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linked biogeophysical-socioeconomic modeling framework:
1. Model description and an equilibrium application over
West Africa
Guiling Wang1 , Kazi Farzan Ahmed1 , Liangzhi You2,3 , Miao Yu1,4, Jeremy Pal5, and
Zhenming Ji1,5

1Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut, USA, 2Key Laboratory
of Agri-informatics, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of
Agricultural Sciences, Beijing, China, 3International Food Policy Research Institute, Washington, District of Columbia, USA,
4Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of
Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing,
China, 5Department of Civil Engineering and Environmental Science, Loyola Marymount University, Los Angeles,
California, USA

Abstract Agricultural land use alters regional climate through modifying the surface mass, energy, and
momentum fluxes; climate influences agricultural land use through their impact on crop yields. These inter-
actions are not well understood and have not been adequately considered in climate projections. This study
tackles the critical linkages within the coupled natural-human system of West Africa in a changing climate
based on an equilibrium application of a modeling framework that asynchronously couples models of
regional climate, crop yield, multimarket agricultural economics, and cropland expansion. Using this region-
al modeling framework driven with two global climate models, we assess the contributions of land use
change (LUC) and greenhouse gas (GHGs) concentration changes to regional climate changes and assess
the contribution of climate change and socioeconomic factors to agricultural land use changes. For future
cropland expansion in West Africa, our results suggest that socioeconomic development would be the dom-
inant driver in the east (where current cropland coverage is already high) and climate changes would be
the primary driver in the west (where future yield drop is severe). For future climate, it is found that agricul-
tural expansion would cause a dry signal in the west and a wet signal in the east downwind, with an east-
west contrast similar to the GHG-induced changes. Over a substantial portion of West Africa, the strength of
the LUC-induced climate signals is comparable to the GHG-induced changes. Uncertainties originating from
the driving global models are small; human decision making related to land use and international trade is a
major source of uncertainty.

1. Introduction

Prediction of future climate is more than just prediction of greenhouse gas (GHG) emissions and their result-
ing climatic response. Land cover changes of both natural and anthropogenic origins pose another signifi-
cant forcing for regional and global climates, through their impact on surface albedo, Bowen ratio, surface
roughness, and aerosol emission [e.g., Feddema et al., 2005a; Lawrence et al., 2011; Yu et al., 2015; Wang
et al., 2016]. In the past decade, model development efforts worldwide have led to the incorporation of nat-
ural vegetation dynamics (as represented by dynamic global vegetation models of various type and com-
plexity, e.g., Kucharik et al. [2000], Cox [2001], Bonan et al. [2003], and Sitch et al. [2003]) into several regional
and global climate models [see Wang et al., 2015, and the reviews therein]. Some of these models participat-
ed in the Coupled Model Intercomparison Project phase 5 (CMIP5), providing future climate projections that
account for the impact of naturally induced vegetation cover changes [e.g., Bonan and Levis, 2006; Gent
et al., 2011; Collins et al., 2011; Dunne et al., 2012]. However, land cover changes of anthropogenic origin
such as agricultural land use changes [e.g., Hurtt et al., 2011] were either not accounted for or treated as an
external forcing in CMIP5. In the latter case, land use changes were projected primarily based on socioeco-
nomic development and then provided to climate models as an input forcing, which does not allow for
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interactions between land use and climate changes. This study attempts to fill this research gap, projecting
future climate and agricultural land use changes accounting for the coupled dynamics between the natural
and human systems.

The primary drivers for agricultural land use are population change and other socioeconomic developments
such as agricultural technology changes, food policies, international trade, and changes of dietary preferen-
ces. Naturally, most previous modeling and predictions of agricultural land use were primarily socioeconom-
ically driven [e.g., Agarwal et al., 2002; Parker et al., 2002; Verburg et al., 2006; Schaldach et al., 2011; Schmitz
et al., 2014]. Recently, climate change has become an increasingly important stressor for agricultural sys-
tems across the globe, posing a grant challenge for the world food security. Global climate influences
regional agriculture through its impact on global crop production therefore international trade and world
crop price; regional climate influences agriculture though its direct impact on farming systems, agricultural
water management, and agricultural productivity. As the agricultural system (including farmers and policy
makers) responds and adapts to these changes, climate is becoming an important biophysical driver shap-
ing land use and land cover changes in agricultural regimes, which then feedback to further influence
regional climate. While agroeconomics models have started to incorporate the impact of climate change on
crop suitability [e.g., Schmitz et al., 2014], the impact of climate changes on land use has not been
accounted for in the current generation of earth system models. This omission is a potentially important
source of uncertainty in future projections. Since land use influences both economic development and
regional climate, it is desirable to combine climate changes, land use changes, and other socioeconomic
drivers into one modeling framework used for future projections. This is especially critical for regions like
West Africa where climate is sensitive to land cover changes, agriculture is a major livelihood in almost all
the countries, and food production is already stressed by climate.

West Africa is well known for its climate sensitivity to land use land cover changes, as is evident from a con-
siderable body of literature on modeling the impact of prescribed land use changes [e.g., Xue and Shukla,
1993; Abiodun et al., 2008; Wang et al., 2016] and natural vegetation dynamics [e.g., Zeng et al., 1999; Wang
et al., 2004; Delire et al., 2004, 2011; Alo and Wang, 2010; Yu et al., 2015; Erfanian et al., 2016]. Land use land
cover changes influence regional climate primarily through modifying land surface properties (e.g., surface
albedo, Bowen ratio, and roughness) that control the land-atmosphere mass, energy, and momentum
exchanges. The impact of these changes depends on the scale and nature of land cover changes [Moorcroft,
2003; Lawrence and Vandecar, 2014]. At smaller scales, land cover changes such as deforestation enhance
the surface heterogeneity, leading to the development of mesoscale circulations with rising motion over
warmer (deforested) areas. This could enhance convection, cloudiness, and even precipitation over defor-
ested areas [e.g., Wang et al., 2000, 2009; Baidya Roy and Avissar, 2002]. At large scales in the Tropics, land
cover degradation (e.g., from forest to cropland or from grassland to bare soil) tends to cause drying and
warming in the rainy season and cooling in the dry season [Xue and Shukla, 1993; Wang et al., 2016].
Decrease of rainfall could result from a decrease in surface net radiation (due to an albedo increase) that
suppresses convection, a decrease in evapotranspiration that limits local moisture supply for precipitation,
and changes in large-scale circulation that reduces atmospheric moisture flux convergence [Wang et al.,
2016]. The decrease in evaporative cooling in the wet Tropics tends to dominate over the albedo effect in
the wet season, leading to a net warming effect. Land use and land cover have gone through major
changes in the past century [Ramankutty et al., 2008; Monfreda et al., 2008], and were projected to continue
to change in the future, globally, and in Africa in particular [Hurtt et al., 2011; Yu et al., 2014; Schmitz et al.,
2014; Ahmed et al., 2016]. At the global scale, land use changes were projected to modify the predicted
future climate, with enhancing effects in some regions and dampening effects in others [e.g., Feddema
et al., 2005b; Ramankutty et al., 2006; Davies-Barnard et al., 2014a, 2014b; Jones et al., 2015]. Regionally in
West Africa, historical land use was found to contribute to the development of the Sahel drought in the sec-
ond half of the twentieth century [e.g., Hagos et al., 2014; Wang et al., 2016]. It is critical that future projec-
tions of regional climate change account for the impact of future land use changes.

