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Abstract
We find the minimal number of non-trivial links in an embedding of any

complete k-partite graph on 7 vertices (includingK7, which has at least 21
non-trivial links). We give either exact values or upper andlower bounds for the
minimal number of non-trivial links for all completek-partite graphs on 8 vertices.
We also look at larger complete bipartite graphs, and state aconjecture relating
minimal linking embeddings with minimal book embeddings.

1. Introduction

The study of links and knots in spatial graphs began with Conway and Gordon’s
seminal result that every embedding ofK6 contains a non-trivial link and every em-
bedding of K7 contains a non-trivial knot [2]. Their result sparked considerable in-
terest inintrinsically linked and intrinsically knottedgraphs—graphs with the property
that every embedding inR3 contains a pair of linked cycles (respectively, a knotted
cycle). Robertson, Seymour and Thomas [15] gave a Kuratowski-type classification of
intrinsically linked graphs, showing that every such graphcontains one of the graphs
in the Petersen familyas a minor (see Fig. 1).

However, while their result answers the question ofwhich graphs are intrinsically
linked, it does not addresshow they are linked, and how complicated the linking must
be. In this paper, we measure the “complexity” of a graph (with respect to intrinsic
linking) by the minimal number of non-trivial links in any embedding of the graph
(denotedmnl(G)).

This is not the only possible measure of complexity. Rather than counting the
number of links, one could focus instead on the complexity ofthe individual links.
Flapan [6] has given examples of graphs which must contain links with large linking
numbers, and Flapan et al. [7] constructed graphs whose embeddings must contains
links with many components. Recently, the second author, with Flapan and Naimi, has
generalized these results to show that there are graphs whose embedding must contain
a link with arbitrarily complexlinking patterns[8].

In other work, the authors have used the notion ofvirtual spatial graphsto form
a filtration of graphs based on the presence of virtual links in a graph’s virtual dia-
grams ([4]). These various measures of complexity are quitedifferent; for example,
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Fig. 1. The Petersen family of graphs.

while all the graphs in the Petersen family havemnl(G) = 1, in the virtual filtration
they fall into two distinct levels. While bothK6 and K7 can be embedded with only
Hopf links, mnl(K6) = 1 while we will show thatmnl(K7) = 21.

Our goal in this paper is to count the minimal number of non-trivial links in small
(7 or 8 vertices) completek-partite graphs. We obtain complete results for graphs on
7 vertices, and upper and lower bounds formnl(G) for graphs on 8 vertices (see Ta-
ble 1). In the final sections, we look at larger complete bipartite graphs, and conjecture
a relationship between minimal number of non-trivial linksand minimal book embed-
dings of graphs.

2. Preliminary results and definitions

We first make some observations.

Proposition 1. For any n, the graphs Kn,1, Kn,2, Kn,3, Kn,1,1, Kn,2,1 and Kn,1,1,1

have linkless embeddings.

Proof. All of these graphs are subgraphs ofKn,1,1,1. However, any cycle inKn,1,1,1

must use at least two of the vertices of degreen + 2, so there are no pairs of disjoint
cycles, and hence no links.

The next result is due to the fact thatK6 is a minor-minimal intrinsically linked
graph [11].

Proposition 2. The only intrinsically linked graph with six or fewer vertices is
K6, which can be embedded with exactly one non-trivial link.
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DEFINITION 1. Given a graphG, we definemnl(G) to be the minimal number
of non-trivial links in any embedding ofG in R3.

Our results are summarized in Table 1. Since we have only considered graphs
with 8 or fewer vertices, all links have two components (three disjoint cycles requires
at least 9 vertices). And since almost all of our arguments are based on the linking
number modulo 2, we are really counting the number of two-component links with
odd linking number. For most of these graphs this is sufficient, but it is known that
some graphs will always have non-trivial links with even linking number [3].

We found upper bounds for the minimal number of non-trivial links by computing
this number for specific examples. This was done usingMathematica, by modifying a
program written by Ramin Naimi [13]. The program computes the linking number of
all pairs of cycles. To check for non-trivial links with linking number 0, such as the
Whitehead link, the program also produced a list of all pairsof cycles with more than

Table 1. Minimum number of links for complete partite graphs
on 7 and 8 vertices.

Graphs on7 vertices
G mnl(G)
K6,1 0
K5,2 0
K4,3 0
K5,1,1 0
K4,2,1 0
K3,3,1 1
K3,2,2 0
K4,1,1,1 0
K3,2,1,1 1
K2,2,2,1 0
K3,1,1,1,1 3
K2,2,1,1,1 1
K2,1,1,1,1,1 9
K7 21

Graphs on8 vertices
G mnl(G)
K7,1 0
K6,2 0
K5,3 0
K4,4 2
K6,1,1 0
K5,2,1 0
K4,3,1 6
K4,2,2 2
K3,3,2 17
K5,1,1,1 0
K4,2,1,1 6
K3,3,1,1 25
K3,2,2,1 28
K2,2,2,2 3
K4,1,1,1,1 12
K3,2,1,1,1 34� mnl(G) � 43
K2,2,2,1,1 30� mnl(G) � 42
K3,1,1,1,1,1 53� mnl(G) � 82
K2,2,1,1,1,1 54� mnl(G) � 94
K2,1,1,1,1,1,1 111� mnl(G) � 172
K8 217� mnl(G) � 305
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4 crossings, which were checked manually.

NOTATION. In the remainder of this paper, unless otherwise specified,a link refers
to a non-trivial link.

3. Counting links in complete graphs with 7 vertices

In this section, we will consider completek-partite graphs on 7 vertices. By Propo-
sition 1, we need not considerK6,1, K5,2, K4,3, K5,1,1, K4,2,1 or K4,1,1,1. This leaves
us with 8 graphs, shown in Fig. 2.

Proposition 3. The graphs K3,2,2 and K2,2,2,1 have linkless embeddings.

Proof. The embeddings shown in Fig. 2 are linkless.

Proposition 4. Every embedding of K3,3,1 contains a non-trivial link consisting
of a 3-cycle linked with a4-cycle. Moreover, K3,3,1 can be embedded with exactly one
non-trivial link (so mnl(K3,3,1) = 1).

Proof. Motwani et al. [11] showed that every embedding ofK3,3,1 contained a
link with odd linking number. Since every triangle (3-cycle) in K3,3,1 must contain the
vertex of degree 6, we do not have two disjoint triangles. So the link must consist
of a triangle (containing the preferred vertex) and a square. The embedding in Fig. 2
contains exactly one non-trivial link.

The key idea in the rest our proofs in this section is to look for copies of K3,3,1

inside our other graphs.

Proposition 5. mnl(K3,2,1,1) = 1.

Proof. K3,2,1,1 containsK3,3,1 as a subgraph, so it must contain at least one non-
trivial link. The embedding in Fig. 2 contains exactly one non-trivial link.

Proposition 6. mnl(K3,1,1,1,1) = 3.

