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ABSTRACT

We define a notion of finite type invariants for links with a fixed linking matrix. We
show that Milnor’s link homotopy invariant µ̄(ijk) is a finite type invariant, of type 1,
in this sense. We also generalize this approach to Milnor’s higher order µ̄ invariants and
show that they are also, in a sense, of finite type. Finally, we compare our approach to
another approach for defining finite type invariants within linking classes.
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1 Introduction

In the usual theory of finite type invariants (see [BN1] for a thorough introduc-
tion), we use crossing changes to move between isotopy classes of links. These
classes are components of the space of all embeddings ⊔S1 →֒ S3, which is con-
tained within the space of all immersions ⊔S1 → S3. The boundaries of the
isotopy classes (in the space of immersions) are links with double points, and
we extend link invariants linearly to these boundaries by the formula:

-=

A finite type invariant of type m is then an extended invariant which vanishes
on links with more than m double points. However, there are invariants which
are not well-defined on these differences, and so cannot be analyzed within the
usual framework of finite type invariants. For example, Milnor’s link-homotopy
invariant µ̄(ijk) is only well-defined modulo the linking numbers of the three
components; since crossing changes alter these linking numbers, the invariant
cannot be meaningfully extended to the boundaries between link types. In fact,
the author has shown in [Me] that, up to link-homotopy, the only finite type
invariants in the usual sense are the linking numbers. The goal of this paper is
to define a notion of finite type invariant within a class of links with the same
linking matrix, where µ̄(ijk) is well-defined. We will call the class of all links
with a given linking matrix a linking class. This work was inspired by recent
work of Cochran and Melvin on finite type invariants of 3-manifolds (see [CM]),
where they used similar ideas to define a notion of finite type invariants for all
3-manifolds, rather than just homology 3-spheres.

In section 2 we will introduce the notion of a Borromean clasp and define a
theory of finite type invariants based on adding and removing these clasps (an
operation which preserves the linking class). We show that µ̄(ijk) is of type 1
in this theory. In section 3 we generalize this idea to the higher µ̄-invariants
and show that they are also, in a sense, type 1 invariants.

In section 4 we describe the equivalence classes of the clasping operations
defined in the previous sections. In particular, for the Borromean clasps these
equivalence classes are the linking classes.

In section 5 we consider another theory of finite type invariants for linking
classes, based on changing pairs of oppositely signed crossings. This theory is
also being studied by Eli Appleboim and Dror Bar-Natan (see [A-BN]). We show
that µ̄(ijk) is also of finite type in this theory, though of type 2 rather than
type 1. Finally, in section 6, we compare the two theories we have developed
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for linking classes, and find that the Borromean clasp theory may be stronger
(though not necessarily more useful - see the questions in section 7).

2 Borromean clasps and µ̄(ijk)

2.1 Borromean clasps

We will begin by considering links up to link homotopy. The basic idea is to
look at a different notion of “crossing change”. The usual notion of crossing
changes can be thought of as removing a “clasp” between two strands, as shown
below:

- -=

We want to find an analogous clasp for linking classes up to link homotopy. The
obvious choice is the Borromean rings, which has trivial linking numbers but
is well-known to be homotopically non-trivial. So we will look at the following
“crossing change”:

3

1
2

1 2

3

Clearly, this operation preserves the linking class of the link. It will be useful
to “straighten out” this clasp and look at it as an operation on string links. In
this case, the operation is:

1 2 3 1 2 3

From [HL], we know that the group of string links up to link homotopy (under
the operation of concatenation), is generated by {xij |i < j}:

=

i j

x ij
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Then, in terms of these generators, the Borromean clasp is the commutator
[x13, x23], and removing the clasp corresponds to removing this commutator
from the word in the xij ’s corresponding to the string link. This suggests that
perhaps we should generalize our idea of the “Borromean clasp” to include all
commutators [x±1

ij , x±1
kl ]. These commutators are trivial if i, j, k, l are all distinct,

so it is not hard to see that it suffices to consider the commutators [x±1
ik , x±1

jk ]±1,
where i < j < k. Hence, we are considering all the operations:

j ki j ki

σ

Where σ = [x±1
ik , x±1

jk ]±1.
Clearly, these all fix the linking class, since the linking number of components

i and j is simply the multiplicity, with sign, of the generator xij , which is not
changed by adding or removing a commutator. Now we can define the notions
of a singular link and a finite type invariant as in the usual theory.

Definition 1 A singular link of degree m (in the Borromean clasp theory) is
a link with m triple points, each labeled by a commutator σ = [x±1

ik , x±1
jk ]±1:

σ

i
j k

i kj

We extend any link-homotopy invariant which is well-defined within each
linking class to singular links by the relation:

ji

σ

k
j ki ik

σ

j

= -

Definition 2 An invariant V defined within a linking class is of type m if it
is trivial on all singular links (within that linking class) of degree ≥ m + 1. V
is of finite type if it is of type m for some finite m.