In most of West Africa, crop production is primarily rain fed, and agricultural development is constrained by
both heat and water stresses. Warming in a future climate will exacerbate the crop heat stress, and also
accelerate evapotranspiration which then further reduces moisture availability in the soil and shortens the
suitable growing season [Cook and Vizy, 2013]. Therefore, future climate changes in this region are likely to
cause a reduction of crop yield despite the CO2 fertilization effects and potential increase of precipitation in
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some areas [Schlenker and Lobell, 2010; Lobell et al., 2011; Ruane et al., 2013; Waha et al., 2013; Sultan et al.,
2013; Ahmed et al., 2015]. The climate-induced decline of agricultural productivity together with population
increase presents a constant pressure for agricultural expansion and intensification. Africa’s agricultural pro-
ductivity is the lowest in the world, which leaves sufficient room for intensification and improvement. How-
ever, more than 80% of Africa’s agricultural output growth since 1980 has come from the expansion of
cropland areas, rather than from greater productivity of areas already cultivated [Rosegrant et al., 2011].
Among the various options for agricultural intensification in West Africa, irrigation has the greatest potential
[Svendsen et al., 2009; You et al., 2009; Xie et al., 2014]. However, as irrigation requires infrastructure that has
a long planning and construction period, widespread practice of irrigation is therefore not feasible in the
near term. In fact, most studies assessing future climate impact on crop yield assumed rain-fed agriculture
[e.g., Asseng et al., 2013; Ahmed et al., 2015]. Due to the lack of effective options for intensification, agricul-
ture expansion will be the primary strategy to combat the climate-induced food shortage in the foreseeable
future. Projections for future land use need to account for the impact of climate changes.

Assuming that agricultural land use practices will be informed of and respond to projected climate change
impacts, this study tackles whether and by how much including climate-land use interactions in predictive
models might influence future projected changes in climate and cropland expansion in West Africa. Based
on a modeling framework that accounts for both the biophysical and socioeconomic drivers for cropland
expansion and the feedback of land cover changes on regional climate, this study attempts (1) to assess
future climate change and cropland expansion in West Africa considering the interaction between climate
and land use, (2) to compare the effects of GHG concentration changes and cropland expansion on regional
climate changes, and (3) to compare the effects of climate change and socioeconomic development on
cropland expansion. In this study, our projection of the future is limited to the midcentury, and the CO2 con-
centration from the Representative Concentration Pathway (RCP) 8.5 is used as the climate change driver.
Despite differences among different RCP scenarios, they remain small before midcentury [IPCC, 2013].

2. Models Description

This study makes use of a modeling framework that accounts for the impact of GHG-induced climate
changes, socioeconomic development, response of cropland allocation to yield changes, and impact of
land cover changes on regional climate. The modeling framework includes a cascade of four different mod-
els (Figure 1), each serving a distinct purpose: (1) a Regional Climate Model coupled with an updated land
surface model (RegCM4.3.4-CLM4.5) [Wang et al., 2015], which simulates and predicts the regional climate
driven with boundary conditions from coarse resolution GCMs; (2) a crop modeling system (DSSAT) [Hoo-
genboom et al., 2012], which includes three different types of crop growth models, each applicable for eval-
uating the productivity of a specific set of crops under any given climate; (3) a partial equilibrium economic
model (IMPACT) [Rosegrant, 2012], which provides (among many other outputs) estimate of demands for

crops based on socioeconomic drivers
and accounts for international trade of
agricultural commodities; (4) a crop-
land projection model (LandPro_Crop)
[Ahmed et al., 2016], which prioritizes
allocation of available land to different
crop types based on existing land use,
future crop yield, and future demand
for crops. These four models are
asynchronously coupled. As shown in
Figure 1, both the Regional Climate
Model RegCM4.3.4-CLM4.5 (‘‘RCM’’
hereafter) and the economic model
IMPACT are driven by output from
global models; the RCM produces the
meteorological forcing needed by the
crop model DSSAT; DSSAT simulates
crop yield while IMPACT estimates theFigure 1. Diagram of the asynchronously coupled modeling framework.
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effective food demands, both of which are inputs to the cropland projection model LandPro_Crop, which
produces updated land use land cover map for the RCM. The four models are briefly introduced in the
following.

2.1. RegCM4.3.4-CLM4.5 and Performance
The regional climate system model results from the synchronous coupling of two major models: the Abdus
Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM) version 4.3.4
[Giorgi et al., 2012], and a modified version of the Community Land Model (CLM) that performs similarly to
CLM4.5 [Oleson et al., 2013; Yu et al., 2014]. Details of the model development and validation over Tropical
Africa can be found in Wang et al. [2015].

RegCM4.3.4 is a limited-area model simulating atmospheric physics and dynamics, using a terrain-following
r-pressure vertical coordinate system and an Arakawa B-grid finite differencing algorithm. The model
includes a hydrostatic dynamical core [Grell et al., 1994], an atmospheric radiation scheme [Kiehl et al.,
1996], an aerosols scheme [Solmon et al., 2006; Zakey et al., 2006], a nonlocal boundary layer scheme [Holt-
slag et al., 1990], a large-scale cloud and precipitation scheme [Pal et al., 2000], and multiple options for con-
vection parameterizations. Based on sensitivity tests over the West Africa domain, when coupled with the
land surface model CLM4.5, the Emanuel convection scheme [Emanuel, 1991] performs the best for this
region and is chosen for this study.

CLM4.5 solves the surface hydrological and biogeophysical processes and uses a hierarchical data structure
to represent land surface heterogeneity. Multiple land units (e.g., glacier, lake, wetland, urban, vegetated
land, and their further delineations) can coexist in each grid cell, multiple soil/snow columns can coexist in
each land unit, and multiple plant functional types (PFTs) can coexist on each column of vegetated land.
Vegetation is represented by a combination of different PFTs that differ in physiology and structure and
include both crops and natural vegetation. In the vertical direction, each column can include 15 soil layers
and up to 5 snow layers. Soil and snow state variables are defined at the column level, and all vegetation
variables are defined at the PFT level. Calculations for surface mass and energy fluxes within a vegetated
land unit take place at the PFT level, and the area-weighted average of the surface fluxes from different
components (PFTs, columns, and land units) within each grid cell is passed to RegCM4.3.4.

CLM4.5 includes optional submodels for surface biogeochemical processes, vegetation phenology, and veg-
etation dynamics. Depending on which are chosen, the distribution, density, structure, and phenology of
the PFTs can be either prescribed or predicted by the model. As the focus of this study is on agricultural
land use and its interaction with regional climate, the leaf area index (LAI), LAI seasonality, and spatial cover-
age of each PFT in the present-day simulations are prescribed based on the data of Lawrence and Chase
[2007] and Lawrence et al. [2011] to exclude the uncertainties related to natural vegetation dynamics. As the
projection progresses into the future, agricultural land use will expand and some natural PFTs will be con-
verted to crops. The resulting temporally evolving PFTs spatial coverage will be used by each of the
RegCM4.3.4-CLM4.5 future runs to account for the anthropogenic land cover changes.

