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Abstract. Every classical or virtual knot is equivalent to the unknot via a sequence of

extended Reidemeister moves and the so-called forbidden moves. The minimum number

of forbidden moves necessary to unknot a given knot is an invariant we call the forbid-

den number. We relate the forbidden number to several known invariants, and calculate

bounds for some classes of virtual knots.

1. Introduction

The theory of virtual knots was introduced by Kauffman [12] as a generaliza-
tion of classical knot theory, motivated in part by the desire to provide a bijective
correspondence between knots and Gauss diagrams. Like the classical theory, vir-
tual knot theory has a useful diagrammatic approach since virtual diagrams can
be thought of as 4-valent graphs with extra structure at the vertices. In the clas-
sical theory, this extra structure is indicated by overcrossings and undercrossings,
whereas in the virtual theory, a third kind of crossing is allowed, namely virtual
crossings, which are indicated in the diagrams with a small circle around the vertex.

Equivalence of virtual knots may be defined by means of a set of local moves
(the extended Reidemeister moves) on their diagrams. Figure 1 illustrates the
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Equivalence may also be viewed as isotopy in thickened surfaces; see, for example, [14], [1]
or [17].
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486 Alissa S. Crans, Blake Mellor and Sandy Ganzell

extended Reidemeister moves: the classical Reidemeister moves R1, R2, R3, the
virtual moves V 1, V 2, V 3, and the semivirtual move SV . We may then define a
virtual knot to be an equivalence class of virtual diagrams modulo these moves.

Figure 1: The extended Reidemeister moves.

We remind the reader that it is important to restrict ourselves to these moves,
and not consider physical movements in space, as our intuition can sometimes lead
us astray with diagrams that contain virtual crossings. For example, the virtual

Figure 2: Distinct virtual knots.

knots in Fig. 2 are distinct, even though they appear to differ only by a physical
twist. These knots are distinguished by the arrow polynomial defined by Dye and
Kauffman [4].

Given an oriented (virtual) knot, we recall that its Gauss diagram is defined as
follows: First label all the classical crossings of the knot. Next, traverse the knot,
writing down the sequence of crossing labels (so each label appears twice); write
this sequence around a circle. Then add a chord to the circle for each crossing; each
chord is drawn as an arrow directed from the label corresponding to going over a
crossing to the label corresponding to going under the same crossing. Finally, each
arrow is also labeled with the sign of the crossing. For example, Fig. 3 shows the
left-handed virtual trefoil knot and its corresponding Gauss diagram.

The Reidemeister moves can be reinterpreted as moves on Gauss diagrams; the
virtual moves V 1, V 2, V 3 and SV have no effect on the Gauss diagram. While not
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Figure 3: Gauss diagram of a virtual trefoil.

every Gauss diagram can be realized as the diagram of a classical knot (the diagram
in Fig. 3 is an example), every Gauss diagram can be realized as the diagram of
a virtual knot [12]. It is often useful to think of virtual knots in terms of Gauss
diagrams, since it avoids the pitfalls created by misinterpreting virtual knots as
physical objects.

Since every classical or virtual knot is equivalent to the unknot via a sequence
of the extended Reidmeister moves together with the forbidden moves, illustrated
in Section 2, we can consider the minimum number of forbidden moves necessary
to unknot a given knot. We define this invariant, the forbidden number, in Section
2 and provide an upper bound for the forbidden number of a knot in terms of its
crossing number. We continue in Section 4 by computing upper bounds on the
forbidden number for the Kishino knots with n full twists, as well as for twist knots
and torus knots. In Section 5 we relate the forbidden number to the odd writhe
[13] and odd writhe polynomial [2], which enables us to establish lower bounds on
the forbidden number, and compute several more examples. Finally, in Section 6
we apply our results to update Sakurai’s table [20] of forbidden numbers for knots
with crossing number less than or equal to four.

2. The Forbidden Number

As mentioned in the Introduction, there are two additional Reidemeister-like
moves for virtual knots, known as the forbidden moves, illustrated in Fig. 4. Move
FO moves a strand of the diagram “over” a virtual crossing, while move FU moves
a strand “under” a virtual crossing. Neither of these moves can be obtained as a
sequence of extended Reidemeister moves.