Now we want to show that µ̄(ijk) is of finite type in this sense. First, we
will review the definition of Milnor’s µ̄(ijk) invariants.
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2.2 µ̄(ijk)

We recall how to compute µ̄(ijk) from [Mi]. Given a link L, its link group
π1(S

3 − L) has a Wirtinger presentation, generated by the arcs of the link
diagram. We also have a presentation of the link group modulo the qth subgroup
in its lower central series (see [Mi]):

π1(S
3 − L)/(π1)q(S

3 − L) =< mi | milim
−1
i l−1

i = 1, Aq >

where the generators are the meridians mi of the components of the link, the
li denote the longitudes of the components of the link, and Aq denotes the
qth subgroup in the lower central series of the free group on {mi}. So each
longitude (and the generators of the Wirtinger presentation) can be written in
π1/(π1)q as a word in the mi’s. We look at the Magnus expansion of the longi-
tudes, which means replacing mi with 1 + Ki and m−1

i with 1 − Ki + K2
i − ....

We define µ(ijk) as the coefficient of KiKj in the Magnus expansion of lk.
In general, this is not well-defined for links. Then µ̄(ijk) is µ(ijk) modulo
∆ = gcd{linking numbers for components i, j, k}. This is now a well-defined
invariant of links up to concordance, as long as q > 2 (it is otherwise inde-
pendent of q). If the indices i, j, k are all distinct, it is in fact an invariant of
link homotopy (see [Mi]). So, within each linking class, we can extend µ̄(ijk)
to singular links. Notice that µ̄(ijk) will be trivial on any singular link with
singularities involving a component other than i, j, k.

Note that µ(ijk), while not well-defined for links, is well-defined for string
links (also see [HL]). Since the components of the string link have a natural
beginning and ending, there are no choices made in producing the word in the
meridians associated with each longitude, and it is easy to check that this word
is invariant under the Reidemeister moves and string link homotopy. In fact,
modding out by ∆ exactly compensates for the effect of closing a string link to
get a link, as the following lemma shows:

Lemma 1 If L is a link and σ is a string link such that L = σ̂, then µ̄(ijk)(L) =
µ(ijk)(σ) mod ∆.

Proof: Consider a component lr of σ, and let αr and γr denote the meridians
of lr at its beginning and end, respectively. By abuse of notation, we will also let
lr denote the word in the αr’s representing the longitude of lr. Then it is clear
that γr = l−1

r αrlr. The effect of closing the string link σ is to identify γr with
αr. How does this identification change µ(ijk)? The contribution to µ(ijk) of
each appearance of γr in lk is almost the same as that of an appearance of αr,
with the difference being the coefficient of KiKj in the Magnus expansion of γr,
which is (multi(w) is the multiplicity, with sign of mi in the word w):

multi(l
−1
r )multj(αr) + multi(αr)multj(lr)

= −lk(li, lr)δ(j, r) + δ(i, r)lk(lj , lr)

which is ±lk(li, lj) if r = i, j, and 0 otherwise. Modulo ∆, this difference
disappears, so the effect of γr is exactly the same as that of αr, and we have
computed µ̄(ijk)(σ̂) = µ̄(ijk)(L). ✷
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Because of this lemma, we can do some of our analysis for string links instead
of links. In particular, since string links have a group structure, we can look at
how µ(ijk) behaves under multiplication. The proof of the following lemma is
immediate:

Lemma 2 If σ, σ1 and σ2 are string links such that σ = σ1σ2, then µ(ijk)(σ) =
µ(ijk)(σ1) + µ(ijk)(σ2) + µ(ik)(σ1) · µ(jk)(σ2) (where µ(ij) is just the linking
number of the ith and jth components, see [Mi]). In particular, if σ1 or σ2 are
algebraically unlinked, then µ(ijk) acts additively.

2.3 µ̄(ijk) is finite type

Now we can use our understanding of µ̄(ijk) to prove that it is a finite type
invariant (in the Borromean clasp theory).

Theorem 1 µ̄(ijk) is of type 1 (in the Borromean clasp theory).

Proof: We need to know what the contribution of a commutator [x±1
ik , x±1

jk ]±1

is to µ(ijk) on the level of string links. Say that γ is such a commutator, and
σ = δγ is a string link. Then, by Lemma 2, µ(ijk)(σ) = µ(ijk)(δ)+µ(ijk)(γ)+
µ(ij)(δ)µ(jk)(γ). Since µ(jk)(γ) = 0, we conclude that the contribution of γ to
µ(ijk)(σ) is exactly µ(ijk)(γ). In particular, the contribution depends only on
γ, and is independent of the rest of the link.

So we need to look at the Magnus expansion of [x±1
ik , x±1

jk ]±1 (along compo-
nent k), and find the coefficient of KiKj . First we consider the commutator
[xik, xjk] = xikxjkx−1

ik x−1
jk . This contributes a word mimjm

−1
i m−1

j to the word
for the kth component. The Magnus expansion is thus (1 + Ki)(1 + Kj)(1 −
Ki + ...)(1 − Kj + ...) = 1 + KiKj − KiKj + KiKj + ... = 1 + KiKj + ..., so
µ(ijk)([xij , xjk]) = 1. Similarly, for the other commutators, µ(ijk) = ±1.