As a Regional Climate Model, RegCM4.3.4-CLM4.5 requires initial and boundary conditions (ICBCs) that can be
derived from either reanalysis data or global models. The performance of the model in simulating the
present-day climate of West Africa has been documented based on simulations driven with ICBCs from the
ECMWF ERA-Interim data [Wang et al., 2015] and from multiple global models including MIROC-ESM and
CCSM4 version of CESM [Yu et al., 2015; Ji et al., 2016, 2017]. The same model configuration and same resolu-
tions are used here over the same spatial domain. The spatial resolution is 50 km horizontally with 18 vertical
layers, and the time step is 100 seconds. Using precipitation during the monsoon season (June-July-August-
September, JJAS) as an example, Figure 2 presents the model present-day climate and biases relative to the
University of Delaware (UDel) precipitation data. For the model driven with ERA-Interim data, the center of the
tropical rain belt is located slightly too far north, leading to a general overestimation in the Sahel and slight
underestimation along the Guinea Coast. When driven with ICBCs from the CESM or MIROC-ESM historical
runs, the model simulates a tropical rain belt that does not penetrate northward enough, with a general
underestimation in the Sahel and overestimation along the Guinea Coast. The overestimation along the Guin-
ea Coast is especially pronounced in the MIROC-ESM-driven simulation. In all three simulations, the rain belt is
narrower and more concentrated than in the UDel data, which leads to an underestimation of rainfall along
the edges of the rain belt (with a large magnitude of relative bias near the desert due to the small magnitude
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of the observed precipitation used to normalize the model bias). Compared with the UDel surface air tempera-
ture data, the RCM bias driven with all ICBCs in JJAS is within 18C over the sub-Saharan Africa (results not
shown). The largest bias for temperature is an underestimation over the Sahara Desert by as much as 58C.

2.2. DSSAT and Calibration
The Decision Support System for Agrotechnology Transfer (DSSAT) is a software package combining soil
and weather databases with crop models and application programs to simulate multiyear outcomes of crop
management strategies [Jones et al., 2003]. DSSAT version 4.5 [Hoogenboom et al., 2012] is used in this
study. While DSSAT can be useful for many other purposes, in this study we are interested mainly in its crop-
ping system model for crop yield. There are three main crop growth modules, each dealing with a different
set of crops: CROPGRO [Boote et al., 1998] for grain legumes (e.g., soybean and peanut), CERES [Ritchie et al.,
1998] for grain cereals (e.g., rice, maize, and millet), and SUBSTOR [Ritchie et al., 1995] for root crops (e.g.,
cassava and potato). These models simulate daily increment of plant biomass taking into account of plant
genetics, daily weather conditions, soil properties and management factors. For example, in the CERES mod-
ule of DSSAT, seven stages of the plant life cycle are considered: germination, emergence, end of juvenile,
floral induction, flowering, beginning of grain fill, and physiological maturity. The growing degree days
(GDD) is used to determine the rate of development, and the GDDs required for the transition between two
successive growth stages are cultivar specific. To calculate the daily growth rate, crop-specific ecotype coef-
ficient for radiation use efficiency is used to convert the daily intercepted photosynthetically active radiation
to plant dry matter. Grain filling in cereal plants is regulated by the cultivar’s genetic potential, rate of carbo-
hydrate accumulation during flowering, temperature, water stress, and available nitrogen.

In the application to West Africa, we consider five major crops: maize, millet, sorghum, peanut, and cassava.
These crops are important sources of calories and nutrition in West African countries, and are among the
top major crops based on total area harvested and their economic values in the region [You et al., 2009].
According to data from FAO et al. [2006], these five crops account for approximately 80% of the total har-
vested area in West Africa. All five crops are primarily rain fed in West Africa, and cultivars common in the
region are chosen for DSSAT to simulate. These include the Obatampa cultivar for maize with a growing

Figure 2. (top) Mean JJAS precipitation (in mm/d) during 1981–2000 simulated by RegCM4.3.4-CLM4.5 driven with ICBCs (left) from the ERA-Interim data, (middle) from the MIROC-ESM,
and (right) from CESM; (bottom) the corresponding model biases relative to the University of Delaware data (in %).

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000712

WANG ET AL. INTERACTIVE LAND USE-CLIMATE PROJECTIONS 358



season length of �90 days, the CSM 335 cultivar for sorghum with a growing season of �110 days, the CIVT
cultivar for millet with a growing season length of 85 days, the Chinese cultivar for peanut with a growing
season of 100–110 days, and the MCol22 cultivar for cassava with a harvest date set one year after planting
(based on current practice in West Africa).

We ran DSSAT at a spatial scale of 0.58 for the West African region. However, as grid-level observational data
for crop harvest yield are either sparse or not available at all, in this study, we use the FAO country-average
yearly yield data for individual crops (FAOSTAT database) as the observational reference to guide the DSSAT
model calibration. So the model is calibrated at the country level, and for each crop and each country inde-
pendently. This is accomplished by adjusting the fertilizer input and planting month for each individual
crop within each country in order to match the DSSAT country-average yield with the FAO data based on
the long-term mean during 1980–1998. Calibration has been conducted for 13 countries in West Africa,
including Benin, Burkina Faso, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Mali, Niger, Nigeria, Sene-
gal, Sierra Leone, and Togo. One West African country, Liberia, is excluded due to the lack of reliable data
for crop yield during the civil wars. The calibrated model input parameters, including the cultivar, per hect-
are fertilizer applications for each crop in each country, and planting month (which allows for adjustment of
planting date within a certain range according to soil moisture conditions) are used for the DSSAT future
projection runs, assuming that the present-day common practice of crop management will continue into
the future. Among these parameters, crop yield in West Africa is most sensitive to the amount of fertilizers
applied. In the absence of irrigation, increasing fertilizer input would likely be the most effective strategy for
agricultural intensification in this region and therefore an important source of uncertainty for future
projections.

Running DSSAT requires several ancillary data, including the International Soil Reference and Information
Center (ISRIC)’s reanalyzed World Inventory of Soil Emission Potentials (WISE) soil database version 1.1
(Batjes [2002] and Romero [2012], which includes 3404 valid soil profiles across the globe), the geographical-
ly explicit N and P fertilizer application data set [Potter et al., 2010] at 0.58 spatial resolution, and the global
manure distribution data at 0.58 resolution [Wint and Robinson, 2007]. For the planting time data, we fol-
lowed the FAO crop calendar [IIASA/FAO, 2012] that selects the local onset of monsoon rainfall as the plant-
ing period for rain-fed crops. Specifically, a planting month is chosen based on the typical monsoon onset
time; the model then determines the planting date based on the time when soil moisture reaches a speci-
fied threshold within the planting month. Therefore, the planting date is not strictly prescribed. Instead, it
varies within a certain range depending on climate. Further details can be found in Ahmed et al. [2015].

2.3. IMPACT
The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) was developed
in the 1990s to support food policy analysis [Rosegrant et al., 1995], and has been used as a tool to analyze
the effects of population, investment, and trade scenarios on food security. The model has been continu-
ously improved, and the latest version [Rosegrant, 2012] is used in this study. The model is considered a
leading agricultural sector model within the global agricultural policy research community. In this study,
IMPACT is used to estimate the demand for various crops considering international trade (through which
part of the demand for food in import countries is met by nonlocal production and part of the production
in export countries is used to meet nonlocal demand).

IMPACT is a partial equilibrium, global agricultural sector model representing a competitive agricultural mar-
ket for crops and livestock. This multimarket model simulates the operation of national and international
markets, solving for production, demand, and prices that equate supply and demand across the globe.
Within each country or subnational region, supplies, demands, and prices for all agricultural commodities
are determined; all country and regional agricultural submodels are linked through trade. World agricultural
commodity prices are determined annually at levels that clear international markets. Domestic prices are a
function of world prices, adjusted by the effect of price policies (such as taxation or subsidy borne by pro-
ducers or consumers relative to world prices) and other factors such as transport and marketing costs.