Proof. Consider an embeddingF of K3,1,1,1,1. Label the vertices of degree six
by 1, 2, 3 and 4 (and the other three vertices by 5, 6 and 7). ThenF contains an
embedding ofK3,3,1, using vertex 1 as the preferred vertex. By Proposition 4,F con-
tains a link of a triangle (3-cycle) and square (4-cycle) with odd linking number, in
which vertex 1 is in the triangle. At least one of the vertices2, 3 and 4 isnot in
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Fig. 2. Complete partite graphs on 7 vertices.
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the triangle—without loss of generality, say vertex 4. ThenF contains a second em-
bedding ofK3,3,1 using vertex 4 as the preferred vertex, so there is a second triangle-
square link with odd linking number, this time with vertex 4 in the triangle. Hence,
we have at least two distinct nontrivial triangle-square links in F .

Now, let us consider one of these triangle-square links in more detail; the one in
which vertex 1 is in the triangle. If the triangle contains three of the four vertices 1,
2, 3, 4, the remaining four vertices ofK3,3,1 form a copy of of K3,1, which has no
cycles. So the triangle cannot contain three of these vertices, but must contain at least
two of them. Without loss of generality, we can assume that the cycles in the link are
125 and 3647. Since vertices 3 and 4 are adjacent inK3,1,1,1,1, F contains cycles 364
and 473. We now look at these cycles homologically in the complement of the triangle
125, as elements ofH1(R3 � F(125))�= Z. The isomorphism is simply given by the
linking number of the cycle with cycle 125. In homology, [3647] = [364]+[473]. Since
[3647] is odd, exactly one of [364] and [473] is also odd, so triangle 125 must link
one of the triangles 364 or 473 with odd linking number. SoF contains at least one
nontrivial triangle-triangle link.

So F must contain at least 3 non-trivial links. But the embeddingof K3,1,1,1,1 in
Fig. 2 has exactly 3 non-trivial links, somnl(K3,1,1,1,1) = 3.

Proposition 7. mnl(K2,2,1,1,1) = 1.

Proof. SinceK2,2,1,1,1 containsK3,3,1 as a subgraph, it must contain at least one
link. The embedding shown in Fig. 2 has exactly one link.

Lemma 1. Let G be a graph which contains a subgraph H isomorphic to K4

and let F be an embedding of G. If a cycle C in G disjoint from H has odd link-
ing number with a3-cycle in H, then it has odd linking number with4 cycles in H.
Moreover, if C has odd linking number with a4-cycle S in H, then it has odd linking
number with two4-cycles in H.

Proof. Consider the subgraph ofF induced byH . This subgraph gives a tetra-
hedron immersed inR3. Label the faces of this tetrahedronT1, T2, T3, T4. Then [T1] +
[T2] + [T3] + [T4] = 0 in H1(R3� [C]). An even number of these homology classes must
be odd; since we are assuming at least one is odd, either 2 or 4 of them must be odd.
If all 4 are odd, we’re done; so say that only [T1] and [T2] are odd. Then the squares
[T1] + [T3] and [T1] + [T4] are distinct 4-cycles with odd linking number withC. So C
has odd linking number with 4 cycles inK4.

Moreover, if C has odd linking number with one 4-cycle, then cannot have odd
linking number with all four faces, so by the argument above it will link a second
4-cycle.
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Proposition 8. mnl(K2,1,1,1,1,1) = 9.

Proof. Let F be an embedding ofK2,1,1,1,1,1. We will show thatF must contain
at least 3 triangle-triangle links and at least 6 triangle-square links.

Label the two non-adjacent vertices ofK2,1,1,1,1,1 by a and b, and the other ver-
tices 1, 2, 3, 4 and 5. Then removing eithera or b from F leaves us with an em-
bedding ofK6, which contains a triangle-triangle link with odd linking number by [2].
So we get two distinct nontrivial triangle-triangle links—one link containinga but not
b, the other containingb but not a. Consider the link containinga—without loss of
generality, we may assume the link is between cyclesa12 and 345. Then the sub-
graph of F induced by the four verticesb, 3, 4, and 5 is the embedded 1-skeleton of
a tetrahedron. By Lemma 1,a12 links 4 cycles in the tetrahedron, including at least
one additional triangle. So there is at least one more nontrivial triangle-triangle link,
with a in one triangle andb in the other, which is distinct from the previous two. So
F contains at least three nontrivial triangle-triangle links.

Now we will consider triangle-square links. LetM be the set of triangles which
we know have odd linking number with a square (so initially,M = ;). SinceK2,1,1,1,1,1

containsK3,3,1 as a subgraph with vertexi as the preferred vertex (fori 2 S= f1, 2, 3,
4, 5g), it contains a triangle-square link with vertexi in the triangle, by Proposition 4.
Add this triangle to the setM. Continue until all the vertices inS are contained in at
least one triangle inM—at this point, M contains at leastd5=3e = 2 triangles.

Now consider a vertexi 2 S which is contained in only one triangle inM, say
triangle T = i jk . There are two cases to consider.
(1) (f j , kg \ fa, bg = ;) In this case, consider a copy ofK3,3,1 in F in which the
vertices are partitioned (i )(ab�)( jk�). Then there is another triangle-square link, in
which i is in a triangle distinct fromT . So we can add this triangle toM.
(2) (f j , kg \ fa, bg 6= ;) Without loss of generality, sayj = a. Then consider a copy
of K3,3,1 in F in which the vertices are partitioned (i )(abk)(���). Again, we have
another triangle-square link, in whichi is in a triangle distinct fromT .

So every vertex inS is contained in at least two triangles inM, which means that
M contains at leastd10=3e = 4 triangles. SoF contains at least 4 triangle-square links.

The remainder of our proof consists of two cases.
(1) (M contains a triangleT with vertex a) In this case, we will show thatT links
two squares. Without loss of generality, say thatT = a12 links squareb345 with odd
linking number. The verticesb, 3, 4, 5 are all adjacent, so the subgraph they induce
is isomorphic toK4. Then, by Lemma 1,T links a second square with odd linking
number.
(2) (M does not contain a triangle with vertexa) We know thata is contained in at
least one triangle-triangle link, say in triangleT = a12. As in Lemma 1, this means
[345] + [b43] + [b54] + [b35] = 0 in H1(R3 � F(a12)), and either two or four of the
terms are odd. If two are odd, we can combine an odd and even term to get a square
which links T with odd linking number. If all four are odd, then at least twoare the
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same sign—combining these gives a square which linksT with nonzeroeven linking
number. In either case,T links a square.

In both of these cases, we get a new triangle-square link witha in the triangle.
Similarly, we can show there will be a new triangle-square link with b in the triangle.
So we have at least 6 triangle-square links.

The embedding ofK2,1,1,1,1,1in Fig. 2 contains exactly 3 triangle-triangle links and
6 triangle-square links, somnl(K2,1,1,1,1,1) = 3 + 6 = 9.

Finally, we consider the complete graphK7 = K1,1,1,1,1,1,1.

Theorem 1. mnl(K7) = 21.

Proof. Let F be an embedding ofK7. We will show thatF contains at least 21
two-component links with odd linking number. SinceK7 contains 7 distinct copies of
K6 (by ignoring each vertex in turn), it contains at least 7 different triangle-triangle
links (links where both components are 3-cycles) [2].

Using an argument similar to Proposition 8, we will show thatthere are 7 distinct
triangles which each have odd linking number with a square (4-cycle). Lemma 1 will
then imply that there are at least 14 triangle-square links,completing the proof.