Figure 4: Forbidden moves.
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Unlike the other virtual Reidemeister moves, the forbidden moves do change
the Gauss diagram of a virtual knot. The move FO has the effect of switching the
tails of two arrows in a Gauss diagram, while the move FU switches the heads,
as shown in Fig. 5. Nelson [19] observed that using two forbidden moves (one of

Figure 5: Forbidden moves on Gauss diagrams.

each), we can perform the forbidden detour move shown in Fig. 6, which has the
effect on Gauss diagrams of switching the head of one arrow with the tail of an
adjacent arrow. If we allow one forbidden move but not the other, we obtain what

Figure 6: Forbidden detour.

are known as welded knots, developed by Satoh [21] and Kamada [10]. If we allow
both forbidden moves, then any virtual knot can be transformed into any other
virtual knot ([6],[11],[19]; see also Thm. 3 of this paper), hence the designation of
these moves as forbidden.

In particular, every classical or virtual knot can be transformed into the unknot
by a sequence of extended Reidemeister moves and forbidden moves. It is, therefore,
natural to ask how many forbidden moves are necessary to unknot a given knot.

Definition 1. Let K be a classical or virtual knot. The forbidden number of K,
F (K), is the minimum number of forbidden moves necessary to transform K into
the unknot.

It is understood that Defn. refforbiddennumber is to be taken over all diagrams
for K, and that unlimited extended Reidemeister moves are permitted during the
transformation. Thus the forbidden number is an invariant of K, similar in spirit to
the unknotting number (the minimum number of crossing changes needed to trans-
form K into the unknot) and the virtual unknotting number (the minimum number
of classical crossings that need to be turned into virtual crossings to transform K
into the unknot).
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It follows immediately that only the unknot has forbidden number zero, since
a sequence of extended Reidemeister moves (without forbidden moves) that trans-
forms K into the unknot would place K (by definition) in the same equivalence
class as the unknot.

Recall that if K is an oriented virtual knot, the inverse of K, denoted by K∗,
is obtained by reversing the orientation of K; the mirror image of K, denoted by
K̄, is the result of switching all the classical crossings of K.

Theorem 2. F (K∗) = F (K) = F
(
K̄
)

Proof. A knot and its inverse have identical Gauss diagrams, except the circle is
traversed in the opposite direction. This has no bearing on either the extended
Reidemeister moves or the forbidden moves. Thus F (K∗) = F (K). To see that
F (K) = F (K̄), observe that taking a mirror image has the effect of reversing
all the arrows in the Gauss diagram. Thus an unknotting sequence of extended
Reidemeister moves and forbidden moves can be replaced by an identical sequence
of moves, but replacing FO moves with FU and vice versa.

3. The Forbidden Number and the Crossing Number

We recall that the crossing number, c(K), of a knot is the minimum number
of crossings of any diagram of K. To extend this definition to virtual knots, we
simply ignore all virtual crossings. Thus the crossing number of a virtual knot K
is the minimum number of classical (i.e., non-virtual) crossings in any diagram of
K. In this section, we will use the crossing number to derive upper bounds for the
forbidden number. We find these bounds using the forbidden moves and forbidden
detours, along with the first Reidemeister move; the following lemma illustrates our
method.

Lemma 3. For any virtual knot K, F (K) ≤ c(c−1)
2 +

⌊
(c−1)2

4

⌋
, where c is the

crossing number of K.

Proof. From the point of view of Gauss diagrams, we can unknot any virtual knot
by moving ends of chords past each other to isolate each chord, and then eliminating
chords using the first Reidemeister move. In a diagram with c crossings, isolating
a chord requires moving its head or tail past at most c − 1 ends of other chords,
of which at most

⌊
c−1
2

⌋
are of the opposite type (i.e., require moving a head past

a tail or vice versa). Moving a head/tail past an end of the same type requires
one forbidden move; moving past an end of the opposite type is a forbidden detour
which uses two forbidden moves. So isolating and removing the first arrow requires

at most
⌊
3(c−1)

2

⌋
forbidden moves. Doing this for each successive arrow (reducing

the number of crossings each time) requires a total of at most:

c−1∑
k=1

⌊
3k

2

⌋
=

c(c− 1)

2
+

⌊
(c− 1)2

4

⌋
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forbidden moves, which completes the proof.

We will improve this bound by examining a particular family of virtual knots
we call complete knots. A complete knot has a Gauss diagram in which every
arrow crosses every other arrow (so the intersection graph of the Gauss diagram is a
complete graph, hence the name). For example, Fig. 7 shows all the possible Gauss
diagrams for complete knots with 5 crossings (ignoring the signs of the crossings).
Note that the only classical knots which are complete knots are the (p, 2)-torus
knots (for p odd). In these cases, the heads and tails of the arrows alternate around
the circle of the Gauss diagram (so the diagram on the left of Fig. 7 is the Gauss
diagram for the (5, 2)-torus knot).