Domestic demand for a commodity is the sum of its demand for food and feed. Food demand is a function
of the price of the commodity and the prices of other competing commodities, per capita income, and total
population. Per capita income and population increase annually according to country-specific population
and income growth rates derived based on socioeconomic data. Feed demand is a derived demand

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000712

WANG ET AL. INTERACTIVE LAND USE-CLIMATE PROJECTIONS 359



determined by the changes in livestock production, feed ratios, and own- and cross-price effects of feed
crops. A large set of census and ground-based data are used to set the parameters in the model.

IMPACT can be run over a specific region or over the globe, and was run over the globe in this study. To
project the future, here IMPACT was run under the Shared Socioeconomic Pathway-2 (SSP2) that is charac-
terized by an economic development pattern following historical trends and medium population growth.
The future climate forcing used to drive IMPACT was derived from the RCP8.5 experiments of CMIP5 mod-
els, consistent with the scenario used for the regional climate modeling in section 2.1. To reduce the climate
model-related uncertainties, four IMPACT runs were conducted, each driven with global climate output
from GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC-ESM, respectively, and the average of output
from the four IMPACT runs was used in this study. For each country of the world, IMPACT projects the future
scenarios of supply, demand and price for more than 40 food commodities. For each country in West Africa
and each commodity, of the many outputs from IMPACT, future scenarios for total domestic demand and
effective demand (i.e., ‘‘domestic demand minus imports’’ or ‘‘domestic demand plus exports’’) are used
here as inputs to the cropland projection model (described in section 2.4). Most countries in West Africa are
food import countries, with effective demand lower than total demand.

2.4. LandPro_Crop
Socioeconomic factors are the main driver for land use changes in a stationary climate. To project land use
in a changing climate, it is important to also account for the impact of future climate change, which influen-
ces cropland expansion through its impact on crop yield and on human decision making in adapting to the
climate-induced yield changes. Existing land use models involving complex human decision making were
limited to low spatial resolution and small domain [Agarwal et al., 2002]. Of the past studies that integrated
climate-induced crop yield changes with socioeconomic drivers in land use projection, most were limited to
national/subnational levels and thus could not provide the large-scale gridded land use information needed
by climate models [Schmitz et al., 2014]. In addition, most previous models were limited to aggregated land
use for all crops and could not provide information on individual crops needed for land and food policy-
making and for the development of climate adaptation strategies. The algorithm of cropland projection
(LandPro_Crop) of Ahmed et al. [2016] has recently been developed to address the need for land use infor-
mation at individual crop level and for spatially distributed land cover data.

The LandPro_Crop algorithm is spatially explicit. In the present study, for application to West Africa, a reso-
lution of 0.58 is used to match the resolution of crop yield simulated by DSSAT. The algorithm is based on
an equilibrium between future demand and supply of food at the country level, and treats each country
separately. Cropland expansion in each country is driven by the ‘‘supply deficit’’ for each and every crop,
which is the difference between effective future demand of a particular crop and its supply from the
present-day harvest areas at future yield of the crop. The algorithm then allocates available land to different
crops to address the ‘‘supply deficit’’ following several simple rules that govern the conversion from natural-
ly vegetated land to cropland, and multiple scenarios of decision making are considered. For example, the
best scenario with science-informed decision making assumes:

1. Forest is preferred over grassland in making new land for crops, and grassland will be converted to crop-
land only if forest area within a country is depleted.

2. For multiple grid cells with the same type of natural vegetation within a particular country, the order of
land conversion follows the descending order of future crop yield across grid cells.

3. The conversion and allocation of naturally vegetated land to different crops in a particular country follow
the descending order of ‘‘supply deficit’’ in that country.

In addition to the above ‘‘best scenario,’’ several alternative scenarios have also been developed to test the
sensitivity of the model results by altering one or multiple rules listed above. For example, a ‘‘worst scenar-
io’’ involves reversing the order mentioned in rules (2) and (3), and several intermediate scenarios represent
different degrees of randomness in the decision making related to each of the rules.

The DSSAT-simulated future crop yield (Yfu
DSSAT ;ijk for crop j at pixel k in country i) is not directly used by

LandPro_Crop as input. Instead, it is first scaled by three factors (that are estimated based on parameters in
present-day climate and are assumed to stay stationary in the future), as illustrated in equation (1). The first
factor is the ratio of the observational crop yield (YSPAM,ijk) to the DSSAT-simulated present-day crop yield
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(YDSSAT,ijk), to correct the remaining DSSAT bias after calibration; the second is the ratio of the present-day
harvesting area for the five major crops combined (AM,ik) to the harvesting area of all crops combined (AH,ik),
to indirectly account for the impact of other crops (‘‘minor crops’’) on future cropland distribution; the third
is the ratio of present-day total harvest area (AH,ik) to the present-day total area of physical land for crops
(AP,ik), to indirectly account for the impact of mixed crops farming. These are all captured in the following
equation:

Yfu
i;j;k5Yfu

DSSAT ;ijk �
YSPAM;ijk

YDSSAT ;ijk
� AM;ik

AH;ik
� AH;ik

AP;ik
(1)

where Yfu
i;j;k is the future adjusted yield for crop j at pixel k in country i, to be used as input to LandPro_Crop.

The present-day observed yield and harvesting area of each crop and the total physical area of all cropland
within each grid cell were derived from the Spatial Production Allocation Model (SPAM) data [You and
Wood, 2006; You et al., 2014] that were produced using a cross-entropy approach taking into account
national and subnational production statistics, irrigation and rain-fed systems, prices, land use data, satellite
imagery, biophysical crop ‘‘suitability’’ assessments, population density, and distance to urban centers.

3. Methodology and Experimental Design

3.1. The Asynchronous Coupling Approach
The four different models described above are asynchronously coupled to form a linked modeling frame-
work. Specifically, for a given time slice, the RCM climate model and the economic model IMPACT will be
run first, driven with output from GCMs; land cover map in the first RCM run will be specified according to
present-day condition. The RCM climate output will be corrected for biases first (as detailed in section 3.4)
before being used as the meteorological forcing to drive the crop model DSSAT. The DSSAT-simulated crop
yields after adjustment (using equation (1)) and the effective food demands estimated by IMPACT will then
be used as inputs to the cropland projection model LandPro_Crop. The LandPro_Crop-projected cropland
expansion and the resulting loss of naturally vegetated land will then be used to update the land cover
data in a new RCM simulation, and this alternation among the four models will continue.

A specific application of the asynchronous coupled modeling framework can take either an equilibrium
approach or a transient approach. In the equilibrium approach, all simulations will be done for the targeted
future time slice only, and the alternation among the four models should continue until all results converge.
In practice, multiple iterations are necessary only if the land cover changes from LandPro_Crop are found to
cause major changes in the projected future climates that are large enough to significantly alter the pro-
jected future crop yield changes. In the transient approach, each iteration represents a new time slice, and
the iteration time step (i.e., the interval between adjacent time slides) technically can be one year or several
years. In practice, however, the iteration time step should be long enough for crop land use activities to
respond or adapt to the climate-induced yield changes. For this reason, the transient approach is subject to
uncertainties related to the time scale of human adaptation. This paper focuses on interactive cropland-
climate projections using the equilibrium approach; a companion paper will compare the two different
approaches [Ahmed et al., 2017].