Let M be the set of triangles which we have shown to have odd linkingnumber
with a square (so, initially,M = ;). If there is a vertexi in F which has not yet been
used in a triangle inM, then consider a subgraph ofF isomorphic toK3,3,1 which has
i as the preferred vertex (the vertex of degree 6).

By Proposition 4, there is a link in our subgraph with odd linking number, con-
sisting a triangle through vertexi and a square. Add this triangle toM. Since i was
not previously used, this triangle will not yet be an elementof M.

Continue this process until every vertex has been used at least once. Sinced7=3e =
3, M will contain at least 3 triangles. Now consider a vertexi which is used inexactly
one triangleT = i jk in M. Consider a subgraph ofK3,3,1 in F where the vertices are
partitioned (i )( jk�)(���), so the subgraph does not contain the edgejk, and so does
not contain the triangleT . This subgraph will contain a link with odd linking number,
consisting of a triangle through vertexi and a square. This triangle can be added to
M, since it is notT , which was the only triangle inM containing vertexi .

We can continue this process until every vertex is used in at least 2 triangles in
M. At this point, M will contain at leastd14=3e = 5 triangles. Now suppose that
vertex i is used inexactly two triangles,T1 and T2. There are two cases, depending
on whetherT1 and T2 share an edge, or only a vertex.
(1) T1 = i jk and T2 = i j l , so the two triangles share an edge. Then we consider the
K3,3,1 inside F formed using the partition (i )( jkl )(���), which contains neitherT1 nor
T2, but will contain a triangle-square link involving a third triangle T3 through vertex
i . We can addT3 to M.
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(2) T1 = i jk and T2 = i lm, so the two triangles only share the vertexi . Then consider
the K3,3,1 inside F formed using the partition (i )( jk�)(lm�), which contains neitherT1

nor T2. Then, as in the last case, we will get a new triangleT3 containing i which
we can add toM.

So, ultimately, every vertex will be used in at least 3 triangles in M, so the set
will contain at leastd21=3e = 7 triangles. So there are at least 7 distinct triangles inF
which have odd linking number with a square. By Lemma 1, this gives us at least 14
different triangle-square links. In addition, there are atleast 7 different triangle-triangle
links, for a total of 21 distinct links.

Fig. 2 shows an embedding ofK7 which contains exactly 21 links, which shows
that mnl(K7) = 21.

4. Counting links in complete graphs with 8 vertices

Now we turn to complete graphs on 8 vertices. By Proposition 1, we do not need
to considerK7,1, K6,2, K5,3, K6,1,1, K5,2,1 or K5,1,1,1. This leaves us with 15 other
graphs; these are shown in Figs. 3 and 4.

The following lemma will be useful in several of our proofs.

Lemma 2. Given any embedding F of K4,4 and any edge e, there is a non-
trivial link in F containing the edge e.

Proof. Without loss of generality, partition the vertices of K4,4 as (1357)(2468),
and lete be the edge 78. If we contracte in F we get an embedding ofK3,3,1, which
contains a link of a triangle (passing through the contracted vertex 7=8) and a square.
This lifts to a link in F of two squares, withe in one of the squares, as desired.

Proposition 9. mnl(K4,4) = 2.

Proof. By Lemma 2, every edge ofK4,4 is in a link. The only cycles inK4,4 are
squares, so every link is between 2 squares, and involves 8 edges. There are a total of
16 edges inK4,4, so for every edge to be in a link, we must have at least two different
square-square links (in the minimal case, no two of these squares share an edge). The
embedding shown in Fig. 3 contains exactly two links, somnl(K4,4) = 2.

Proposition 10. mnl(K4,3,1) = 6.

Proof. K4,3,1 contains 4 different subgraphs isomorphic toK3,3,1 (by choosing 3
of the 4 vertices in the first partition), so any embedding contains at least 4 differ-
ent triangle-square links, by Proposition 4. Moreover,K4,3,1 contains a subgraph iso-
morphic toK4,4, so any embedding contains at least 2 different square-square links, by
Proposition 9. So any embedding ofK4,3,1 contains at least 6 links, and the embedding
shown in Fig. 3 has exactly 6.
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Fig. 3. Complete partite graphs on 8 vertices.
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Fig. 4. More complete partite graphs on 8 vertices.



184 T. FLEMING AND B. MELLOR

Fig. 5. The pyramidK2,2,1.

Proposition 11. mnl(K4,2,2) = 2.

Proof. K4,2,2 containsK4,4, so mnl(K4,2,2) � 2, by Proposition 9. But the em-
bedding in Fig. 3 has exactly two links, somnl(K4,2,2) = 2.

Lemma 3. Let G be a graph which contains a subgraph H isomorphic to K2,2,1

(the 1-skeleton of a pyramid) and let F be an embedding of G. If a cycle C has odd
linking number with one of the faces of the pyramid in F, then it has odd linking
number with at least6 cycles in the embedding of H in F, and links at least two
pentagons(possibly one with even linking number).

Proof. Say that the vertices ofH are (13)(24)(a). The faces of the pyramid are
the cyclesa12, a14, a23, a34 and 1234 (see Fig. 5). So inH1(R3 � C), the sum
[a12] + [a14] + [a23] + [a34] + [1234] = 0, which means that an even number of the
homology classes are odd. SinceC has odd linking number with at least one face, it
must have odd linking number with either 2 or 4 of the faces. There are several cases
to consider.

CASE 1. C has odd linking with one triangular face and the square face (with-
out loss of generality, [a12] and [1234]). ThenC will also have odd linking with the
cycles obtained by adding each of these to each of the other faces (except [a12] and
[a34], which are not adjacent), namely [a123], [a412], [a4123], [a1234] and [a3412].
So in this caseC links 7 cycles.

CASE 2. C has odd linking with two adjacent triangular faces (say [a12] and
[a23]). ThenC also has odd linking with [a412], [a234], [a2341] and [a3412]. So
C links 6 cycles.

CASE 3. C has odd linking with two non-adjacent triangular faces (say[a12] and
[a34]). ThenC also has odd linking with [a123], [a412], [a341], [a234], [a2341] and
[a4123]. SoC links 8 cycles.

CASE 4. C has odd linking with all four triangular faces. ThenC also links the
four pentagons formed by adding the base square to each of these triangles. SoC links
a total of 8 cycles.
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CASE 5. C has odd linking with three triangular faces and the square face (say
[a12], [a23], [a34] and [1234]). ThenC also has odd linking with [a1234], [a412]
and [a341] (the results of adding [a14] to each of its adjacent faces). Also, since
[a12] + [a23] + [a34] + [1234] = 0, and all four linking numbers are odd, the three
triangles cannotall equal�[1234]. So there is another pentagon which linksC with
non-zero (even) linking number. SoC links 8 cycles in this case.

In every case,C links at least 6 cycles inK2,2,1, including at least two pentagons.

Proposition 12. mnl(K3,3,2) = 17.

Proof. First of all, observe that the embedding ofK3,3,2 in Fig. 3 has 17 links
(1 triangle-triangle, 6 triangle-square, 6 triangle-pentagon and 4 square-square), so we
know thatmnl(K3,3,2) � 17.