Figure 7: Gauss diagrams for complete knots with 5 crossings.

Lemma 4. If K is a complete knot with crossing number c, and if h is the length
of the longest sequence of consecutive undercrossings in a minimal diagram for K,

then F (K) ≤ c(c−1)
2 +

⌊
(c−h)2

4

⌋
.

Proof. As in the proof of Lem. 3, we will use forbidden moves and forbidden
detours to move ends of arrows past each other, and then remove arrows using the
first Reidemeister move. The sequence of consecutive undercrossings corresponds to
a sequence of consecutive heads in the Gauss diagram for K. Observe that h ̸= c−1,
since if there is a sequence of c−1 consecutive heads, the last arrow will extend this
to a sequence of length c. So suppose h ≤ c− 2. Let A and B be the arrows whose
tails bound the sequence of h heads. One of A or B will have at least h+

⌈
c−h−2

2

⌉
heads on one side, and at most 1 +

⌊
c−h−2

2

⌋
tails (the additional 1 comes from the

other of chords A and B). So the total number of forbidden moves required to
remove that arrow will be:

h+

⌈
c− h− 2

2

⌉
+2+2

⌊
c− h− 2

2

⌋
= h+2+

⌊
3

2
(c− h− 2)

⌋
= (h−1)+

⌊
3

2
(c− h)

⌋
.

Since removing either A or B does not decrease the length of the sequence of
heads, the resulting knot will still be a complete knot with a maximal sequence of
length at least h. So we can continue this process until there are only h+ 1 arrows
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left, at which point all the heads will be consecutive. After that, no more forbidden
detours are needed. So the total number of forbidden moves required is:

c−h∑
k=2

(
h− 1 +

⌊
3k

2

⌋)
+

h∑
k=1

k =
c(c− 1)

2
+

⌊
(c− h)2

4

⌋
. 2

Table 1 lists the upper bound given by Lem. 4 for small values of c and h. Note
that when h = 1, the bounds are those given by Lem. 3.

crossing number c
1 2 3 4 5 6 7 8 9 10

h

1 0 1 4 8 14 21 30 40 52 65
2 1 3 7 12 19 27 37 48 61
3 3 6 11 17 25 34 45 57
4 6 10 16 23 32 42 54
5 10 15 22 30 40 51
6 15 21 29 38 39
7 21 28 37 47
8 28 36 46
9 36 45
10 45

Table 1: Upper bounds on F (K) for complete knots with c crossings, and
at least h consecutive undercrossings.

Theorem 5. For any virtual knot K with crossing number c, F (K) ≤
⌊
3c2−6c+7

4

⌋
.

Proof. We first consider the case when K is a complete knot. If c is even, then
there must be two consecutive undercrossings in the diagram for K. Otherwise, the
diagram would alternate between overcrossings and undercrossings. If we begin at
a crossing A, this means that we need to go over an even number of crossings before
returning to A (otherwise we would try to go over or under A twice). But since
the knot is complete and c is even, the diagram passes through an odd number of
crossings before returning to A, which is impossible.

So, if K is a complete knot and c is even, then by Lem. 4 we have

F (K) ≤ c(c− 1)

2
+

⌊
(c− 2)2

4

⌋
=

c(c− 1)

2
+
(c− 2)2

4
=

3c2 − 6c+ 4

4
=

⌊
3c2 − 6c+ 7

4

⌋
.

On the other hand, if c is odd, then removing the first arrow from the Gauss diagram
requires at most 3

2 (c − 1) forbidden moves, as in Lem. 3 (since c − 1 is even, the
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floor function is unnecessary). The result is a complete knot with c − 1 crossings,
which must then have two consecutive undercrossings as above. So in this case we
have

F (K) ≤ 3

2
(c− 1) +

(c− 1)(c− 2)

2
+

⌊
(c− 3)2

4

⌋
=

3

2
(c− 1) +

(c− 1)(c− 2)

2
+

(c− 3)2

4
=

3c2 − 6c+ 7

4
.

If K is not complete, then there are two arrows in the Gauss diagram which do
not intersect. Then at least one of them has at most c − 2 heads and tails on one
side, so can be removed with at most

⌊
3
2 (c− 2)

⌋
forbidden moves. On the other

hand, from the proof of Lem. 4, removing an arrow from a complete knot with two
consecutive undercrossings requires at most 1+

⌊
3
2 (c− 2)

⌋
forbidden moves. So the

bound computed for the complete knots also bounds the forbidden number for any
non-complete knots.