The rationale of using the asynchronous coupling approach is two-folded. First, it is by necessity due to the
lack of a synchronously coupled model that encompasses all the important components and processes rep-
resented at the desired level of sophistication. Developing a synchronously coupled model that strikes a
balance among the complexities of various submodels is a major undertaking, and is a long-term goal that
motivated the study documented here. Experience and understanding developed from this asynchronous
coupling study will help guide the design and development of a synchronously coupled model. Second,
synchronously coupled models often suffer from ‘‘climate drift’’ (which occurs as a result of positive feed-
back among submodels enhancing biases in all models involved, e.g., Wang et al. [2015] and Erfanian et al.
[2016]), while the asynchronous coupling approach can prevent or limit ‘‘climate drift’’ through correcting
biases in the output of a submodel before passing it down to the next submodel. The asynchronous cou-
pling approach therefore offers a desirable advantage in this aspect.

Conceptually, an important caveat associated with the use of asynchronous coupling is the potential incon-
sistency among the different models. For example, DSSAT includes simple treatment of water budget
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calculations including evapotranspiration; however, in the RCM, all fluxes from the land surface that influ-
ence regional climate, including those from both naturally vegetated land and cropland, are calculated by
the land surface model in the RCM. Similarly, the IMPACT model accounts for a much larger number of
socioeconomic factors than the LandPro_Crop model, and some of those that are not accounted for in
LandPro_Crop actually have implications for land use allocation. In practice, the impact of these inconsisten-
cies on the model-projected future changes is likely to be small, but cannot be excluded without further
improvement of the modeling framework that tightens the coupling among these models (which is a topic
of follow-up research).

3.2. Experimental Design
In applying the regional modeling framework to West Africa, the RCM simulations are performed on a
domain that spans approximately 208S–358N and 328W–538E at a 50 km horizontal resolution, with 18 verti-
cal levels from surface to 50 hPa. ICBCs for the RCM include zonal and meridional winds, atmospheric tem-
perature and humidity at all 18 levels, and surface air pressure and sea surface temperature, and are
derived from global models participating in the fifth phase of the Coupled Model Intercomparison Project
(CMIP5) [Taylor et al., 2012] models, and two different models are chosen, the MIROC-ESM [Watanabe et al.,
2011] and the CCSM4 version of CESM [Neale et al., 2012; Meehl et al., 2013]. Corresponding to each of the
two global models, a pair of simulations are conducted in this study: a ‘‘Present’’ simulation for the period
1981–2000, for which the ICBCs are derived from the global model historical simulations; a midcentury
‘‘Future’’ experiment for the period 2041–2050, for which the ICBCs are derived from the global model
RCP8.5 experiment. The GHGs concentrations are based on historical observations for the ‘‘Present’’ simula-
tion and RCP8.5 pathway for the ‘‘Future’’ experiment. Note that before midcentury, differences among vari-
ous RCPs are small relative to inter-model variations. In the main ‘‘Future’’ experiment, the cropland
allocation follows the ‘‘best scenario’’ with science-informed decision making; several sensitivity experi-
ments featuring alternative scenarios of cropland allocation examine the impact of each of the rules for
land allocation, by reversing some or all of the orders stated in section 2.4 or randomizing the priority rank.

In addition to the ‘‘Future’’ projections that make use of the complete system shown in Figure 1, two addi-
tional types of projections are designed to attribute the projected future changes. One type of attribution
experiments (Future_SE) focuses on separating the impact of socioeconomic factors from that of climate
change on cropland expansion. It makes use of the present-day crop yield in LandPro_Crop to project
future cropland expansion therefore neglects the role of climate-induced yield change as the biophysical
driver for land use. The resulting cropland expansion is therefore caused solely by socioeconomic factors.
Differences in cropland expansion between the ‘‘Future’’ and ‘‘Future_SE’’ experiments reflect the impact of
climate change. Another type of attribution experiments (Future_noLUC) focuses on separating the impact
of projected land use land cover changes from that of the GHGs on regional climate. Specifically, land use
land cover in a RCM future run is prescribed according to present-day conditions in Future_noLUC. There-
fore, the projected climate changes (i.e., differences between Present and Future_noLUC) are caused solely
by the increase of GHGs concentrations, while the differences between ‘‘Future’’ and ‘‘Future_noLUC’’ reflect
the impact of land use land cover changes on regional climate.

In projecting future climate changes and cropland expansion using the regional modeling framework
shown in Figure 1, output from GCMs are used not only as ICBCs for the RCM submodel but also as global
forcing for the IMPACT submodel. As alluded to in section 2.3, the consideration for GCM-related uncertain-
ties in IMPACT takes a different approach from GCM-related uncertainties in RCM. Four IMPACT runs were
conducted, each driven with output from a different global model (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-
LR, and MIROC-ESM, respectively); instead of retaining four different projections of future food demands for
each country, the ensemble average of the four IMPACT runs was used to estimate the demands for food
(that are used as inputs to the LandPro_Crop model). This approach is preferred because differences in
food demands from the four IMPACT runs are very small for both the total demand and effective demand
(Figure 3). As global climate influences regional food production through its impact on international trade
therefore on food price, the ensemble average of the four runs is expected to reduce the uncertainties in
the effective food demand caused by uncertainties of global climate projections. To examine the impact of
international trade on cropland expansion, a sensitivity test is also conducted using the total demand (as
opposed to the effective demand) as input to LandPro_Crop to estimate cropland expansion for the hypo-
thetical scenario of zero international trade.
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Table 1 list all the experiments described above. Note that some of the experiments make use of the com-
prehensive modeling system shown in Figure 1, while others use a subset of the models depending on the
nature and focus of each specific experiment.

3.3. Initial Conditions for Land Use and Land Cover
The present-day harvest area for each of the five major crops and total physical cropland area (as a fraction
of each 0.58 grid cell, Figure 4) derived from the SPAM 2005 data (available at www.mapSPAM.info) are
used as LandPro_Crop input to derive area-related parameter values in equation (1) and to provide crop-
land initial conditions at the individual crop level. Millet, sorghum, and peanut are more prevalent in the
Sahel region, and maize and cassava are more prevalent in the southern part of West Africa. Present-day
cropland coverage shows a strong east-west contrast, exceeding 90% in some areas over Nigeria but below
10% in most of the region west of 58W.

Other initial conditions for LandPro_Crop include the present-day fractional coverage of forest area and
grassland in each grid cell, which are derived by summing up the coverages of corresponding PFTs from
the global data set of Lawrence and Chase [2007]. Although the Lawrence and Chase [2007] data do not pro-
vide information on cropland coverage at the individual crop level, it does include the grid-level total crop-
land coverage, which was derived from the data set of Ramankutty and Foley [1999] and differs slightly

Figure 3. Total demand and effective demand for maize projected by IMPACT driven with global climates from four different models,
using Ghana as an example.

Table 1. Summary of Experimental Design

Experiments
Type

Focus of
Analysis Time

ICBCs
for RCM

Land
Cover

LandPro
Scenario (s)

Crop
Yield

Food
Demand

Present Climate 1981–2000 ERA-In, MIROC, CESM Present prescribed n/a n/a n/a
Future Climate and

cropland
2041–2050 MIROC, CESM Future projected Best scenario Future Effective demand

Future_alts
(multiple)

Cropland 2041–2050 MIROC, CESM Future projected Alternative
scenarios

Future Effective demand

Future_noTrade Cropland 2041–2050 MIROC, CESM Future projected Best scenario Future Total demand
Future_SE Cropland 2041–2050 MIROC, CESM Future projected Best scenario Present Effective demand
Future_noLUC Climate 2041–2050 MIROC, CESM Present prescribed Best scenario Future Effective demand
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from the SPAM data. For consistency, the fractional coverage of forest and grassland from Lawrence and
Chase [2007] were adjusted proportionally to accommodate a combined cropland coverage equivalent to
that from SPAM (Figure 4, bottom right). This was necessary because, in both LandPro_Crop and
RegCM4.3.4-CLM4.5, the fractional coverage of all plant functional types (which in West Africa include crops,
C4 grass, tropical broadleaf evergreen trees, tropical broadleaf drought deciduous trees, shrubs, and bare
soil) should sum up to 100% within each grid cell.