Now, say that L is a link with two Borromean singularities a and b. L is the
closure of a singular string link σ. If either of the singularities a or b involve a
component other than i, j, k, then µ(ijk)(σ) = 0. Otherwise, σ can be written
as a linear combination of four string links: σ = σ′ − σ′

a − σ′

b + σ′

ab, where the
subscripts indicate which of the Borromean clasps have been unclasped. Then
µ(ijk)(σ) = (−1)a − (−1)a = 0 (by abuse of notation, (−1)a is µ(ijk) of the
commutator corresponding to the singularity a). Then by Lemma 1, µ̄(ijk)(L)
is also 0, which proves that µ̄(ijk) is a finite type invariant of type 1 (in the
Borromean clasp theory). ✷

3 Higher Milnor invariants

In this section we will generalize the results for µ̄(ijk) to higher µ̄- invariants.
The higher invariants are defined in the same way as µ̄(ijk). First we compute
µ(i1...in, j), which is the coefficient of Ki1 ...Kin

in the Magnus expansion of the
word for the jth longitude in π1/(π1)q, q > n, and then we consider it modulo
∆, which is the greatest common divisor of all µ-invariants whose indices are a
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cyclic permutation of a proper subsequence of (i1...inj). If the indices are all
distinct, this is a well-defined link-homotopy invariant.

Now we can easily prove the analogues to Lemmas 1 and 2:

Lemma 3 If L is a link and σ is a string link such that L = σ̂, then µ̄(i1...in, j)(L) =
µ(i1...in, j)(σ) mod ∆.

Proof: Consider a component lr of σ, and let αr and γr denote the meridians
of lr at its beginning and end, respectively. By abuse of notation, we will also
let lr denote the word in the αr’s representing the longitude of lr. Then it is
clear that γr = l−1

r αrlr. The effect of closing the string link σ is to identify
γr with αr. How does this identification change µ(i1...in, j)? The contribution
to µ(i1...in, j) of each appearance of γr in lk is almost the same as that of
an appearance of αr, with the difference being the coefficient of Ki1 ...Kin

in
the Magnus expansion of γr, which is (multI(w) is the coefficient of KI in the
Magnus expansion of w):

n
∑

k=1

multi1...ik−1
(l−1

r )multik
(αr)multik+1...in

(lr)

=

n
∑

k=1

−multik−1...i1(lr)multik
(αr)multik+1...in

(lr)

=
n
∑

k=1

−µ(ik−1...i1, r)µ(ik+1...in, r)δ(ik, r)

=

n
∑

k=1

(−1)kµ(i1...ik−1, r)µ(ik+1...in, r)δ(ik, r)

The last equality is a result of Milnor, see [Mi]. This sum is 0 unless r = ik for
some k, in which case the sum is equal to the kth term, i.e. (−1)kµ(i1...ik−1, ik)µ(ik+1...in, ik).
But this is trivial modulo ∆, so γr has the same effect as αr, and we conclude
that µ̄(i1...in, j)(L) = µ(i1...in, j)(σ). ✷

Lemma 4 If σ, σ1 and σ2 are string links such that σ = σ1σ2, then:

µ(i1...in, j)(σ) = µ(i1...in, j)(σ1) + µ(i1...in, j)(σ2)

+

n−1
∑

k=1

µ(i1...ik, j)(σ1) · µ(ik+1...in, j)(σ2)

Proof: The proof is trivial. ✷

Now we need to determine the appropriate “clasps” for the higher order
Milnor invariants. Since these invariants are only defined modulo the lower order
invariants, we need to find operations which preserve the lower order invariants.
Since the Milnor invariants are, in a sense, higher order linking numbers (see
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[Co] for a geometric approach to the Milnor invariants which makes this precise),
we will call a class of links which share all Milnor invariants of length n or less
an n-linking class. In this terminology, our usual linking classes are 2-linking
classes. For 2-linking classes, our clasps were commutators, elements of the
second group in the lower central series. For n-linking classes, we will look at
the nth group of the lower central series. This is a sensible approach, since
Cochran shows that Milnor’s invariants are really measuring how deep each
longitude lies in the lower central series of the link group (see [Co]).

To make this precise, let H(k) denote the group of string links with k com-
ponents (the group operation is just concatenation - put one string link “on top”
of the other). The lower central series is defined inductively by H1(k) = H(k)
and Hn(k) = [H(k), Hn−1(k)]. Habegger and Lin have shown (see [HL]) that
H(k) is nilpotent of order k − 1; in other words, Hk(k) = 1. As before, H(k) is

generated by

(

k
2

)

generators xij , i < j. We now define the following elements

of the lower central series:

Definition 3 Given n components (WLOG, numbered 1 to n), we define a sim-
ple 1-commutator as a generator x±1

in . We then inductively define a simple
k-commutator as an element of Hk(n) of the form [x±1

in , A] or [A, x±1
in ], where

A is a simple (k-1)- commutator.

Notice that a simple k-commutator is a Brunnian link with k+1 components
(i.e. removing any of the components trivializes the link). Therefore, any µ-
invariant of length k or less is trivial on any k-commutator, since it can only
“see” at most k of the components. Our operations in an n-linking class will
now consist of removing simple n-commutators:

.....

