourde and Woods, 2012;
Seabra et al., 2011). For example, in the rocky intertidal zone, the
difference in body temperatures between the warmest and coolest
mussels over an area of a few square meters (up to 15°C on any
given day) rivaled and sometimes greatly exceeded the expected
difference in body temperatures along ∼1600 km of the western
coastline of North America (Denny et al., 2011).

The long-term consequences of this small-scale variation might
best be addressed by incorporating it into evolutionary models
(Denny and Dowd, 2012; Sears et al., 2011). Small-scale spatial
variation in the environment likely contributes to the maintenance of
significant functional variation within populations (Schmidt et al.,
2000; Stratton, 1994), in a manner analogous to that recently
demonstrated among sympatric species of ants inhabiting tropical
forests (Kaspari et al., 2014). Therefore, small-scale spatial variation
may have profound implications for biological responses to global
change. In the short term, such variation creates the potential for
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Fig. 4. A Poisson interval distribution for the return times of extreme
events. (A) The Poisson probability density function. Note that intervals less
than the mean are much more probable than intervals greater than the mean.
(B) An example of Poisson-distributed events. Events, indicated by vertical
lines, tend to occur in clusters.
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individuals to find local thermal refugia as the climate warms
(already crucial for behavioral thermoregulation in terrestrial
ectotherms, Dobkin, 1985; Sears et al., 2011; Sunday et al.,
2014). Over time, the existence of refugia can relax otherwise strict
requirements for range shifts. Spatial heterogeneity could also result
in highly divergent thermal histories for individuals within the
same population, effectively relaxing thermal selective pressures for
some individuals. For example, if a genotypically heat-sensitive
individual occupies a thermally benign micro-environment, this
allows for transmission of its alleles (which impart little thermal
tolerance) to future generations. Over multiple generations, relaxed
selection due to spatial variability has the potential to retard adaptive
responses, prolonging the time required for optimal physiological
performance to evolve (Angilletta, 2009).

Inter-individual variation in biochemical and physiological
capacities to cope with thermal variation
Lastly, we consider variation from one individual to the next in their
mechanistic abilities to respond to their thermal environment.
Substantial functional variation is ubiquitous in physiological
studies, being at least partly attributable to genetic variation
(Gilchrist, 1996; Krebs and Feder, 1997; Rank et al., 2007). Such
intra-population variation in physiology must be considered in
empirical and theoretical studies, especially those attempting to
forecast the effects of global change.
Two brief examples illustrate the scope of this variation. In the

first, swimming performance was determined as a function of
temperature in salamanders. Both Topt,stat and maximal performance
were normally distributed among individuals, with a greater than
two-fold range evident in maximal performance (Young and
Gifford, 2013). In the second, critical heart rate temperature (Hcrit,
the temperature at which cardiac function declines) was determined
in mussels collected from a range of intertidal sites along the West
coast of North America and then maintained under common garden
conditions for at least a month before measurement (Logan et al.,
2012). Within groups of mussels from each site, the Hcrit varied
significantly, often by as much as 8–9°C among the 20 individuals
measured. Overall, there appeared to be more physiological
variation among individuals within a site than among populations
from different latitudes.
Complicating our interpretation of this inter-individual functional

variation is the fact that each individual is subject to unique temporal
and spatial variation in the way it experiences its thermal
environment (see previous two sections), which can influence the
amount of physiological variation present in a given population at a
particular time (Ghalambor et al., 2015; Sinclair et al., 2006;
Williams and Somero, 1996). These feedbacks among types of
variation arise via genotype-by-environment interactions, such as
developmental or adult plasticity (Terblanche and Chown, 2006),
that are difficult to experimentally tease apart (and to parameterize),
but they are crucial to understand for accurately predicting how
organisms will fare in new environmental conditions.
Inter-individual biochemical and physiological variation interacts

in a nonlinear fashion with spatial and temporal variation in
environmental experience, with potentially far-reaching impacts.
For example, we have explored the interacting effects of variation in
physiological tolerance and spatial variation in environmental
experience on survival of extreme thermal events (Denny et al.,
2011). In this risk-based model, significant spatial variation in
experience (i.e. a large standard deviation of maximum body
temperature among individuals) can buffer populations from
exposure to even very extreme events (5°C above the mean

thermal tolerance). Increasing the magnitude of inter-individual
variation in physiological tolerance of warm temperatures in this
model further moderates the population-level effects of extreme
events by increasing survival; this is particularly evident for the
magnitude of spatial variation observed in intertidal mussel beds
(see Fig. 12 in Denny et al., 2011). Further studies that incorporate
spatial and temporal variation in experience, in combination
with inter-individual variation in physiology (and in behaviors
that modulate body temperature, Sears et al., 2011) are urgently
needed.