3.4. Regional Climate Bias Correction
To simulate the present-day crop yield, we drive DSSAT with the 0.58 resolution daily climate data from
the Princeton University gridded meteorological forcing data set [Sheffield et al., 2006]; to project future
crop yield using DSSAT, we rely on future climate forcing derived from the RCM. As evident from Figure 1,
the RCM climate driven with ICBCs from both MIROC-ESM and CESM shows systematic biases in West Afri-
ca, which necessarily will influence the RCM-produced future climate. A quantile mapping approach
[Ahmed et al., 2013] is used to correct the model biases in future climate projections, assuming that the
statistical relationship between the probability distributions of model climate and actual climate in the
present-day will remain unchanged in the future [Wilby, 1998; Bo�e et al., 2006]. This follows a three-step
procedure:

Step 1 (Detrending): the RCM output for both the present and future climate were first resampled to a 0.58

grid system to match the resolution of the Princeton University data that is used as the observational refer-
ence for present-day climate, and the resampled future climate will be detrended based on a linear regres-
sion of the model climate with time, over the period covering both the past and future climate. The linear
regression relationship used for detrending the data will be saved for use in Step 3.

Figure 4. Present-day distribution of harvest areas (as a percentage of the total grid cell area) for all five major crops (as the initial conditions for LandPro_Crop), and the total cropland
fractional coverage (as the initial land cover specification for RegCM-CLM), based on SPAM data. Note that the sum of harvest areas can exceed the physical areas corresponding to the
total cropland fractional coverage due to the existence of mixed crops farming.
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Step 2 (Quantile Mapping): a quantile mapping between the Cumulative Distribution Function (CDF) for the
observational data and the CDF for the RCM resent-day climate during the same time period will be devel-
oped first. For each value of a detrended future climate variable, the corresponding exceeding probability
will then be found from the RCM CDF, and the threshold value at the same exceeding probability from the
observed climate CDF will be taken as the bias-corrected output.

Step 3 (Adding Trend Back): the trend taken off the RCM future climate in Step 1 will be added back to out-
put from Step 2 to obtain the bias-corrected future climate variable value.

This quantile mapping approach corrects model biases in both the mean climate and probability distribu-
tion; the separation of the model future trend from the quantile mapping prevents the otherwise extensive
need for extrapolation (that could disproportionally influence future climate extremes) during the quantile
mapping procedure.

4. Results

4.1. Future Scenarios of Agricultural Changes and Attribution
The projected future yield changes of major crops are dominated by a decreasing trend, with the exception
of sorghum (Figure 5). Among the environmental variables that are important for crop growth, both CO2

concentration and temperature will increase substantially, and the magnitude and spatial pattern of warm-
ing are similar between the projections driven by the two GCMs (results not shown). The CO2 ‘‘fertilization’’
effects on future crop yield were found to be negligible [Ahmed et al., 2015], a result consistent with find-
ings from previous studies [e.g., Berg et al., 2013]. This is primarily because the concentration in the ‘‘Pre-
sent’’ simulation is already very close to the level of photosynthesis saturation (400 ppmv) for C4 crops. The
general decrease of yield is a result of the strong GHG-induced warming and associated heat stress as well
as the resulting increase of total evapotranspiration leading to drought.

Beyond the dominant signal of a reduced yield, both the spatial pattern and magnitude of the relative yield
changes differ substantially between the two projections driven with MIROC-ESM and CESM, and differ sub-
stantially among different crops under the same climate (Figure 5). These differences reflect not only the
complexity and genetic variation of crop responses to environmental factors but also the confounding
effects of the highly heterogeneous precipitation changes and related solar radiation changes (Figure 6).
For precipitation and solar radiation, both the direction and magnitude of projected changes differ signifi-
cantly between the two projections, and show strong spatial contrast during the primary growing season in
June, July, August, and September (Figure 6). While an increase of precipitation improves water availability
therefore favors crop growth, the cloudiness (therefore reduced sun light) associated with too much precip-
itation could potentially reduce crop yield. Also, the same amount of precipitation change at different
stages of crop development may have very different yield outcome. For example, sorghum yield is pro-
jected to increase significantly over most of the domain under the CESM-driven future climate, but is pro-
jected to increase moderately over a small fraction of the domain and decrease elsewhere under the MIROC-
ESM-driven climate (Figure 5). Precipitation change in the CESM-driven projection (Figure 6, right) includes pri-
marily a dry signal in June-July-August and a wet signal in September reflecting a delayed monsoon demise,
with slight changes in surface insolation. This increased water availability during the grain filling stage of sor-
ghum in September is a major factor contributing to the projected increase of yield; maize and millet due to
their shorter growing season reach maturity by September therefore cannot take full advantage of the
increased late-season precipitation. In the MIROC-ESM-driven projection, a rather dramatic increase of precipi-
tation especially in the eastern part of the domain is accompanied by a dramatic decrease of surface solar
insolation throughout the growing season (Figure 6). These two have compensating effects on crop yield,
leading to a high degree of spatial heterogeneity in the response of maize and sorghum yields (Figure 5, left).

In addition to the spatially distributed yield changes, country-level yield statistics for the five major crops
were also analyzed focusing on the long-term mean and range of inter-annual variation of the country aver-
age yield (results not shown). Despite the differences in spatial pattern of crop yield changes, for maize, mil-
let, cassava, and peanut in all countries, the two projections of future yield changes are qualitatively similar,
both featuring a decrease of the mean yield; for sorghum, consistent with the distributed changes (Figure 5),
the projected future changes are mixed, with a slight decrease of the mean in some countries and increase
in others. Moreover, in most countries and for all five crops, regardless of whether CESM or MIROC-ESM is
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Figure 5. Future changes of crop yield for maize, sorghum, millet, cassava, and peanut, as projected by the regional system driven with
the (left) MIROC-ESM and (right) CESM (in %).
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used to drive the regional climate model, a significant increase in the range of inter-annual variation of
crop yield is projected, which suggests a more volatile future food supply system [Ahmed et al., 2015].

The projected decrease of crop yield and increase of demand together serve as drivers for future agricultural
expansion. The total cropland expansion is remarkably similar between the CESM-driven and MIROC-driven
projections (Figure 7). The fastest growth would be in the eastern half of West Africa, followed by the region

Figure 6. (a1–a4 and b1–b4) Projected changes in precipitation (mm/d) and in surface solar radiation (W/m2) when driven by ICBCs from MIROC-ESM and (c1–c4) projected precipitation
changes driven by ICBCs from CESM during each month of the common growing season June, July, August, and September.
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near the southwest coast. However, the two hotspots are attributable to different causes. The one in the east-
ern half is primarily caused by increased food demand, while the one along the southwest coast is primarily
due to climate change (through reducing crop yield). Over most of the domain, however, future increase of
cropland coverage is associated with food demand; the spatial pattern of the demand-induced expansion
shows an east-west contrast that resembles the present-day cropland distribution (except for areas where the
already high cropland coverage leaves little room for further expansion), which suggests a stronger socioeco-
nomic disparity in the future. The impact of climate change on agricultural expansion is significant primarily
over the western half of West Africa especially in the southwest coastal region.