.....

2121

σ

n+1 n+1

Now we can generalize our earlier definitions of singular links and finite type
invariants.

Definition 4 An n-singular link of degree m (in an n-linking class) is a link
with m (n+1)-tuple points, each labeled with a simple n-commutator:

..........

..........

σ

1

1

n+1

n+1
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We extend any link-homotopy invariant which is well-defined withing each
n-linking class to n-singular links by the relation:

σ

..........1 n+1
..........

σ

1 n+1

..........

1 n+1

= -

Definition 5 An invariant V defined within an n-linking class is of n-type
m if it is trivial on all n-singular links (within that n-linking class) of degree
≥ m + 1. V is of finite n-type if it is of n-type m for some finite m.

Now we want to show that the Milnor invariants of length n + 1 are all of
finite n-type. The first step is to look at the values of these invariants on simple
n-commutators, on the level of string links.

Lemma 5 Let σ be a simple n-commutator on components 1, ..., n + 1. Then
µ(1, ..., n + 1)(σ) = 0, 1, or − 1.

Proof: The proof is by induction on n. The lemma is true for n = 2 by the
proof of Theorem 1. So assume it is true for n−1. First note that if any xi(n+1)

does not appear in σ, then σ only involves the n components 1, ..., i − 1, i +
1, ..., n + 1, which means that σ ∈ Hn(n) = 1, so σ is trivial, and µ(1, ..., n +
1)(σ) = 0. So we may assume each xi(n+1) appears exactly once in σ. Then

σ = [x±1
i(n+1), A] or [A, x±1

i(n+1)], where A is a simple (n − 1)-commutator on

{x1(n+1), ..., x(i−1)(n+1), x(i+1)(n+1), ..., xn(n+1)}.
We will assume σ = [xi(n+1), A] (the other cases are similar). Now we

apply Lemma 4 to compute µ(1...n + 1)(σ). Notice that the only non-trivial
µ-invariants of xi(n+1) are of length 2, and the only non-trivial µ-invariants of
A are of length n (since A is a simple n− 1-commutator). So we drop all other
terms without further comment.

µ(1...n + 1)(σ) = µ(1...n + 1)(xi(n+1)Ax−1
i(n+1)A

−1)

= µ(1...n + 1)(Ax−1
i(n+1)A

−1) + µ(1, n + 1)(xi(n+1))µ(2...n + 1)(Ax−1
i(n+1)A

−1)

= µ(1...n − 1, n + 1)(A)µ(n, n + 1)(x−1
i(n+1)A

−1) + µ(1...n + 1)(x−1
i(n+1)A

−1)

+µ(1, n+1)(xi(n+1))µ(2...n+1)(A)+µ(1, n+1)(xi(n+1))µ(2...n+1)(x−1
i(n+1)A

−1)

= µ(1...n−1, n+1)(A)µ(n, n+1)(x−1
i(n+1))+µ(1, n+1)(x−1

i(n+1))µ(2...n+1)(A−1)

+µ(1, n + 1)(xi(n+1))µ(2...n + 1)(A) + µ(1, n + 1)(xi(n+1))µ(2...n + 1)(A−1)

= µ(1...n− 1, n + 1)(A)µ(n, n + 1)(x−1
i(n+1))+ µ(1, n + 1)(xi(n+1))µ(2...n + 1)(A)

=







−µ(1...n − 1, n + 1)(A) if i = n
µ(2...n + 1)(A) if i = 1

0 otherwise

By induction, this is 0 or ±1, which completes the proof of the lemma. ✷
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Theorem 2 µ̄(i1...in, j) is of n-type 1.

Proof: The proof is almost identical to the proof of Theorem 1, using the
analogous lemmas for the higher-order invariants. ✷

4 Equivalence Classes of the Clasping Opera-

tions

A theory of finite type isn’t very useful unless the operation it is based on
actually changes links. After all, if the operation is a Reidemeister move, then
any invariant is of type 0! In this section, we will look at the equivalence relation
defined by the clasping operations described in the earlier sections of the paper.
Two links in the same n-linking class will be considered equivalent if one can
be transformed into the other by adding and removing n-clasps - i.e. the clasps
corresponding to simple n-commutators. Ideally, the equivalence classes would
be equal to the n-linking classes. We show below that this is true for n = 2. For
n > 2 we have possibly smaller equivalence classes (in section 7 we ask whether
they are in fact smaller).

First, we state a useful lemma (see [KMS] for a proof):

Lemma 6 (Witt-Hall identities) Let G be a group and let k, l, m be positive
integers. Say that x ∈ Gk, y ∈ Gl and z ∈ Gm. Then we have the following
properties:

1. [Gk, Gl] ⊂ Gk+l, or xy ≡ yx mod Gk+l

2. [x, zy] = [x, z][x, y][[y, x], z]

3. [x, zy] = [y, z][[z, y], x][x, z]

4. [x, [y, z]][y, [z, x]][z, [x, y]] ≡ 1 mod Gk+l+m+1

5. If g ≡ g′ mod Gk then [g, y] ≡ [g′, y] mod Gk+l and [y, g] ≡ [y, g′] mod Gk+l.

Theorem 3 Let L and L′ be two links with k components. L can be transformed
to L′ (up to link homotopy) by adding or removing simple n-commutators ⇔
there exist string links σ and σ′ such that σ̂ = L, σ̂′ = L′, and σ ≡ σ′ modulo
Hn(k).