Below is a table listing the upper bound provided by Thm. 5 for crossing
numbers up to 12.

Crossing number 2 3 4 5 6 7 8 9 10 11 12
Upper bound for F (K) 1 4 7 13 19 28 37 49 61 76 91

Example 6. The bounds in Lem. 4 and Thm. 5 are far from sharp. In par-
ticular, as arrows are removed from a complete knot, the sequence of consecutive
undercrossings is likely to increase in length. To illustrate this, we will consider the
(p, 2)-torus knots Tp,2 (where p is odd), which are the only classical complete knots.
The Gauss diagrams for these knots consist of p arrows, all with positive sign, with
heads and tails alternating around the diagram. If we follow the procedure in the
proof of Lem. 4, then each time we remove an arrow we increase the length of the
longest sequence of undercrossings by 1, as shown for the (5, 2)-torus knot in Fig.
8.

Figure 8: Removing arrows from the (5, 2)-torus knot.
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When there are p+1
2 arrows left, all the remaining heads are consecutive. So:

F (Tp,2) ≤

p−1
2∑

k=1

(
k − 1 +

3

2
(p− 2k + 1)

)
+

p−1
2∑

k=1

k =
5p2 − 4n− 1

8

For example, F (T11,2) ≤ 70, compared to the bound of 76 from Thm. 5.

4. Examples

In this section we will examine several common families of knots: the Kishino
knot with twists added, twist knots and torus knots. For the Kishino knots, we
prove the forbidden number for all such knots is 1; for the other families, we will
provide upper bounds for the forbidden number. In these examples, the upper
bounds are found through direct analysis of the Gauss diagrams, though in the first
example, the corresponding moves in the knot diagram are easy to see.

Figure 9: Kishino Knot with n full twists.

Kishino knot with n full twists

Fig. 9 shows the Kishino knot with n full twists, denoted Kn (the original
Kishino knot is the case when n = 0). For all n ≥ 0, we have F (Kn) = 1. The
knots Kn are distinguished from each other (and from the unknot) by the arrow
polynomial [9]. Thus F (Kn) ≥ 1.

To show that F (Kn) = 1 we perform the following moves: We begin by using
forbidden move FU to slide the head of arrow 1 past the head of arrow 2. Next we
remove crossings 1 and 2 with R1 moves. Then the 2n crossings in the middle can
be eliminated with R1 moves. Finally we use an R2 move to eliminate crossings 3
and 4. Note that the collection {Kn} provides an infinite family of distinct knots
with forbidden number one.
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Twist knots

The twist knot Tn with n half-twists is shown in Fig. 10, along with the Gauss
diagram for the two cases: when n is even and when n is odd. All twist knots have
unknotting number one and virtual unknotting number two [5], but their forbidden
number most likely depends on n. If n is odd then F (Tn) ≤ 3n+1. This is achieved
by using three forbidden moves to move one end of each of the horizontal chords
past the vertical chords, and then removing the horizontal chord by an R1 move; a
final forbidden move is then used to uncross the two vertical chords.

If n is even, then F (Tn) ≤ 5
2n − 1. In this case, we move the tail of the right-

hand vertical chord past all the horizontal chords except the top one (requiring
(n − 1) + n

2 = 3
2n − 1 forbidden moves), move the head of the right-hand vertical

chord past the tail of the other vertical chord (requiring two forbidden moves), and
then remove the (originally) right-hand vertical chord and the top horizontal chord
by an R2 move. Now we can remove all but one of the remaining horizontal chords,
one at a time, by combining a forbidden move and an R1 move; the last two chords
are removed by another R2 move. This is a total of 3

2n− 1 + 2 + (n− 2) = 5
2n− 1

forbidden moves. In particular, the figure-eight knot is T2, so this gives us an upper
bound of four for the forbidden number of the figure-eight knot.

Figure 10: Twist knot Tn.

Torus knots

In Ex. 6, we found an upper bound for the forbidden number of the (p, 2)-torus
knot (p odd). That bound was created from a diagram with a minimal number of
crossings. But a better bound can be obtained using a diagram with more crossings.
The (p, 2)-torus knot is a 2-bridge knot, meaning it has a diagram with only two
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overpasses (segments without undercrossings) and two underpasses (segments with-
out overcrossings) appearing alternately along the diagram. Figure 11 is a 2-bridge
presentation for the (5, 2)-torus knot with the corresponding Gauss diagram.