Let F be an embedding ofK3,3,2. Say the the vertices ofK3,3,2 are partitioned
(135)(246)(ab). Then there are two copies ofK3,3,1 inside K3,3,2—one using vertexa,
and the other using vertexb. So, by Proposition 4, there are two triangle-square links
in F with odd linking number, each involving one of the verticesa or b (in the trian-
gle) and the six vertices 1, 2, 3, 4, 5, and 6. Without loss of generality, say that one
of these links is between the triangleT = a12 and the squareS = 3456. Johnson and
Johnson [10] showed thatT will also link at least one of the four pentagonsb3456,
3b456, 34b56, or 345b6. Similarly, the other triangle-square link (b in the triangle)
will induce a triangle-pentagon link witha in the pentagon. Without loss of general-
ity, assumeT links the pentagonP = b3456.

The subgraph ofK3,3,2 induced by the vertices ofP is the 1-skeleton of a pyramid
in F , with faces 3456,b43, b54, b65 andb36. By Lemma 3,T links at least 6 cycles
in this pyramid. Moreover, sinceT links the square face, we are in either Case 1 or
Case 5 of Lemma 3, soT links at least 7 cycles (includingS and P). In Case 1,T
links one triangle, two additional squares and two additional pentagons. In Case 5,T
links three triangles, two additional squares and one additional pentagon.

So in either case we have at least 5 new links. Similarly, the triangle-square link
coming from K3,3,1 with b in the triangle also gives at least 5 new links, and these
two sets of links can overlap in at most one triangle-triangle link. So there are at least
4 + 9 = 13 links—at least 1 triangle-triangle, 6 triangle-square, 4 triangle-pentagon and
2 others (either triangle-triangle or triangle-pentagon)

In fact, F must contain at least 6 triangle-pentagon links. If the 2 undetermined
links are triangle-triangle links, then there are two additional triangles involved in links.
By Lemma 3, each of these must link a pentagon (in fact, two) inthe complementary
pyramid. SoF has at least 4 + 2 = 6 triangle-pentagon links.

Finally, we consider square-square links. SinceK3,3,2 contains a subgraph iso-
morphic to K4,4-edge (by partitioning the vertices (135a)(246b)), it contains at least
one square-square link, witha and b in different squares. Then we can get a second
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subgraph isomorphic toK4,4-edge by groupinga with 2, 4, 6 andb with 1, 3, 5, giving
a different square-square link. SoF contains at least 2 square-square links.

So far, we know thatF contains at least 1 triangle-triangle link, at least 6 triangle-
square links, at least 6 triangle-pentagon links and at least 2 square-square links, for a
total of 15 links.

Once again, let’s consider the link ofT = a12 with S = 3456. Does 3456 link
a1b2 as well? Since [a1b2] = [a12] + [b21] in H1(R3� S), if [a1b2] = 0, then [b21] =�[a12] 6= 0. By Lemma 3,b21 will also link a triangle. Thena12 andb21 areeach
involved in a triangle-triangle link, and since they can’t link each other, this forcesF
to have at least two triangle-triangle links. And, as above,looking at the other triangle
in each of these triangle-triangle links will force two new triangle-pentagon links. This
adds at least three links to the 15 we have, for a total of 18, larger than the known
minimum.

So, in a minimal case, 3456 must linka1b2. Similarly, the triangle-square link
with b in the triangle (which now cannot beb12 with 3456) will give another new
square-square link witha and b in the same square. So a minimal diagram must have
at least 17 links, completing the proof.

Proposition 13. mnl(K4,2,1,1) = 6.

Proof. SinceK4,2,1,1 contains K4,3,1, it contains at least 6 non-trivial links by
Proposition 10. The embedding in Fig. 3 has exactly 6 non-trivial links.

Proposition 14. mnl(K3,3,1,1) = 25.

Proof. We first observe that the diagram ofK3,3,1,1 in Fig. 3 has 25 links (1
triangle-triangle, 10 triangle-square, 6 triangle-pentagon and 8 square-square), so
mnl(K3,3,1,1) � 25.

We will partition the vertices ofK3,3,1,1 as (135)(246)(a)(b). Then, by Proposi-
tion 12, there are at least 17 links, none of which involve theedgeab.

As in the proof of Proposition 12, we assume without loss of generality that we
have a link between trianglea12 and square 3456. We observed in the proof of Propo-
sition 12 that a minimal diagram forK3,3,2 must contain a square-square link between
cycles a1b2 and 3456. We will show that if this doesnot occur in our diagram of
K3,3,1,1, then there must be more than 25 links, so the diagram is not minimal.

Assume that we donot have a link between squaresa1b2 and 3456; at this point,
the embedding ofK3,3,2 has at least 15 links. Then, as in Proposition 12, we have a
link between cyclesb12 and 3456, and each ofa12 andb12 must be involved in a
(now distinct) triangle-triangle link with new triangles,so there are at least 16 links.
Say thata12 is linked withbxy. If we look at the “complementary pyramid” tobxy,
Lemma 3 shows that trianglebxy must link at least 5 other cycles in addition toa12.
This is also true for the triangleawz linked with b12; this adds 10 new links, for a
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total of 26 in the embeddedK3,3,2. But this is larger than the known minimum for
K3,3,1,1; so this case can be ignored.

So we may now assume wedo have a link between squaresa1b2 and 3456. In
K3,3,1,1, where we have the edgeab, this means thateither ab1 or ab2 (but not both)
have odd linking number with 3456, bringing our total numberof links to 18.

Also, we mustnot have a link betweenb12 and 3456 (since 3456 already links
a12), so the triangle-square link inK3,3,2 which is induced byK3,3,1 as in Proposi-
tion 12 involves some other trianglebxy and a new squareS 6= 3456. If eitherx or
y are the vertices 1 or 2, thenbxy and a12 cannot be linked, meaning that they give
rise to distinct triangle-triangle links with two other triangles. As before (whena1b2
and 3456 were not linked), this will lead to more than 25 linksin our diagram. So,
without loss of generality, we can assume that our other triangle square link is between
b34 and 1256, and thatb34 anda12 are linked.

By the same argument as before, this gives a square-square link of squarea3b4
with 1256, and hence a new triangle-square link with eitherab3 or ab4 linking 1256.
So our total number of links is now 19.

Without loss of generality, say thatab1 has odd linking with 3456. Notice that in
H1(R3�ab1), [3456] = [3452] + [3256], soab1 must also have odd linking with either
3452 or 3256, giving us a new triangle-square link. Similarly, we will get another
triangle-square link involvingab3 or ab4. This gives us a total of 21 links.

So we have at least 4 links where a 3-cycleabx is linked with a 4-cycleS; call
the remaining vertexy. Thena, b, x and y form a tetrahedron; by Lemma 1,S links
4 cycles in this tetrahedron. In each case, one of these cycles gives a link we have not
previously counted (we leave the details to the reader). This leaves us with at least 4
new links, for a grand total of 25. Somnl(K3,3,1,1) = 25.

Lemma 4. Let G be a graph which contains K2,1,1,1 as a subgraph and let F
be an embedding of G. If a cycle C has odd linking number with a triangle of K2,1,1,1

in F , then it has odd linking number with at least8 cycles in F.