Proof: (⇒) Let σ be a string link with closure L. Then each move on L
corresponds to inserting a simple n-commutator (or its inverse) into σ, and
each simple n-commutator is an element of Hn(k). The result is a string link σ′

which is congruent to σ modulo Hn(k), and whose closure is L′.
(⇐) σ = γσ′, where γ ∈ Hn(k). By the Witt-Hall identities, γ can be written

as a product of simple n-commutators, modulo Hn+1(k). We can continue this
process at each level; since H(k) is nilpotent, it will terminate. So we can
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write γ as a finite product of simple l-commutators, where n ≤ l ≤ k − 1. In
each of these commutators, there is an innermost simple n-commutator which
can be removed (in each of its appearances), causing the larger commutator
to disappear. Since there are a finite number of commutators, each of finite
length, we conclude that removing a finite number of simple n-commutators
(each corresponding to an unclasping operation) will trivialize γ, and transform
σ to σ′. Hence these moves will also transform L to L′. ✷

Corollary 1 L can be transformed to L′ by adding or removing Borromean
clasps (simple 2-commutators) ⇔ L and L′ are in the same linking class.

Proof: Linking numbers completely determine string links up to homotopy
modulo H2(k) (see [HL]). ✷

5 Double Crossing Changes

There is another, perhaps more obvious, operation on links which fixes the
linking class; namely, we change pairs of crossings with opposite sign, as shown
below:

ji

i j

j

j

i

i

In this section we will look at the finite type theory generated by this operation.
This has also been studied by other authors, in particular by Appleboim and
Bar-Natan (see [A-BN]). We will show that µ̄(ijk) is also of finite type in this
theory, though here it is of type 2. In the next section, we will compare this
theory with the theory generated by Borromean clasps.

5.1 Definitions and Equivalence classes of the Double Cross-

ing Changes

We define a notion of finite type invariants in the context of double crossing
changes. We begin by defining a notion of singular link (see also [A-BN]):

Definition 6 A singular link of degree m (within a linking class) is a link
with m ordered pairs of double points, with both crossings in each pair involving
the same 2 components. The ordering of each pair is denoted by labeling the
first crossing with a + and the second with a -. I.e., each pair is of the form:

i j

+ -

i j
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Given an invariant V well defined within a linking class, we can extend it to
singular links within that class by the relation:

i j

+ -

i j jii j jiji

V(     ,     ) = V(     ,     ) - V(     ,     )
Definition 7 An invariant V defined within a linking class is of type m if it
is trivial on all singular links (within that linking class) of degree ≥ m+1. V is
said to be of finite type if it is of type m for some finite m.

As with the clasping operations defined in the previous sections, we want to
know what the equivalence classes of the double crossing change operation are.
The answer is given by the following proposition:

Proposition 1 If L1 and L2 are links with the same linking matrix, then L1

can be transformed into L2 (up to isotopy) via double-crossing changes.

Proof: L1 and L2 are the closures of string links σ1 and σ2. Clearly, it will
suffice to prove the proposition for the associated string links. Define the string
link γ = σ2(σ1)

−1, so σ2 = γσ1. Since σ1 and σ2 have the same linking matrix,
γ is algebraically unlinked. It now suffices to show that γ can be transformed
into the trivial string link by double-crossing changes.

First consider components 1 and 2 of γ (components are numbered from left
to right). There are four ways in which these two components can cross (modulo
a local rotation):

2 2 212 1 1 1

1 2 3 4

These crossings appear with multiplicities nr, pr, nl, pl respectively (n, p refers to
the sign of the crossing, r, l refers to whether component 1 is moving to the right
or the left). Since the components are unlinked, pr + pl = nr + nl. Also, since
component 1 must start and end to the left of component 2, nr+pr = nl+pl. By
taking the difference of these two equations, we find that pl = nr and pr = nl.
So by changing the pr pairs of oppositely signed crossings (crossings of types 2
and 3 are paired), we are left with component 1 always undercrossing component
2.

By a similar argument for each pair of components, we can transform γ
so that component i undercrosses component j whenever i < j. Hence, each
component is at a different level, and the string link is now trivial. ✷

5.2 Chord Diagrams

We define chord diagrams as in the usual theory of finite type invariants, with
the added condition that the chords come in ordered pairs. Following [A-BN],
we will call these diagrams Double Dating Diagrams:

12



Definition 8 A Double Dating Diagram (DD) of degree m is a collection
of l ordered oriented circles and m ordered pairs of lines (chords) so that both
chords in each pair connect the same two circles. The ordering of the pairs is
denoted by labeling the first chord with a + and the second with a -, as seen
below:

1+

1-

2+

2-

3+

3-

4+

4-

Given a singular link L of degree m (i.e. an immersion L : ⊔S1 → S3),
there is a natural associated DD DL of degree m, where the pairs of chords of
DL connect the preimages of the double points of L. Conversely, given a DD
D of degree m and a linking class, we can associate to D a singular link LD

in that linking class of degree m by immersing D in 3-space so that the two
points joined by each chord are mapped to a double point of the link. This link
is not unique, but an argument similar to the proof of Proposition 1 shows that
any two choices for LD (within a linking class) differ only by double-crossing
changes (see also Theorem 2.1 of [A-BN]).