Figure 11: (5, 2)-torus knot and Gauss diagram.

Recall that forbidden moves move heads past adjacent heads or tails past adja-
cent tails. Thus crossing 2 can be eliminated from the diagram with two forbidden
moves (one FO and one FU) followed by an R1 move, and similarly for crossing 6.
Crossings 4 and 8 can then be eliminated with four forbidden moves each (two FO
and two FU) and R1 moves. The remaining crossings (1, 3, 5, 7) are eliminated
with R1 moves. The total number of forbidden moves is 2(2 + 4) = 12. Thus
F (T5,2) ≤ 12. In contrast, the formula in Ex. 6 gives an upper bound of 13.

The situation is similar for Tp,2. The 2-bridge presentation will have 2(p − 1)
crossings, with one overpass numbered from 1 to p − 1, and the other from p to
2(p − 1). The Gauss diagram will have the even chords horizontal and the odd
chords vertical. The even chords from 2 to p − 1 can be eliminated sequentially
with 2 to p−1 forbidden moves respectively, followed by R1 moves. Symmetrically,
the remaining chords can be eliminated with the same number of forbidden moves.

The total number of forbidden moves used is 2
(
2+ 4+ · · ·+ (p− 1)

)
= p2−1

2 . Thus
we have proven the following:

Theorem 7. F (Tp,2) ≤ p2−1
2 .

Note that the better bound for the forbidden number is obtained from a diagram
that does not have a minimal number of crossings: 2(p−1) crossings in the 2-bridge
presentation as compared to p crossings in the minimal presentation.
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5. Forbidden Number and Odd Writh

We recall that a crossing of a virtual knot is called odd if its crossing labels in
the Gauss diagram have an odd number of crossing labels between them. The odd
writhe, then, is the sum of the signs of the odd crossings. Kauffman showed that
the odd writhe is invariant under the extended Reidemeister moves, and hence is
an invariant of virtual knots [13]. We note that in classical knots the odd writhe
is always zero, since all crossings of classical knots are even. For the virtual trefoil
shown in Fig. 3, the odd writhe is two, proving that this knot is not equivalent to
any classical knot.

While the odd writhe is invariant under the extended Reidemeister moves, it is
not invariant under the forbidden moves.

Theorem 8. A forbidden move changes the odd writhe by 0, 2 or -2.

Proof. A forbidden move either crosses or uncrosses two arrows of the Gauss dia-
gram, causing their parities to change. If they have the same parity and the same
sign or opposite parities and opposite signs, the odd writhe will change by ±2; if
they have the same parity and opposite signs or opposite parities and the same sign,
the odd writhe will be unchanged.

This result immediately gives us the following lower bound on the forbidden
number.

Theorem 9. For any virtual knot K, F (K) ≥
∣∣ 1
2wo(K)

∣∣, where wo(K) is the odd
writhe of K.

We remark that this tells us nothing about the forbidden number of classical
knots since they have odd writhe of zero.

As an application, we can compute the forbidden number for a ring of virtual
trefoil knots. In particular, the forbidden number of the virtual trefoil is one.

Theorem 10. The forbidden number of a ring of n virtual trefoil knots is n.

Proof. The Gauss diagram for a ring of n virtual trefoil knots is shown in Fig.
12. Each pair of crossed arrows can be uncrossed by a single forbidden move, and
the crossings can then all be removed using the first Reidemeister move, so the
forbidden number is at most n.

On the other hand, each of the 2n crossings is odd, and they all have the same
sign, so the odd writhe is 2n. So, by Thm. 9, the forbidden number is at least n.
Therefore, the forbidden number is exactly n.
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+

+
+

+

+

++
+

Figure 12: A ring of n virtual trefoil knots.

Example 11. Virtual twist knots. The virtual twist knots V Tn are the twist
knots Tn with the top crossing made virtual, as shown in Fig. 13. If n is odd,
then the odd writhe is n+ 1 so F (V Tn) ≥ n+1

2 ; on the other hand, we can remove
each horizontal chord in turn with a single forbidden move and an R1 move, so
F (V Tn) ≤ n.

If n is even then the odd writhe is n and F (V Tn) ≥ n
2 . We remove the horizontal

chords as when n is odd, except that the last horizontal chord and the vertical chord
can be removed together by an R2 move. So when n is even F (V Tn) ≤ n− 1.