Proof. Notice thatK2,1,1,1 is the 1-skeleton of two tetrahedra joined along one face.
This gives a two-cycle trivial inH1(R3 � C), so the sum of the faces is homologically
trivial. This is shown in Fig. 6 (herea andd are the vertices of degree 3). This 2-cycle
has six triangular faces:abc, ace, aeb, dcb, dbe and dec. Homologically, we have
that [abc] + [ace] + [aeb] + [dcb] + [dbe] + [dec] = 0. SinceC links at least one of these
faces with odd linking number, it must link 2, 4 or 6 of the faces with odd linking
number.

There are 9 squares inK2,1,1,1, each formed by joining two adjacent faces. Three
of these containa but notd: [abce] = [abc]+[ace], [aceb] = [ace]+[aeb] and [aebc] =
[aeb] + [abc]. Three containd but nota: [dbce] = [dbc] + [dce], [dceb] = [dce] + [deb]
and [debc] = [deb]+ [dbc]. Finally, three contain botha andd: [abdc] = [abc]+ [bdc],
[acde] = [ace] + [cde] and [aedb] = [aeb] + [edb].
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Fig. 6. K2,1,1,1.

There are also 6 pentagons inK2,1,1,1, each formed by joining three triangular
faces:

[abcde] = [abc] + [ace] + [dec] = [abe] + [dbc] + [deb],

[abdce] = [abc] + [dcb] + [ace] = [dce] + [abe] + [deb],

[abdec] = [abe] + [deb] + [aec] = [abc] + [dec] + [dcb],

[abedc] = [abe] + [dce] + [aec] = [abc] + [dbe] + [dcb],

[acbde] = [acb] + [abe] + [deb] = [ace] + [dec] + [dcb],

[acdbe] = [acb] + [abe] + [dbc] = [ace] + [dec] + [dbe].

There are several cases to consider:
(1) (C links 2 faces sharing a 3-valent vertex) Without loss of generality, assume that
[abc] and [ace] are odd; thenC has odd linking with 4 squares and 4 pentagons, for
a total of 10 links.
(2) (C links 2 facesnot sharing a 3-valent vertex, but sharing an edge) Without loss
of generality, assume that [abc] and [bcd] are odd; thenC has odd linking with 4
squares and 2 pentagons, for a total of 8 links.
(3) (C links 2 faces not sharing an edge) Without loss of generality, assume that
[abc] and [dbe] are odd; thenC has odd linking with 6 squares and 4 pentagons, for
a total of 12 links.
(4) (C links 4 faces, with three sharing a 3-valent vertex) Withoutloss of generality,
assume that [abc], [ace], [abe] and [dec] are odd; thenC has odd linking with 4
squares and 2 pentagons, for a total of 10 links.
(5) (C links 4 faces, all sharing a 4-valent vertex) Without loss ofgenerality, assume
that [abc], [ace], [bcd] and [dec] are odd (the four faces sharing vertexc); thenC has
odd linking with 4 squares and 4 pentagons, for a total of 12 links.
(6) (C links 4 faces, with two sharing vertexa, two sharing vertexd, and not all
sharing a 4-valent vertex) Without loss of generality, assume that [abc], [ace], [dcb]
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and [dec] are odd; thenC has odd linking with 6 squares and 2 pentagons, for a total
of 12 links.
(7) (C links 6 faces) In this case,C has odd linking with all the 3-cycles, none of
the 4-cycles, and all of the 5-cycles, for a total of 12 links.

So C links at least 8 cycles inK2,2,2,1.

Proposition 15. mnl(K3,2,2,1) = 28.

Proof. The diagram forK3,2,2,1 shown in Fig. 3 has 28 links (2 triangle-triangle,
10 triangle-square, 10 triangle-pentagon and 6 square-square), so we know that
mnl(K3,2,2,1) � 28.

Assume the vertices ofK3,2,2,1 are partitioned (123)(45)(67)(8). First, let’s con-
sider the square-square links. There are several subgraphsisomorphic toK4,4� edge,
which always contains at least one square-square link [11].First, partition the vertices
(1234)(5678) to get a square-square link (where 5 is adjacent to 1, 2 or 3), and then
repartition them (1235)(4678) to get another (where 5 is notadjacent to 1, 2 or 3). In
both of these, 6 and 7 are each adjacent to at least one of vertices 1, 2, or 3. So we
can partition the vertices (1236)(4578) and (1237)(4568) to get two new square-square
links. In all of the links we have found so far, vertex 8 was adjacent to at least one of
1, 2, or 3 in one of the squares. If we consider the partition (1238)(4567) we have a
subgraph isomorphic toK4,4 in which 8 is not adjacent to 1, 2, or 3. By Proposition 9
this subgraph contains two new square-square links. So we have a total of at least 6
square-square links in any embedding ofK3,2,2,1.

Now we observe thatK3,2,2,1 contains two subgraphs isomorphic toK3,3,2—one
obtained by partitioning the vertices (123)(458)(67), andthe other by partitioning the
vertices (123)(678)(45). Each of these subgraphs containsat least 13 triangle-triangle,
triangle-square and triangle-pentagon links (involving two different triangles) by the
proof of Proposition 12; the question is the extent to which these overlap.

We know that the copy ofK3,3,2 determined by the partition (123)(458)(67) con-
tains two different triangles involved in links (and possibly others); denote theseT1 and
T2 (vertex 6 is inT1, vertex 7 is inT2). We first consider the case that neitherT1 nor
T2 contain vertex 8 (the unique 7-valent vertex inK3,2,2,1). Without loss of generality,
say thatT1 = 146 andT2 = 257, soT1 links the squareS1 = 2538 andT2 links the
squareS2 = 1438. But since our graph contains edges 58 and 48, this means that T1

must link either 258 or 358, andT2 must link either 148 or 348. Call the new trian-
glesT3 andT4. Each of these triangles has a complementary pyramid inK3,2,2,1—since
each links one face, they must each link at least 5 additionalcycles in their respective
pyramids (by Lemma 3), giving at least 10 new links. This means we have at least
6 + 13 + 10 = 29 links, which is larger than the known minimum of 28.

So eitherT1 or T2 must contain vertex 8. Without loss of generality, sayT1 = 146
and T2 = 287. But thenT2 is not a cycle in the copy ofK3,3,2 determined by the
partition (123)(678)(45) (althoughT1 is). So this graph must contain another triangle
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T3 passing through vertex 8 (butnot vertex 7) which is involved in links, by the same
argument as before. By the argument in the proof of Proposition 12, T2 and T3 are
each contained in one triangle-triangle link (which must bedifferent, sinceT2 and T3

are not disjoint cycles), 3 triangle-square links and 3 triangle-pentagon links. So we
have a total of 6 + 7 + 7 = 20 links.

It remains to count the links involving triangleT1. The subgraph induced by the
other vertices is isomorphic toK2,1,1,1 (i.e. K5�edge). By Lemma 4,T1 links at least
8 cycles in this subgraph. However, to avoid introducing newtriangles (which would
force more than 28 links), it will link the facesT2 and T3, which donot share any of
the edges 78, 58 or 57; so if we look at the cases in the proof of Lemma 4, we see
that T1 must link at least 10 cycles. At most two of these are the triangle-triangle links
we have already counted, leaving us with 8 new links. This brings our total to 28.
Since we have an example with exactly 28 links, we know thatmnl(K3,2,2,1) = 28.

Proposition 16. mnl(K2,2,2,2) = 3.