This means that, given a finite type invariant V of type m in a given linking
class, we can define a linear functional W (V ) on the space of DD diagrams of
degree m by the equation:

W (V )(D) = V (LD)

This is well defined, because any two choices of LD differ by singular links of
degree ≥ m + 1, on which V is trivial.

We would now like to know some of the relations which W (V ) will satisfy:

Proposition 2 W(V) will satisfy the following relations:

• Antisymmetry relation: Changing the order of a pair of chords (i.e. swap-
ping the labels + and -) changes the sign of W(V).

i j
+

i j
-

i j
-

i j
+

=    -
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• Associative relation:

i j
1+

i j

1-

i j2-

i j
2+

i j
1+

i j

1-

i j
2+

i j2-

i j
1+

i j
2+

i j2-

i j

1-

= +

• 1-term relation:

= = 0

• 4-term(a) relation:

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

j

k

i

- + - = 0

• 4-term(b) relation:

j

k

i j

k

i j

k

i j

k

i

j

k

ij

k

i j

k

i j

k

i

- + - = 0

By the Antisymmetry Relation, the labels (+/-) of the pairs in the last 3 relations
are irrelevant.

Proof: The Antisymmetry and Associative Relations are trivial (just expand
the associated singular links). The 1-term relation is a consequence of the second

14



Reidemeister move:

= - = 0

The two 4-term relations are proved like the usual 4-term relation for chord
diagrams (see [BN1]), except that we are looking at two “triple crossings” at
once. We can view them as the result of bringing a contractible loop from
underneath a double point to above it:

(a) - = 0

k k k k

i i i i

j j j j

(b) - = 0

k k k k

i i i i

j j j j

✷

5.3 µ̄(ijk) is finite type

In the next sections we will show that µ̄(ijk) is, in each linking class, a finite type
invariant of type 2; i.e. that it is trivial on singular links with 3 or more pairs
of double points. We will begin by showing that it is trivial on singular links
with more than one pair of double points between the same two components,
and use this result to prove the rest of the theorem.

We want to look at how µ̄(ijk) is altered by double-crossing changes. More
generally, we want to see how crossing changes affect µ(ijk), before we mod out
by ∆. Recall from [Mi] that µ(ijk) is invariant under a cyclic permutation of the
indices, and changes sign if two indices are transposed. So µ(ijk) = µ(kij) =
−µ(jik).

Every time lk passes underneath another component of the link, it is mul-
tiplied by a generator of the Wirtinger presentation, which can be written as a
word in the meridians of the link. In fact, this word is just a conjugate of one
of the meridians. Consider the following picture:

i
n

i
2

i
1

i
n

i
1

i
2

l

l

j

k

γ

ααα

l l l
m j
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The crossing of lk under lj inserts γ into the word representing lk. γ can be
written as:

γ = α−1
in

...α−1
i1

mjαi1αin

where αir
= ǫrmir

ǫ−1
r for some word ǫr.

The contribution to µ(ijk) by this crossing is (where multi(w) is the multi-
plicity, with sign, of mi in the word w):

multi(α
−1
in

...α−1
i1

)multj(mj) + multi(mj)multj(αi1αin
)

=

(

n
∑

r=1

−multi(αir
)

)

multj(mj) + multi(mj)

(

n
∑

r=1

multj(αir
)

)

Since multi(αir
) = multi(ǫr) + multi(mir

) − multi(ǫr) = δ(i, ir), we find that
the contribution is:

(

n
∑

r=1

δ(i, ir)

)

multj(mj) + multi(mj)

(

n
∑

r=1

δ(j, ir)

)

So it depends only on which components lj has previously passed under, not on
where it passed under them, or in which order.

Proposition 3 If L is a singular link with two pairs of double point between
the same two components, then µ̄(ijk)(L) = 0.

Proof: Let us denote the two pairs in question by a = (a+, a−) and b =
(b+, b−). Then L = L++ −L+−−L−+ +L−−, where the first index reflects the
resolution of a, and the second index reflects the resolution of b. Clearly, the
only case of interest is when a and b are pairs of double points between two of
the components i, j, k. WLOG, we assume they are between i and j. Now we
look at the crossings where lk passes under another component - these will be
the same in all four links. From the formulae above, we see that these crossings
contribute to µ(ijk) only if lk is passing under li or lj . The difference in the
contributions of each crossing between L++ and L+− is 0, 1 or -1, depending
on which of the double points bi occur between the basepoint of the component
lk is undercrossing and the crossing in question. The difference between L−+

and L−− will be the same, which means that µ̄(ijk)(L) vanishes. ✷

An immediate consequence of this proposition is the following corollary,
which has also been proven (in a different way) by Appleboim and Bar-Natan
in [A-BN].