Figure 13: Virtual twist knot V Tn.
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Forbidden number and the odd writhe polynomial

Cheng [2] extended the idea of the odd writhe, creating the odd writhe polyno-
mial, denoted WK(t) ∈ Z[t, t−1]. This polynomial has been completely character-
ized and generalizes the odd writhe invariant; the sum of the coefficients of WK(t)
is precisely the odd writhe. We will briefly review the definition of the odd writhe
polynomial, and then describe how it changes under forbidden moves.

Consider a virtual knot diagram K with real crossings c1, . . . , cn. The Gauss
diagram for K contains n arrows corresponding to these crossings, which divide the
circle into 2n arcs. We assign each arc an integer as follows: beginning at a point
in the arc, we follow the orientation of the circle (traditionally counter-clockwise)
around the Gauss diagram. For each arrow in the diagram, we will first encounter
either its head (corresponding to an undercrossing) or its tail (corresponding to an
overcrossing). The integer assigned to the arc is the sum of the signs of the arrows
whose heads are encountered first.

Next we use the integers on the arcs to assign an integer to each arrow ci.
The endpoints of ci are incident to four arcs of the Gauss circle; two arcs at the
head and two arcs at the tail. We denote the labels of these arcs by h1 and h2

at the head and t1 and t2 at the tail. Then the integer assigned to ci is N(ci) =
max{h1, h2}−min{t1, t2}. Finally, we define the odd writhe polynomial of K to be:

WK(t) =
∑

ci odd

sign(ci)t
N(ci)

where the sum is over all odd crossings in the knot diagram. Note that classical
knots, which have no odd crossings, have WK(t) = 0.

Example 12. We compute the odd writhe polynomial for the virtual knot K in
Fig. 14 (knot 4.47 from [7]).

Figure 14: Virtual knot 4.47.

The labels for the arcs of the Gauss diagram are shown in Fig. 15, along
with the computation of N(ci). Since all of the crossings are odd, the odd writhe
polynomial is:

WK(t) = −t2 + t4 + t0 − t2 = t4 − 2t2 + 1
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N(c1) = 0− (−2) = 2

N(c2) = 2− (−2) = 4

N(c3) = 0− 0 = 0

N(c4) = 2− 0 = 2

Figure 15: Labeling the arcs and arrows of the Gauss diagram.

We can use the odd writhe polynomial to establish lower bounds on the for-
bidden number of many virtual knots, by seeing how it is changed by a forbidden
move.

Theorem 13. Performing a forbidden move on a knot K changes WK(t) by ±tm±
tn for some m and n. (It is possible that m = n.)

Proof. Figure 16 shows the result of performing an FU move on a Gauss diagram,
and how it affects the labels on the arcs of the diagram. The signs of the crossings,
±1, are represented by ε and δ. The only arc that changes its label is the arc
between the heads of the two arrows involved. It is also important to note that the
parities of the two crossings (odd or even) will change.

j

j+ε

k+δ

ε δ

k

i i−ε−δ
i−ε

K

ε δ

j

j+ε

k+δ

k

i
i−δ

i−ε−δ

K´

Figure 16: Performing a forbidden FU move.

Let cε and cδ denote the crossings in knot K with signs ε and δ, respectively; let
c′ε and c′δ denote the corresponding crossings inK ′. Then inK, N(cε) = i−j+(1−ε)
and N(cδ) = i − k + (1 − ε − δ). In K ′, N(c′ε) = i − j + (1 − ε − δ) and N(c′δ) =
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i− k + (1− δ). The labels (and parities) of all other crossings in the knots are the
same. Now we have four cases, which are summarized in the table below:

WK −WK′ cε is odd cε is even

cδ is odd εtN(cε) + δtN(cδ)

= εti−j+1−ε + δti−k+1−ε−δ
−εtN(c′ε) + δtN(cδ)

= −εti−j+1−ε−δ + δti−k+1−ε−δ

cδ is even εtN(cε) − δtN(c′δ)

= εti−j+1−ε − δti−k+1−δ
−εtN(c′ε) − δtN(c′δ)

= −εti−j+1−ε−δ − δti−k+1−δ

We now perform a similar analysis for an FO move. Figure 17 shows the result
of performing an FO move.

j

j-ε

k-δ

ε δ

k

i i+ε+δ
i+ε

K

ε δ

j

j-ε

k-δ

k

i
i+δ

i+ε+δ

K´

Figure 17: Performing a forbidden FO move.