Proof. Say the vertices ofK2,2,2,2 are partitioned (12)(34)(56)(78). Then there is
a subgraph isomorphic toK4,4 by grouping the vertices (1234)(5678); by Proposition 9,
this subgraph has at least 2 square-square links. Without loss of generality, say that
one of these links uses edge 15; then we can get a different subgraph isomorphic to
K4,4 by grouping vertices (1256)(3478), which does not contain the edge 15. This
subgraphalso has at least two square-square links, and at least one of these must be
new. So K2,2,2,2 must have at least 3 square-square links. The embedding in Fig. 4
has exactly 3 square-square links, somnl(K2,2,2,2) = 3.

Proposition 17. mnl(K4,1,1,1,1) = 12.

Proof. Say that the vertices ofK4,1,1,1,1 are partitioned (1234)(5)(6)(7)(8). Then,
by grouping the vertices (1234)(5678), we have a subgraph isomorphic to K4,4; so
K4,1,1,1 has at least 2 square-square links by Proposition 9.

There are also several subgraphs isomorphic toK3,3,1. For example, if we remove
vertex 4, we can group the remaining vertices (123)(567)(8); by Proposition 4, this
subgraph will have a triangle-square link. Without loss of generality, say this link is
between cycles 158 and 2637. But then we can also look at the subgraph induced
by the same seven vertices using the partition (123)(568)(7). This subgraph does not
contain the edge 58, so it gives us a second triangle-square link, with a new triangle.
Similarly, we get two new triangle-square links by removingeach of vertices 1, 2 and
3, so we have a total of at least 8 triangle-square links.

Finally, consider once again the link between cycles 158 and2637. InK4,1,1,1,1, we
also have the edge 67, so, by our usual homology argument, 158must link either trian-
gle 267 or 367. Moreover, if we now look in the subgraph inducedby (234)(567)(8),
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we get another triangle-triangle link which does not involve vertex 1. So we have at
least 2 triangle-triangle links.

So an embedding ofK4,1,1,1,1 must contain at least 2 + 8 + 2 = 12 links. The em-
bedding shown in Fig. 4 has exactly 12 links (2 triangle-triangle, 8 triangle-square and
2 square-square), somnl(K4,1,1,1,1) = 12.

Proposition 18. 34� mnl(K3,2,1,1,1) � 43.

Proof. The embedding shown in Fig. 4 has exactly 43 links (3 triangle-triangle
links, 16 triangle-square links, 10 square-square links and 14 triangle-pentagon links),
so mnl(K3,2,1,1,1) � 43.

The graphK3,2,1,1,1 has K3,2,2,1 as a subgraph, and hence every embedding con-
tains at least 28 non-split links, by Proposition 15 (2 triangle-triangle, 10 triangle-
square, 10 triangle-pentagon and 6 square-square). Suppose K3,2,1,1,1 is partitioned
(123)(45)(6)(7)(8), and the subgraph isomorphic toK3,2,2,1 is (123)(45)(67)(8). Then
any link using edge 67 will be new. We can find a subgraph of the form K4,4 by parti-
tioning (1236)(4578), and by Lemma 2, there is a square-square link using edge 67, in
which 7 is adjacent to 1, 2 or 3. Partitioning (1237)(4568) wefind anotherK4,4 con-
taining edge 67, but in the square-square link that uses thisedge, 7 is not adjacent to
1, 2 or 3. Thus, we have found two new square-square links thatappear in every em-
bedding ofK3,2,1,1,1 in addition to those arising fromK3,2,2,1, so the lower bound for
mnl(K3,2,1,1,1) is at least 30. SinceK3,2,2,1 has at least 6 square-square links,K3,2,1,1,1

has at least 8 such links.
Now we consider subgraphs ofK3,2,1,1,1 isomorphic toK3,3,2. There are four such

subgraphs, induced by the partitions (123)(456)(78), (123)(457)(68), (123)(458)(67) and
(123)(678)(45). Each of these subgraphs contains a pair of linked triangles, by Propo-
sition 12. However, there is no triangle which appears in all4 subgraphs, so these
links require at least 4 distinct triangles inK3,2,1,1,1 (3 triangles would require one of
the triangles to appear in all four subgraphs, since there isno set of three mutually
disjoint triangles among the four subgraphs). By Proposition 12, each of these trian-
gles is involved in at least 7 links, at least three of which are triangle-square links. So
K3,2,1,1,1 has at least 12 triangle-square links. Moreover, each of these triangles either
links 3 pentagons, or one pentagon and a new triangle which itself links a pentagon,
inducing an additional 3�4 = 12 links. Together with the eight square-square links, this
means that an embedding ofK3,2,1,1,1 has at least 2 + 12 + 12 + 8 = 34 links.

Proposition 19. 30� mnl(K2,2,2,1,1) � 42.

Proof. Say that the vertices ofK2,2,2,1,1 are partitioned (12)(34)(56)(7)(8); then
there is a subgraph isomorphic toK3,2,2,1 obtained from the partition (127)(34)(56)(8).
By Proposition 15, we will have at least 28 links inK2,2,2,1,1, none of which involve
edges 17 or 27.
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There is also a subgraph isomorphic toK4,4, using the partition (1234)(5678). By
Lemma 2, there are square-square links involving edges 17 and 27. If these are differ-
ent, we have two new links. If these are the same link, then there is a square-square
link between square 172x and another squareS, wherex 2 f3, 4, 5, 6, 8g. Since vertices
7 and x are adjacent inK2,2,2,1,1, S will also link either 17x or 27x, and neither of
these triangles are inK3,2,2,1. So, once again, we have at least two links which were
not in K3,2,2,1.

This gives a lower bound of 30 links inK2,2,2,1,1. The embedding shown in Fig. 4
has 42 links (3 triangle-triangle, 15 triangle-square, 15 triangle-pentagon and 9 square-
square).

Proposition 20. 53� mnl(K3,1,1,1,1,1) � 82.

Proof. Partition the vertices ofK3,1,1,1,1,1as (123)(4)(5)(6)(7)(8). There are three
subgraphs of the formK2,1,1,1,1,1, obtained by deleting one off1, 2, 3g. Each of these
subgraphs contains at least 3 triangle-triangle links. If such a link is contained in two
of these subgraphs, then it cannot be contained in the third.Thus we have at leastd9=2e = 5 triangle-triangle links.

To count triangle-square links, we delete vertices one at a time. Deleting one of
vertices 1 through 3 leaves a copy ofK2,1,1,1,1,1, which contains at least 6 triangle-
square links. Since there are three such graphs, this give 18triangle-square links.
Deleting one of vertices 4 through 8 leaves a copy ofK3,1,1,1,1 which contains at least
2 distinct triangle-square links, for a total of 10. Thus, every embedding ofK3,1,1,1,1,1

contains at least 10+18 = 28 triangle-square links.
There are 5 distinct ways to form aK4,4 subgraph ofK3,1,1,1,1,1, these are of the

form (123i )(����). Each copy ofK4,4 contains at least two square-square links. Notice
that as vertices 1 through 3 must be in the same partition, each of these square-square
links is contained in only one of theK4,4 subgraphs above, so we have 10 distinct
square-square links.