The projected cropland expansion is at the expense of naturally vegetated land (Figure 8). The partition
between deforestation and desertification however is dictated by the assumption in LandPro_Crop that
conversion of grassland to cropland does not start until woodland is depleted. The presence of grassland
loss in Figure 8 therefore indicates complete deforestation in a country. The assumption of preferential
conversion of woodland to cropland was made to reflect historical trend [e.g., Burney et al., 2010; Hurtt
et al., 2011] that may have resulted from the need to preserve grassland for pasture/animal grazing and
the generally more fertile soil in newly deforested land. Reversing the order between forest and grassland
would lead to significantly different results on changes of the natural vegetation cover; the impact on
cropland expansion would be also significant especially in the western part of West Africa and along the
coast where present-day forest coverage is high. Similar to the cropland expansion, the distribution of
natural vegetation cover loss shows negligible difference between the projections driven with the two
GCMs.

Among the many uncertainty factors considered in the sensitivity tests described in section 3, the projected
cropland expansion is most sensitive to two: the level of international trading and the sequence of land
conversion among multiple grid cells in which land is available. An extreme example of each is given in Fig-
ure 9 based on CESM-driven projections. Without changing any rules and assumptions in the LandPro_Crop
model, if international trading were not allowed (i.e., only domestic production can be used to meet domes-
tic demand), the projected cropland expansion would be much faster (Figure 9a, relative to Figure 7). With

Figure 7. (left) Projected future changes of cropland area (in % of the grid cell area) by midcentury (‘‘Future-Present’’) when the Regional Climate Model is driven by ICBCs from (top)
MIROC-ESM and (bottom) CESM, and (middle) the cropland changes attributable to food demand changes (‘‘Future_SE-Present’’) and (right) those attributable to climate-induced crop
yield changes (‘‘Future-Future_SE’’).
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the projected international trade but reversing the order of land conversion to create an extreme scenario
(in which the least productive land was used up first before more productive land was considered for con-
version to cropland), the cropland expansion would be dramatically faster (Figure 9b, relative to Figure7).
The order of land allocation among different crops has a negligible impact on the overall cropland expan-
sion. Given past and present-day practices, the extreme scenarios of cropland expansion in Figure 9 are
highly unlikely. Our study on the potential impact of land use feedback to regional climate (section 4.2) is
therefore based on the ‘‘best scenario’’ land cover changes shown in Figures 7 and 8.

4.2. Future Scenarios of Climate Changes and Attribution
Future precipitation changes during the peak monsoon season projected by RegCM-CLM driven with both
MIROC-ESM and CESM feature a west-east dry-wet contrast (Figure 10, middle). This general pattern of
future precipitation changes was also found in the multiGCM ensembles [IPCC, 2013] as well as in the
ensemble of regional climate projections driven by multiple GCMs [Saini et al., 2015; Erfanian et al., 2016].
However, the two projections in Figure 10 also demonstrate clear differences: in the projection driven with
MIROC-ESM, the dry signal is found in the western half of West Africa and also over central Africa, and the
wet signal is much stronger and extends from West Africa to the Middle East; in the projection driven with
CESM, the dry signal extends over most of West Africa, and a relatively weak wet signal covers central Africa
and the eastern half of Sahel.

Majority of these projected changes, including the east-west contrast, are caused by GHG concentration
changes. Land cover changes related to the projected cropland expansion would enhance the east-west
contrast of future precipitation changes in the model (Figure 10). Moreover, despite the significant differ-
ences in future precipitation change projected by the two different models, the contribution from land cov-
er changes shows a high degree of similarity between the two, with a drought signal in the west and a
dominantly wet signal in the east. In some areas of the western West Africa, the magnitude of precipitation
changes caused by land use changes even rivals that of the CO2-induced changes (Figure 10, right column
versus left column), and this statement holds for projections driven with LBCs from both GCMs. Not surpris-
ingly, since projected land cover changes were only applied to West Africa, the effects on precipitation else-
where are weak.

Figure 8. (top) Woody vegetation and (bottom) grass coverage (in % of the corresponding grid cell area): (left) present-day distribution, projected future changes when RegCM is driven
by LBCs from (middle) MIROC-ESM and (right) CESM.
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The rather robust spatial pattern of LUC-
induced precipitation changes, with a
decrease in the west and an increase in
the east (and its surrounding areas),
appears to deviate from the general
notion of land cover degradation caus-
ing precipitation to decrease. Part of this
deviation has to do with the location,
spatial extent and heterogeneity of the
projected land cover changes in this
study, and part has to do with the nonlo-
cal impact of land cover changes. Figure
11 presents the LUC-induced differences
during the monsoon season (June-July-
August) for several variables related to
the surface energy and water budgets,
using the projections driven by the
MIROC-ESM as an example. Results
based on projections driven by the
CESM model (not shown) are qualitative-
ly similar. The decrease of LAI resulting
from land cover changes during the JJA
season is highly heterogeneous, and for
the most part is rather small (less than
0.4, Figure 11a1). Loss of vegetation cov-
er tends to reduce evapotranspiration
(ET) therefore local supply of moisture
over most of the domain (Figure 11b1),
which contributes to the decrease of
precipitation.

The loss of woody vegetation cover
reduces the surface roughness therefore
increases the speed of surface winds
that are southwesterly (Figure 11a3).
This accelerated transport of moisture
toward the northeast contributes to a
decrease of atmospheric moisture flux

convergence in the south and west and an increase downwind in the north and east (Figure 11b2). Precipita-
tion changes (Figure 10) are dominated by the decrease of local moisture supply through ET in the western
Sahel region, and by changes in moisture flux convergence elsewhere.

The LUC-induced albedo increase shows strong heterogeneity too, and is less than 0.01 in most of the
domain (Figure 11a2). As a result, surface net radiation slightly decreases over most of the domain (except
over the Guinea Coast where net radiation increases). The spatial pattern of LUC-induced ET changes resem-
bles that of the net radiation changes for most of the domain where ET is energy limited (Figures 11b1 and
11c2). Despite the decrease of net radiation, a warm signal is found over West Africa due primarily to the
decrease of evaporative cooling (Figure 11c3). Moisture storage in the top 10 cm of the soil is projected to
decrease in most of West Africa and increase elsewhere (Figure 11b3).

Among all subregions of West Africa, the Guinea Coast is the wettest where hydrological processes are subject
to energy limitations. As a result, climate response to land cover changes is strongly influenced by cloud
effects. For example, despite a decrease of LAI, ET from the Guinea Coast increases due to an increase of net
radiation; despite an increase of surface albedo, surface net radiation increases as a result of higher solar inso-
lation due to reduced precipitation therefore reduced cloudiness. This underlies the contrast between the
Guinea Coast and elsewhere in the response of climate variables to land cover changes.