As before, let cε and cδ denote the crossings in knot K with signs ε and δ,
respectively; let c′ε and c′δ denote the corresponding crossings in K ′. Then in K,
N(cε) = j−i+(1−ε) and N(cδ) = k−i+(1−ε−δ). In K ′, N(c′ε) = j−i+(1−ε−δ)
and N(c′δ) = k − i+ (1− δ). The labels (and parities) of all other crossings in the
knots are the same. Now we have four cases, which are summarized in the table
below:

WK −WK′ cε is odd cε is even

cδ is odd εtN(cε) + δtN(cδ)

= εtj−i+1−ε + δtk−i+1−ε−δ
−εtN(c′ε) + δtN(cδ)

= −εtj−i+1−ε−δ + δtk−i+1−ε−δ

cδ is even εtN(cε) − δtN(c′δ)

= εtj−i+1−ε − δtk−i+1−δ
−εtN(c′ε) − δtN(c′δ)

= −εtj−i+1−ε−δ − δtk−i+1−δ
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In every case, we have WK(t)−WK′(t) = ±tm ± tn for some integers m and n.

We remark that WK(t)−WK′(t) = 0 only in the following circumstances:

1. ε = δ, the crossings have opposite parity, and j = k

2. ε = −δ, the crossings have the same parity, and j = k + ε (for an FU move)
or j = k − ε (for an FO move)

Corollary 14. If WK(t) =
∑

bit
i, then F (K) ≥ 1

2

∑
|bi|.

Proof. By Thm. 13, any forbidden move changes WK(t) by ±tm ± tn, and hence
changes

∑
|bi| by at most 2. Thus, F (K) ≥ 1

2

∑
|bi|.

Example 15. Consider the virtual knot K in Fig. 14 (knot 4.47 from [7]). The
odd writhe is zero, but WK(t) = t4 − 2t2 + 1, so the forbidden number is at least
two. We now show that the forbidden number is exactly two. Referring to the
Gauss diagram in Fig. 14 we use a forbidden move FU to move the head of 4 past
the head of 2. Then we use R1 to remove crossing 4. Next we move the head of 3
past the head of 2 using a second FU move. Then, we remove crossing 3 with R1.
Finally, we remove crossings 1 and 2 with R2.

6. Forbidden Numbers of Knots with Small Crossing Number

The forbidden numbers of many knots with crossing number ≤ 4 were computed
by Sakurai [20] by analyzing the effect of forbidden moves on a polynomial defined
by Henrich [8]. In this section, we update and expand the table given in [20],
incorporating the findings from the present paper. The results are shown in Table
4. The table lists:

H : the lower bound derived by Sakurai from Henrich’s polynomial

OW : the lower bound given by Corollary 14 from the odd writhe polynomial

S : the value of F (K) given by Sakurai (when provided)

F (K) : the forbidden number of the knot. When the forbidden number has not
yet been determined, the best known bounds are listed in the format lower
bound–upper bound.

There is considerable overlap between the bounds obtained using the two poly-
nomials (Henrich vs. odd writhe). In addition to analyzing all virtual knots with 4
or fewer crossings, we compared the lower bounds from Henrich’s polynomial and
the odd writhe polynomial for all virtual knots with 5 or 6 crossings (using a com-
puter program and the list of Gauss codes from [7]). The results are shown in Table
2.
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Crossing number H > OW OW > H H = OW Total

2 0 0 1 1
3 3 0 4 7
4 29 2 77 108
5 3312 88 5830 9230
6 143,686 10,218 200,774 354,678

Table 2: Comparison of lower bounds from Henrich and odd writhe polyno-
mials

Among virtual knots with four crossings, the odd writhe polynomial gives a
better lower bound for knots 4.26 and 4.47, and we were able to determine the
forbidden number. In several other cases, we were able to determine the forbidden
number by finding an unknotting sequence that realized the known lower bound,
as in Ex. 15. An asterisk (∗) indicates the forbidden number is determined by
the methods of the present paper, i.e., these knots were not listed in Sakurai’s
table. Gauss diagrams for these knots are shown in Figure 18, and their unknotting
sequences are given in Table 3. When the forbidden number has not yet been
determined, the best known bounds are listed in the format lower bound–upper
bound. Upper bounds are computed in a manner similar to Ex. 15. The numbering
corresponds to [7].

Figure 18: Gauss diagrams.