We now examine subgraphs of the formK3,3,2. We may choose to partition the
vertices such that any vertex fromf4 : : : 8g is in the partition of size 2. Thus, these
vertices are contained in at least one triangle that is used in a triangle-pentagon link, by
Proposition 12. Suppose it isi jk . Then partition the vertices (i j )(���)(123). This con-
tains a new triangle-pentagon link, withi used in the triangle. So vertices 4 through 8
are used in at least two such triangles. However, one vertex of each triangle is taken
from the partition (123). Thus there are 10=2 = 5 such triangles involved in triangle-
pentagon links. Since one off1, 2, 3g is used in the triangle, the vertices of the penta-
gon form aK5ne. Thus each of the triangles links at least 2 pentagons (by Lemma 4),
for a total of 10 distinct triangle-pentagon links.

This gives a lower bound of 5+28+10+10 = 53 links. The embedding shown in
Fig. 4 has 82 links (10 triangle-triangle, 34 triangle-square, 24 triangle-pentagon and
14 square-square), so 53� mnl(K3,1,1,1,1,1) � 82.
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Lemma 5. Let G be a graph which contains K5 as a subgraph, let F be an em-
bedding of G, and let P be a5-cycle in this K5. If a cycle C has odd linking number
with P in F, then it has odd linking number with at least three5-cycles in F.

Proof. Notice thatK5�edge =K2,1,1,1. Say thatP = abcde. Consider theK2,1,1,1

formed by removing edgead from the K5 induced by the vertices ofP, as in Fig. 6.
This gives the homology element [P] = [abcde] = [abc] + [ace] + [dec] = [abe] + [dbc] +
[deb]. Since [P] is odd, so are an odd number ofeach set of three triangles, soC
links at least one of the faces.

By Lemma 4, this meansC links at least 8 cycles inK2,1,1,1, including at least
one other pentagon. This pentagon shares at most 3 edges withP, and so has at least
two edges whichP does not. We can form a newK2,1,1,1 by restoring edgead and
removing one of these two edges.C will then link another pentagon on the boundary
of this new 2-cycle, distinct from the other two. SoC links at least 3 pentagons.

Proposition 21. 54� mnl(K2,2,1,1,1,1) � 94.

Proof. Say the vertices are partitioned (12)(34)(5)(6)(7)(8). An embedding of
K2,2,1,1,1,1 contains 4 distinct copies ofK6. Thus, the embedding contains at least 4
triangle-triangle links.

Eliminating one of the vertices 1 through 4 leaves a subgraphof the formK2,1,1,1,1,1.
Each of these contains 6 distinct triangle-square links by Proposition 8. Eliminating
one of vertices 5 through 8 leaves a graph of the formK2,2,1,1,1, each of which con-
tains at least one triangle-square link by Proposition 7. This gives a minimum of 28
distinct square-triangle links in any embedding ofK2,2,1,1,1,1.

By deleting the edges between vertex 8 and vertices 1 and 2, wehave K3,2,1,1,1 as
a subgraph ofK2,2,1,1,1,1. There are at least 8 square-square links in every embedding
of K3,2,1,1,1 by Proposition 18. In addition, any square-square links that use edges 18
or 28 will be distinct from these. Form aK4,4 by the partition (1234)(5678). There is a
square-square link in this graph that uses edge 18. If it doesnot also use edge 28, we
have two new square-square links. So, suppose that this linkdoes use edge 28. Then
without loss of generality, the link is 1825-3647. Form the partition (1256)(3478). This
copy of K4,4 contains edge 18 but does not contain the square 1825, so there must be
some other square-square link using this edge. This also gives two new square-square
links for a total of at least 10 in every embedding.

We count triangle-pentagon links by studying subgraphs of the form K3,3,2. Any
vertex can be placed in the partition of size 2, so every vertex is contained in a tri-
angle that is part of such a link. Suppose vertex 1 is contained in triangle 1jk. Then
form the subgraph (12)(jk�)(���) to get a second triangle-pentagon link. A similar ar-
gument can be made for eachi 2 f1, 2, 3, 4g, thus each of these vertices is contained
in at least 2 distinct triangles, while vertices 5, 6, 7 and 8 are each contained in at
least one. This gives a total of 8 + 4 = 12 triangles (not all distinct). So, we have
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at leastd12=3e = 4 distinct triangles used in triangle-pentagon links. If there are only
four triangles, then each triangleT contains one vertex from (12) and one from (34).
Thus, the complement of these triangles isK5, so eachT links at least 3 pentagons by
Lemma 5. If some triangle contains only one off1, 2, 3, 4g, then the complement of
that triangle isK5ne, so it links with only 2 pentagons, but then, as each off1, 2, 3, 4g
is contained in two triangles, there is at least one more triangle-pentagon link. In either
case, we have at least 12 triangle-pentagon links.

This gives a lower bound of 4 + 28 + 10 + 12 = 54 links. The embedding shown in
Fig. 4 has 94 links (8 triangle-triangle, 34 triangle-square, 34 triangle-pentagon and 18
square-square), so 54� mnl(K3,1,1,1,1,1) � 94.

Proposition 22. 111� mnl(K2,1,1,1,1,1,1) � 172.

Proof. Say the vertices ofK2,1,1,1,1,1,1are partitioned (12)(3)(4)(5)(6)(7)(8). Given
an embedding ofK2,1,1,1,1,1,1, vertices 1 through 7 form a copy ofK2,1,1,1,1,1, which
contains 3 triangle-triangle links by Proposition 8. Clearly, these triangles use vertices
1 through 7. There are 10K6 subgraphs that contain vertex 8, formed by omitting one
of f1, 2g and one off3 : : : 7g, and one formed by vertices 3 through 8. Each of these
contains a triangle-triangle link using vertex 8, so there are at least 3 + 11 = 14 triangle-
triangle links.

Omitting vertices one at time, we obtain two distinct copiesof K7, and six copies
of K2,1,1,1,1,1. By Theorem 1 and Proposition 8, eachK7 contains 14 distinct triangle-
square links, andK2,1,1,1,1,1contains 6 such links. Thus the embedding ofK2,1,1,1,1,1,1

has at least 64 triangle-square links.
To find subgraphs of the formK4,4, we will choose two off3 : : : 8g and group

them with (12). This gives
�6

2

�
= 15 copies ofK4,4. Each copy ofK4,4 contains two

square-square links, but once again, each such link could becontained in two distinct
K4,4’s. Thus, we have at least 15 distinct square-square links.

Look at graphs of the formK3,3,2. We may choose partitions so that every vertex
is in the partition of size two for some subgraph. Thus every vertex is in a triangle
that is used in a triangle-pentagon link. Suppose vertexi is in such a triangle, and
that triangle isi jk . Then we can look at the partition (i�)( jk�)(���) to get a second
triangle-pentagon link withi in the triangle. If i = 1, 2, then we can get a third tri-
angle as follows. If the first two triangles containing vertex 1 are of the form 1jk and
1kl, form (12)(jkl )(���). If they are of the form 1jk and 1lm form (12)(jk�)(lm�).
Thus, vertices 1 and 2 must be contained in at least three distinct triangles that are
used in triangle-pentagon links, and these triangles contain only 1 or only 2. Now we
have 18=3 = 6 distinct triangles used in triangle-pentagon links, and furthermore each
of them must contain either vertex 1 or vertex 2. Thus, the complement of one of
these triangles inK2,1,1,1,1,1,1 is K5, so by Lemma 5, each triangle links at least 3
pentagons. This gives a total of 18 triangle-pentagon links.
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This gives us a lower bound of 14+64+15+18 = 111 links. The embedding shown
in Fig. 4 has 172 links (16 triangle-triangle, 64 triangle-square, 60 triangle-pentagon
and 32 square-square), so 111� mnl(K3,1,1,1,1,1) � 172.