Figure 9. Projected future changes of cropland fractional coverage (as a percent-
age of the corresponding grid cell area): (a) for a hypothetical scenario of no inter-
national trade, and (b) for a land use scenario that includes international trade
but reverses the order of land conversion in LandPro_Crop (i.e., using up the least
productive land first).
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5. Conclusions and Discussion

Agricultural land use alters regional climate by modifying surface water, energy, and momentum fluxes;
changes in climate influence land use activities through their impact on crop yields and cropping patterns.
This study tackles the critical linkages within the coupled natural and human systems in West Africa focus-
ing on the interactions between agricultural land use and the changing regional climate. Using an asynchro-
nously coupled modeling framework involving four different models, we assess the role of land use as a
climate change forcing (relative to the GHGs concentration changes) and the role of climate change as the
biophysical driver (relative to the socioeconomic drivers) for agricultural land use changes. The main find-
ings are:

1. Socioeconomic developments would be the dominant driver for future cropland expansion in the east-
ern part of West Africa, where current cropland coverage is already high; climate changes would be the
primary driver for future cropland expansion in the western part.

2. The projected agricultural expansion would cause a strong dry signal in the western part of West Africa
and a wet signal in the eastern part downwind. Over a substantial portion of West Africa, the strength of
the LUC-induced signals of precipitation changes is comparable to that of the GHG-induced precipitation
changes, and the east-west contrast of LUC-induced precipitation changes is closely related to the
regional monsoon circulation pattern and its response to land cover changes.

Based on results from this study, it is apparent that land use-climate interactions would enhance the CO2-
induced precipitation changes, especially the projected contrast between changes in the east and west por-
tions of West Africa. The LUC-induced increase of precipitation downwind in the northeast portion of the
focus region is qualitatively similar to the modeled precipitation response to deforestation in Nigeria and
elsewhere in West Africa [Abiodun et al., 2012]. This response is likely a result of the specific regional mon-
soon circulation pattern and therefore may not be generalized for other regions. Different than most previ-
ous studies that impose idealized (and often spatially uniform) land cover or land cover changes in climate
models, land cover changes in this study are projected by a coherent modeling system based on realistic

Figure 10. Projected future changes of JJA precipitation (in mm/d) by midcentury driven with LBCs from (top) MIROC-ESM and (bottom) CESM, respectively, (left) with present-day land
use (‘‘Future_noLUC-Present’’), (middle) with projected ‘‘best scenario’’ of future land use changes (‘‘Future-Present’’), and (right) the LUC-induced differences (as ‘‘Future-Future_noLUC’’).
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increase of food demand and climate changes and show a higher degree of spatial heterogeneity. While
the response found in this study is more complex than the general notion of ‘‘land cover degradation caus-
ing less precipitation,’’ the fundamental mechanisms of local climate response to land cover changes
through surface property changes (in albedo, Bowen ratio, and roughness) [Wang et al., 2015] remain large-
ly the same. What is different here is that, given the magnitude, location, and spatial extent of land cover
changes, the response of regional circulation to these changes is more dominant, leading to the seeming
complexity of the climate response.

In addition to modifying land-atmosphere mass, momentum, and energy flux exchanges, land cover
changes can also influence regional climate through their impact on atmospheric aerosol loading due to
mineral dust and biomass burning emissions. For example, past studies suggested that in West Africa min-
eral dusts would cause precipitation to decrease [e.g., Ji et al., 2016, 2017]. Both the location and the magni-
tude of aerosol sources depend heavily on vegetation cover and agricultural land use as well as their
seasonality. However, in most climate models including the RCM used in this study, dust and biomass burn-
ing emissions are either not considered or treated separately from land use processes, which leads to an

Figure 11. TheUC-induced differences in LAI, albedo, surface wind speed, ET, moisture flux convergence, top 10 cm soil moisture (in equivalent water depth), surface insolation, surface
net radiation, and surface air temperature, using projections driven with the MIROC-ESM LBCs as examples.
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incomplete account for the impact of cropland expansion in our study. Linking aerosol emissions with agri-
cultural land use at the seasonal time scale (therefore accounting for the presence of land cover during the
growing season and absence after harvest during the dry season) would be a necessary next step to
address the aerosols-related uncertainties.

Qualitatively, the projected changes in future cropland expansion and regional climate as well as their attri-
bution in the projections driven by ICBCs from the two GCMs are remarkably similar, due to the low sensitiv-
ity of the RCM climate change to the driving GCMs [Saini et al., 2015]. The sensitivity of the IMPACT-
projected food demand to GCM climates is rather low too. Therefore, addressing uncertainties from climate
models would need to involve a different RCM as opposed to more GCMs. The experimental design, using a
regional modeling framework with prescribed past and RCP8.5 future CO2 concentrations, precludes the
consideration for the contribution of deforestation to atmospheric CO2 concentration changes (therefore
precludes the feedback to carbon dynamics).

Results and findings from this study are subject to uncertainties from three major sources related to human
decision making on crop productions. One is the order in which naturally vegetated land is converted to
agricultural land for different crops, with the ‘‘Best Scenario’’ following the three rules specified in section
2.4 representing a science-informed decision making. Results analysis and conclusions drawn above are
based primarily on this conservative scenario. Sensitivity experiments in this study suggested that the spa-
tial extent and magnitude of the projected cropland expansion could be significantly higher in a ‘‘worse sce-
nario.’’ Moreover, the assumption to deplete forestland before grassland has complex implications for
climate feedback. On one hand, a more random sequence of converting naturally vegetated land to crop-
land would result in a faster cropland expansion, which could have a more significant impact on climate; on
the other hand, it would also result in a larger degree of surface heterogeneity, which could reduce the cli-
matic impact of land cover changes. The second source of uncertainty related to human decision making is
the lack of consideration for agricultural intensification and some adaptation strategies that farmers cus-
tomarily make in response to changing economic and environmental conditions [Mendelsohn et al., 1994].
The underlying hypothesis that agricultural expansion is favored over intensification is based on past and
present practices in West Africa, and it may or may not hold in the future especially given the rising pres-
sure from a rapidly warming climate. The potential increase of fertilizer application and labor input, expan-
sion of irrigation, and switch to more heat- or drought-resistant cultivars (when feasible) would all reduce
the impact of climate change on cropland expansion (and its feedback to climate). The third source of
uncertainty is related to the size of international trade. For most countries in West Africa, import addresses
a substantial fraction of food demand, while future trade (therefore the accuracy of its projection) can be
heavily influenced by national economic policies and international food policies. To some extent, these
uncertainties are of similar nature to those of future GHGs concentration pathways/scenarios, and may justi-
fy the creation of their own future scenarios. These uncertainties should be tackled in follow-up studies
involving close collaboration with social and political sciences.

Climate-induced decrease of crop yield is an important driver for the projected cropland expansion in
this study. The future crop yield in the model did not benefit much from the physiological effects of CO2

concentration increase, due primarily to the fact that the present-day CO2 concentration is already close
to the saturation level for C4 crops. However, nitrogen and phosphorus limitation is an important con-
founding factor, especially given the generally low level of fertilizer input in the region. Field experi-
ments have shown that crop yield response to CO2 concentration changes depends on nitrogen and
water availability [e.g., Long et al., 2006; Tubiello et al., 2007]. The confounding effects of climate, CO2,
and nutrient on crop yield and how they may influence the future projections should be addressed in
follow-up studies.

While West Africa is used here as a case study, the applicability of the modeling framework is not limited to
West Africa. It can be translated to other developing regions in Africa and in other continents. For the
modeling framework to be applicable to developed regions, the LandPro_Crop model will need to be modi-
fied to reflect the effect of specific land use policies in place and the effects of agricultural intensification
that plays a more important role in developed countries. The findings on the relative importance of climate
change and socioeconomic factors in driving land use change, and on the extent to which land use changes
modify the GHG-induced climate changes, are likely to be region specific.
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