Challenges and opportunities
We see at least five major challenges that must be overcome to
improve our understanding of the effects of thermal variability. The
first, and most tractable, is the requirement for more comprehensive
data sets on environmental variation as it is experienced by
individual organisms, a challenge echoed by others (e.g. Woods
et al., 2015). This is no simple task, requiring technological
advances (e.g. in telemetry) in some cases, and paradigm shifts
in experimental design in others (reviewed in Angilletta, 2009
and citations therein). Such data must have sufficient temporal
resolution to capture the time scales that are important for organisms
(intervals of a few hours or less; Montalto et al., 2014), while also
capturing inter-individual variation in organismal experience. Once
obtained, these data will allow us to use more realistic, skewed
temporal distributions of body temperatures in our models and
experiments (e.g. Marshall et al., 2011; Martin and Huey, 2008),
rather than the Gaussian distributions implicitly assumed in our
earlier sections. Furthermore, it appears that in some systems the
standard deviation of body temperatures among individuals tends to
increase as the mean body temperature increases (e.g. Denny et al.,
2011), but it would be premature to incorporate this pattern in
models until it has been further substantiated in the field.

Despite the current limitations in quantifying environmental
variation, improvement in the ability to measure and model the
types of spatial and temporal thermal variation encountered by
organisms has greatly outpaced our ability to predict the
physiological consequences of realistic environmental variation
(Denny and Helmuth, 2009; Denny and Dowd, 2012; Nikinmaa and
Waser, 2007). Contrasting the pattern of temporal variation in an
organism’s body temperature (Fig. 5A) with the variation imposed
during a typical physiological or biochemical experiment (Fig. 5B),
it is apparent that most experimental designs are at odds with
biological reality. In particular, exposing animals to constant
acclimation conditions before exposing the organisms to some
controlled ‘stress’ wipes out potentially co-varying environmental
(Tagkopoulos et al., 2008) and/or physiological parameters. Only
rarely have biologists attempted to mimic the types of variation
evident in the field. Indeed, the task of addressing the complex
temporal and spatial phenomena we have described is daunting, and
it forms the greatest challenge to progress. For example, we know of
few research teams with the resources (or fortitude) to tackle all
possible permutations of Poisson interval-distributed stress events,
themselves of varying intensities and durations, for each of a range
of physiological genotypes/phenotypes. Such experiments are
extremely difficult and, as yet, untried in all but the simplest
organisms (Tagkopoulos et al., 2008). Fractional factorial designs
offer one possibility for reducing this experimental complexity to
manageable levels; recent computational advances such as machine
learning algorithms may further alleviate the workload (Bonneau
et al., 2007; Danziger et al., 2014). For example, application of
artificial neural networks has allowed groups to randomly sample
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regions of the parameter space (in this context, this would include
all possible combinations of intensity, duration and intervals
between events) and to then draw reasonable inferences regarding
organismal responses to untested parameter combinations (Bertin
et al., 2013). Despite the lack of mechanistic information provided
by these algorithms, such approaches could lead to significant
advances if properly implemented.
Our interpretation of the physiological effects of thermal variation

are further complicated by the entry of organisms into divergent
physiological states when different conditions are encountered.
Examples include the predominance of anaerobic (versus aerobic)
metabolism in many intertidal invertebrates at low tide when they are
likely to encounter elevated body temperatures (Connor and Gracey,
2012; Shick et al., 1986), daily torpor in mammals and birds (Geiser
and Ruf, 1995), thermogenesis and elevated metabolic rates in flying
(as opposed to resting) insects (Bartholomew and Casey, 1977),
insect diapause (Hoffmann, 2010) and metabolic suppression in fish
exposed to environmental stress (Richards, 2010). Tools exist that
might address these complexities (e.g. dynamic energy budgets and
other bioenergetic models; Kooijman, 2010; Nisbet et al., 2012), but
their implementation must be informed by additional empirical
biochemical and physiological insight.
A fourth challenge, intimately related to the first two, is to

determine how individual physiological capacities are distributed in
variable environments. In several of our examples, the outcomes
of models depend on whether physiological performance is
apportioned randomly into a variable environment or if instead
physiological phenotypes are sorted (or ‘mismatched’, Marshall
et al., 2010) with environmental conditions. Few data of this kind
are currently available at the scale of the individual; see Porlier et al.
(2009) for one example.
Lastly, further difficulty in prediction arises from the varying

potential for populations or species to evolve rapidly in response to

changes in their environment (Denny and Dowd, 2012; Kellermann
et al., 2009; Logan et al., 2014; Pespeni et al., 2013; Schoener,
2011); this is particularly relevant given that the patterns of thermal
variation themselves are likely to change in the coming decades.
Tools such as the environmental bootstrap, implemented with
explicit consideration of individual variation in experience (due to
spatial heterogeneity) and in physiology (due to both genetic and
environmental contexts) in an evolutionary framework, offer one
means of generating null models against which to compare future
empirical results.