Corollary 2 µ̄(ijk) is a finite type link homotopy invariant (within linking
classes), of type 3.

Proof: Since µ̄(ijk) is a homotopy invariant, it is trivial on any singular link
with a pair of double points between a component and itself. So we only need to
consider singular links where the double points are between distinct components
of the link. Then µ̄(ijk) = 0 on any singular link with 4 or more pairs of double
points, since either one of the pairs must involve a component other than i, j, k,
or there will be two pairs connecting the same two components. So µ̄(ijk) is of
finite type, of type 3. ✷
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5.4 µ̄(ijk) is type 2

The only question which remains is whether µ̄(ijk) is of type 1 or 2. It cannot
be of type 1 because of the following example:

�� �� �� �
�

�
�

����

(ijk)µ = 1-

-

+
+

We will show that µ̄(ijk) is of type 2 by showing that the functional W it
induces on DD diagrams of degree 3 is trivial (W is well-defined by Corollary 2).
Since µ̄(ijk) is a link homotopy invariant, W will vanish on any DD diagram
which has chords with both endpoints on the same component (see [BN2]). It
is convenient to look at the DD diagrams for string links rather than links (just
cut each circle to make an interval), remembering that chords are allowed to
cycle from the top to the bottom. Since µ̄(ijk) only depends on components
i, j, k, we only need to consider diagrams on 3 components.

So our first task is to count all the diagrams on 3 components with 3 pairs
of chords. By Proposition 3, we can ignore diagrams with more than one pair
of chords between the same 2 components (in these cases, we know µ̄(ijk) = 0).
So we will have one pair of chords connecting each of the 3 possible pairs of
components. This means there will be 4 endpoints on each component, allowing
4! = 24 permutations on each component. Since we can cycle these without
changing the diagram (since we are really looking at links), there are effectively
6 different permutations on each component, giving 63 = 216 diagrams. Since
we want to show that µ̄(ijk) = 0 on each diagram, the signs of the diagram are
irrelevant, so by the antisymmetry relation we can interchange the two chords in

each pair with impunity. This leaves us with 63

23 = 33 = 27 diagrams. Actually,
there are 28, because the last two are sufficiently symmetrical that permuting
the endpoints of the chords cyclically yields only 32 different diagrams, rather
than 64. The 28 possible diagrams are listed in Figure 1. The first 18 diagrams
are trivial by the 1-term relation. By combining Proposition 3 with the 4-term
and 1-term relations, we find that (as far as µ̄(ijk) is concerned) the remaining
10 diagrams can be paired: 19 = 20, 21 = 22, 23 = 24, 25 = 26, 27 = 28. For
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28

Figure 1: Diagrams of degree 3
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example, we will show how 19 = 20:

19 = = + - = (by Proposition 3)

= (by cyclic permutation) = 20

Thus we are left with only 5 diagrams to consider. By direct computation, we
find that singular links representing these 5 diagrams in the trivial linking class
(the class of algebraically split links) have µ̄(ijk) = 0. This shows:

Lemma 7 µ̄(ijk) is of type 2 in the class of algebraically split links.

We will use this fact to show that µ̄(ijk) is of type 2 in every linking class.

Theorem 4 µ̄(ijk) is a finite type invariant of type 2 in every linking class.

Proof: Given a linking class, pick a link S in that class, and pick a string link
σS such that S = σ̂S . Then given a singular link L of degree 3 in the class,
and a singular string link σ such that L = σ̂, we can write σ = γσS , where
γ is a singular link in the trivial linking class (i.e. algebraically unlinked) of
degree 3. Then γ resolves into an alternating sum of 8 algebraically unlinked
string links γr, and L resolves into an alternating sum of 8 links Lr, where Lr =
σ̂r = ˆγrσS . By Lemmas 1 and 2, µ̄(ijk)(Lr) = µ(σr) mod ∆ = µ(ijk)(γr) +
µ(ijk)(σS) mod ∆ = µ̄(ijk)(γ̂r) + µ̄(ijk)(S) mod ∆. Then:

µ̄(ijk)(L) =

8
∑

r=1

(−1)r(µ̄(ijk)(γ̂r) + µ̄(ijk)(S)) mod ∆

The second terms all cancel, so µ̄(ijk)(L) = µ̄(ijk)(γ̂). Since µ̄(ijk) is of type
2 in the class of algebraically split links, this is 0. Hence, µ̄(ijk) is of type 2 in
every linking class. ✷

6 Comparing Theories of Finite Type Invariants

In this section we want to compare our two theories of finite type invariants in
linking classes - one generated by Borromean clasps, and the other by double
crossing changes. First we will make this comparison precise by introducing the
idea of local equivalence of operations (also see [Na]).

We will consider two operations A and B on links. We will assume that
these are both local moves in the sense that each takes place within a small ball
(or a finite collection of small balls), leaving the rest of the knot fixed.
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Definition 9 A locally generates B if any move B, in some small neighbour-
hood, is the result of a finite sequence of moves A in the same neighbourhood. In
particular, since this is a purely local criterion, the number of moves A required
is fixed.