To interpret the notation in the unknotting sequences in Table 3, consider the
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first example: To unknot virtual knot 4.26, switch the tails of arrows 1 and 2 with
a forbidden over move. Then switch the heads of 2 and 4 with a forbidden under
move. Remove 1 with a Reidemeister move (R1). Then remove 4 (R1). Finally,
remove 2 and 3 (R2).

Knot Unknotting sequence

4.26 FO(1, 2), FU(2, 4), R1(1), R1(4), R2(2, 3)
4.41 FO(1, 2), R1(1), R2(2, 4), R1(3)
4.55 FO(1, 2), R1(1), R1(2), R2(3, 4)
4.56 Same as 4.55
4.58 Same as 4.41
4.59 FU(2, 3), R2(1, 2), R2(3, 4)
4.76 Same as 4.55
4.77 Same as 4.55

Table 3: Unknotting sequences for some 4-crossing knots.
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K H OW S F (K) K H OW S F (K) K H OW S F (K)

0.1 0 0 0 0 4.31 0 0 1–2 4.70 1 1 1–2
2.1 1 1 1 1 4.32 1 1 1 1 4.71 0 0 1–2
3.1 1 1 1 1 4.33 1 1 1 1 4.72 0 0 1–2
3.2 1 1 1 1 4.34 1 1 1 1 4.73 2 2 2 2
3.3 2 1 2 2 4.35 1 1 1 1 4.74 1 1 1 1
3.4 1 1 1 1 4.36 2 0 2 2 4.75 0 0 1–2
3.5 2 0 2–3 4.37 3 1 3 3 4.76* 0 0 1
3.6 0 0 1–4 4.38 1 1 1 1 4.77* 0 0 1
3.7 2 0 2–3 4.39 1 1 1 1 4.78 3 1 3–4
4.1 2 2 2 2 4.40 1 1 1 1 4.79 1 1 1 1
4.2 0 0 1–2 4.41* 0 0 1 4.80 3 2 3 3
4.3 2 2 2 2 4.42 1 1 1 1 4.81 2 2 2 2
4.4 1 1 1 1 4.43 2 2 2 2 4.82 3 1 3 3
4.5 1 1 1 1 4.44 1 1 1–2 4.83 2 1 2 2
4.6 0 0 1–2 4.45 2 2 2 2 4.84 1 1 1–2
4.7 2 2 2 2 4.46 0 0 1–2 4.85 2 0 2–3
4.8 0 0 1–2 4.47* 1 2 2 4.86 2 0 2–3
4.9 1 1 1–3 4.48 3 1 3 3 4.87 4 1 4–5
4.10 1 1 1–2 4.49 1 1 1 1 4.88 1 1 1 1
4.11 2 1 2 2 4.50 1 1 1 1 4.89 4 0 4 4
4.12 0 0 1–2 4.51 0 0 1–2 4.90 0 0 1–2
4.13 0 0 1–2 4.52 1 1 1 1 4.91 4 2 4–6
4.14 1 1 1–2 4.53 2 2 2 2 4.92 3 1 3–5
4.15 2 1 2 2 4.54 1 1 1 1 4.93 2 1 2 2
4.16 0 0 1–2 4.55* 0 0 1 4.94 1 1 1–6
4.17 1 1 1 1 4.56* 0 0 1 4.95 3 1 3–5
4.18 1 1 1 1 4.57 1 1 1 1 4.96 2 0 2–3
4.19 1 1 1–2 4.58* 0 0 1 4.97 1 1 1–2
4.20 1 1 1 1 4.59* 0 0 1 4.98 0 0 1–3
4.21 2 0 2 2 4.60 1 1 1 1 4.99 0 0 1–3
4.22 1 1 1 1 4.61 1 1 1–5 4.100 2 2 2–7
4.23 1 1 1 1 4.62 3 1 1–4 4.101 3 1 3–4
4.24 2 1 2–3 4.63 2 1 2 2 4.102 2 2 2–4
4.25 2 2 2 2 4.64 1 1 1 1 4.103 3 1 3–6
4.26* 1 2 2 4.65 2 0 2–4 4.104 3 1 3–6
4.27 1 1 1–2 4.66 2 1 2–3 4.105 0 0 1–5
4.28 2 2 2 2 4.67 1 1 1–3 4.106 2 0 2–4
4.29 2 1 2 2 4.68 0 0 1–2 4.107 0 0 1–4
4.30 1 1 1–2 4.69 1 1 1–3 4.108 0 0 1–4

Table 4: Table of forbidden numbers for virtual knots with at most four
crossings.
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