Conclusions
The past decades of research into large-scale patterns of biochemical
adaptation have laid the conceptual and mechanistic foundation for
studying the effects of variation at small spatial and temporal scales
on the performance of individuals. These individuals are themselves
phenotypically variable, and numerous feedbacks exist among
types of variation (i.e. genotype×environment interactions) that
complicate prediction. Here, we have approached these issues of
variation from the disparate backgrounds of biochemical adaptation
and ecomechanics, and we conclude that these two fields have much
to contribute via reciprocal exchange of ideas. The studies reviewed
herein provide important insight into how variation at small scales
can generate complex, and perhaps unanticipated, results when
scaled up to larger spatial and temporal scales. These phenomena are
likely to have important implications for our forecasts of biological
responses to global change. However, true integration of the lessons
of biochemical adaptation and ecomechanics to study physiological
variation requires overcoming several lingering challenges and then
developing rigorous, empirical means to test these ideas. Ultimately,
individual performance is highly dependent on a multitude of
physical factors (temperature being but one, Paganini et al., 2014)
and on the specific ecological context (Pörtner et al., 2006; Rosa and
Seibel, 2008). This complexity demands concerted efforts from
biologists of all stripes to tackle the causes and consequences of
variation.

APPENDIX
Calculating the standard deviation of performance
The Taylor expansion of the performance function P is:

PðTÞ ¼ Pð�TÞ þ ðT � �TÞP0ð�TÞ þ ðT � �TÞ2
2!

P00ð�TÞ þ � � � ðA1Þ

Truncated at the term with the first derivative (a linear
approximation):

PðTÞ � Pð�TÞ þ ðT � �TÞP0ð�TÞ: ðA2Þ

We know from Eqn 2 that:

PðTÞ � Pð�TÞ þ 1

2
P00ð�TÞs2

T : ðA3Þ

Now, the variance of performance is the average square of
deviations from mean performance:

s2
P ¼ 1

n

Xn
i¼1

ðPðTÞ � PðTÞÞ2: ðA4Þ
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Fig. 5. Temporal variation in body temperature in the field is rarely
replicated in biochemical and physiological studies. (A) Average body
temperature in a group of intertidal zone mussels,Mytilus californianus, over a
period of several weeks in the field (Denny et al., 2011). Temperatures were
recorded every 20 min. (B) In contrast, laboratory protocols tend to include
‘acclimation’ phases at nearly constant temperature prior to examining the
physiological response to a controlled episode of challenging temperature.
This response is typically compared with that of control animals maintained at
the acclimation temperature throughout the experiment, but to better replicate
natural conditions the control exposure should mimic A.
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Substituting in our approximations,

s2
P � 1

n

Xn
i¼1

½Pð�TÞ þ ðT � �TÞP0ð�TÞ� � Pð�TÞ þ 1

2
P00ð�TÞs2

T

� �� �2

:

ðA5Þ
Simplifying and expanding the square, we find that:

s2
P � ½P0ð�TÞ�2

n

Xn
i¼1

ðT � �TÞ2 � P0ð�TÞP00ð�TÞs2
T

n

Xn
i¼1

ðT � �TÞ

þ ðP00ð�TÞÞ2ðs2
T Þ2

4
: ðA6Þ

Because on average ðT � �TÞ is zero, the second term on the right
side of this equation approaches zero as n becomes large, and the
equation reduces to:

s2
P � ½P0ð�TÞ�2

n

Xn
i¼1

ðT � �TÞ2 þ ðP00ð�TÞÞ2ðs2
T Þ2

4
: ðA7Þ

But ð1=nÞSn
i�1ðT � �TÞ2 is s2

T , therefore:

s2
P � ½P0ð�TÞ�2s2

T þ ðP00ð�TÞÞ2ðs2
T Þ2

4
; ðA8Þ

sP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P0ð�TÞ�2s2

T þ ðP00ð�TÞÞ2ðs2
T Þ2

4

s
: ðA9Þ

This is Eqn 2 cited in the text. Note that P(T ) is approximated only
to P′, whereas PðTÞ is approximated to P″. As a result, this
approximation of σP becomes less and less accurate as s2

T increases
relative to the function’s breadth (e.g. it is most inaccurate in
extreme stenotherms). More accurate approximations can be had by
including higher order terms in the Taylor expansion, but their form
is considerably less compact.
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