Definition 10 A and B are locally equivalent if each locally generates the
other.

Any local move will generate a theory of finite type invariants in the obvious
way (as we have done earlier in this paper). We will call the theory generated
by a local move A the A- theory.

Proposition 4 If A locally generates B, and V is a finite type link invariant of
type n in the A-theory, then V is of type n in the B-theory.

Proof: Consider a link L with n + 1 B-singularities. Since each B-move is the
result of a fixed number (say k) A-moves, each B-singularity is (locally) a linear
combination of k A-singularities. Hence L equals a linear combination of kn+1

links, each with n + 1 A-singularities. So V (L) = V (sum) = 0, so V is also of
type n in the B-theory. ✷

Corollary 3 If A and B are locally equivalent, any invariant of type n in the
A-theory is also of type n in the B-theory. We will say that the theories are
isomorphic.

Now we can consider the particular examples of the Borromean clasp theory
and the double crossing change theory. The first difference to note is that
we have shown that any two links in the same linking class are equivalent up
to isotopy modulo double crossing changes, but only up to homotopy modulo
Borromean clasps. In fact, this is not a problem - we can strengthen our result
for Borromean clasps (though not, I think, for the higher-order clasps).

Proposition 5 Any two links with the same linking numbers are equivalent (up
to isotopy) modulo Borromean clasps.

Proof: Murakami and Nakanishi note in [MN] that adding a Borromean clasp
locally generates their ∆ unknotting operation, shown below (for oriented links,
we consider this operation with all possible orientations, giving 8 oriented op-
erations):

It is easy to see that the ∆ move also locally generates the Borromean clasp, so
the two moves are locally equivalent. Murakami and Nakanishi show that any
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two links in the same linking class (in their terminology, link-homologous) are
equivalent, up to isotopy, modulo ∆ moves (in particular, any component can be
unknotted). Hence, they are also equivalent up to isotopy modulo Borromean
clasps. ✷

Now we can state the main result of this section:

Theorem 5 If V is a finite type invariant in the double crossing change theory
of type n, then V is also of finite type in the Borromean clasp theory, and also
of type n (though possibly also of lower type).

Proof: It is obvious that Borromean clasps are locally generated by double
crossing changes. The result is then given by Proposition 4. ✷

However, the converse of this theorem is false. µ̄(ijk) is of type 1 in the
Borromean clasp theory, but it is not of type 1 in the double crossing change
theory. So it appears that there may be more finite type invariants in the
Borromean clasp theory.

Remark: Since the usual crossing change operation locally generates both
double crossing changes and Borromean clasps, any of the usual finite type
invariants are also of finite type in these theories. This has also been shown (for
the double crossing change theory) in [A-BN].

7 Questions

In section 4 we described the equivalence classes of the clasping operations at all
levels. Of course, we would really like these classes to be the n-linking classes.
Certainly, if two string links are equivalent modulo Hn(k), then they will be
indistinguishable by µ-invariants of length n or less, and so their closures will
be in the same n-linking class. However, the converse is not so clear, and leads
to the following question:

Question 1 Say that L and L′ are two k-component links in the same n-linking
class (so that µ̄(i1...ir)(L) = µ̄(i1...ir)(L

′) for every {i1, ..., ir} with r ≤ n). Do
there exist string links σ, σ′ such that L = σ̂, L′ = σ̂′, and σ ≡ σ′ modulo
Hn(k)?

Essentially, this is asking whether the indeterminacy ∆ of the µ̄-invariants is
the “same” as the subgroup of the group of conjugations and partial conjugations
which preserve the closure of the string link σ and also fix it modulo Hn(k).

Several questions arise from the comparison of the Borromean clasp and
double crossing change theories in section 6. We have shown that the double
crossing change theory is in some sense a “subset” by the Borromean clasp
theory, but we don’t know if it is a proper subset:

Question 2 Is there a finite type invariant in the Borromean clasp theory which
is not of finite type in the double crossing change theory?
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On a broader level, we would like to know which is the “better” theory of
finite type invariants in linking classes. So far, it seems that the Borromean clasp
theory may be better, as potentially providing more invariants to work with.
However, much of the work on finite type invariants has been done by studying
chord diagrams, and it is not clear what these would be in the Borromean clasp
theory:

Question 3 Is there a useful graded vector space of “chord diagrams” associated
to singular links in the Borromean clasp theory such that any two singular links
associated to the same chord diagram are equivalent modulo Borromean clasps?
In other words, does any link invariant give rise to a well-defined weight system?

The problem here is whether the Borromean clasps would need to reach
“inside” the singularities, which would not be allowed.

Finally, we can ask about finite type concordance invariants in linking classes.
As we have noted, the Borromean clasp and double crossing change theories both
apply equally well to considering links (within linking classes) up to isotopy (and
hence concordance), rather than homotopy. So we can also ask whether Milnor’s
concordance invariants (when the indices repeat) are of finite type.

Question 4 Is µ̄(i1...in) of finite type (in some sense), when the ij’s can repeat?
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