Theorem 2. 217� mnl(K8) � 305.

Proof. K8 contains
�8

6

�
= 28 different copies ofK6, so at least 28 different triangle-

triangle links. It also contains
�8

7

�
= 8 different copies ofK7, so at least 8� 14 = 112

different triangle-square links (by Theorem 1).
To find square-square links, we look at copies ofK4,4 in K8. There are (1=2)

�8
4

�
=

35 ways to partition the 8 vertices ofK8 into two sets of 4, so there are 35 distinct
copies of K4,4 in K8. Each copy ofK4,4 will contribute at least two square-square
links to an embedding ofK8, by Proposition 9. However, each link will be contained
in two different copies ofK4,4—for example, a link between squares 1234 and 5678
would be in theK4,4’s arising from the partitionf1, 3, 5, 7gf2, 4, 6, 8g and from the
partition f1, 3, 6, 8gf2, 4, 5, 7g. So there will be at least 35 different square-square links
in K8.

To count triangle-pentagon links, we look at copies ofK3,3,2 inside K8. By Propo-
sition 12, an embedding ofK3,3,2, wherea andb are the vertices of degree 6, contains
at least one triangle-pentagon link witha in the triangle andb in the pentagon, and
another withb in the triangle anda in the pentagon. LetM be the set of triangles
we know are involved in triangle-pentagon links (so initially M = ;). Let i be a vertex
which does not appear in a triangle ofM. Then we can choose a subgraph ofK8 iso-
morphic to K3,3,2 in which i has degree 6, so there is a triangle containingi which is
part of a triangle-pentagon link. Continuing until every vertex is used, we get at leastd8=3e = 3 triangles.

These triangles have a total of 9 vertices, so some vertices are used only once.
Say vertexi is only in trianglei jk . Then we can choose a partition (i�)( jk�)(���) of
the vertices ofK8 to get another copy ofK3,3,2 which does not contain the edgejk.
So i will be in a different triangle in another triangle-pentagon link, and we can add
this new triangle toM. We can continue in this way until every vertex is used at least
twice, giving at leastd16=3e = 6 triangles.

These triangles have a total of 18 vertices, so some verticesare used only twice.
Say thati is in trianglesT1 = i jk and T2 = i lm. There are two cases, depending on
whetherT1 and T2 share an edge, or only a vertex.
(1) T1 = i jk and T2 = i j l , so the two triangles share an edge. Then we consider the
K3,3,2 inside K8 formed using the partition (i�)( jkl )(���), which contains neitherT1

nor T2, but will contain a triangle-pentagon link involving a third triangle T3 through
vertex i . We can addT3 to M.
(2) T1 = i jk and T2 = i lm, so the two triangles only share the vertexi . Then consider
the K3,3,2 inside K8 formed using the partition (i�)( jk�)(lm�), which contains neither
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T1 nor T2. Then, as in the last case, we will get a new triangleT3 containingi which
we can add toM.
Continuing until every vertex is used three times, we get at leastd24=3e = 8 triangles
in M.

These triangles have a total of 24 vertices, so some verticesare used only three
times. Say vertexi is in trianglesT1 = i jk , T2 = i lm and T3 = ino. We have several
cases.
(1) T1 = i jk , T2 = i jm and T3 = i jo, so all three triangles share an edgei j . Then
use the partition (i j )(���)(���) to form a newK3,3,2. In this subgraph, there will be
a triangle-pentagon link wherei is in the triangle andj is in the pentagon, so the link
does not contain edgei j . This gives us a new triangle forM.
(2) T1 = i jk , T2 = i jm and T3 = imk, so each pair of triangles shares an edge. Then
use the partition (i�)( jmk)(���).
(3) T1 = i jk , T2 = i jm and T3 = imo, so two pairs of triangles share an edge. Then
use the partition (i j )(mok)(���).
(4) T1 = i jk , T2 = i jm and T3 = ino, so just one pair of triangles share an edge. Then
use the partition (i j )(mk�)(no�).
(5) T1 = i jk , T2 = i lm and T3 = ino, so no triangles share an edge. Then use the
partition (i j )(lm�)(no�).
So we can continue until every vertex is used 4 times, yielding at leastd32=3e = 11
triangles inM.

These triangles have a total of 33 vertices, so some verticesare used only 4 times.
Say vertexi is in trianglesT1 = i jk , T2 = i lm, T3 = ino and T4 = i pq. The vertices
i , j , k, l , m, n, o, p, q cannot all be distinct; the “worst case” is when only two are the
same, sayj and l . In this case, use the partition (i j )(no�)(pq�) to get a new triangle
with vertex i . Any other case can be dealt with more easily. So we can continue until
every vertex is used 5 times, yielding at leastd40=3e = 14 triangles inM.

Now we need to determine how many pentagons each of these triangles must link.
Consider a triangle-pentagon link with triangleT and pentagonP. The vertices ofP
induce a subgraph ofK8 isomorphic toK5; so by Lemma 5T links at least 3 pen-
tagons (includingP). So there are at least 14� 3 = 42 triangle-pentagon links.

Adding this up, we have at least 28 + 112 + 35 + 42 = 217 links inK8. The exam-
ple shown in Fig. 4 (motivated by a minimal crossing diagram found by Guy [9]) has
305 links (28 triangle-triangle, 112 triangle-square, 56 square-square and 109 triangle-
pentagon). So 217� mnl(K8) � 305.

5. Counting links in complete bipartite graphs

In this section we will consider completebipartite graphs. In this case, there is a
relatively natural spatial embedding of the graph which we conjecture gives the mini-
mal number of non-trivial links. We prove this result for thegraphsK4,n.
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Fig. 7. Fan embedding ofK4,4.

We will call this the fan embedding. As an example, the fan embedding ofK4,4

is shown in Fig. 7.
For a general complete bipartite graphKm,n, we can describe the embedding by

describing its projection in the plane, as follows. Denote the two sets of independent
vertices bya1, : : : , am and b1, : : : , bn. Place the vertexai along thex-axis at (i , 0) and
the vertexb j along they-axis at (0, j ). Draw the line segmentsai b j . Consider two
segmentsai b j and akbl , wherek > i . Then these segments cross if and only ifj < l ,
and in this caseai b j crossesover akbl .

Theorem 3. mnl(K4,n) = 2
�n

4

�
, and the minimum is realized by the fan embedding.

Proof. Label the two sets of independent vertices inK4,n by a1, a2, a3, a4 and
b1, : : : , bn. The four verticesa1, a2, a3, a4 together with any subsetb j1, b j2, b j3, b j4 of the
b j ’s induce a subgraph ofK4,n isomorphic toK4,4. By Proposition 9, this subgraph
contains at least 2 square-square links. Since each of theselinks use all 8 vertices
in the subgraph, a different subgraph will give different links. There are

�n
4

�
ways to

choose the verticesb j1, b j2, b j3, b j4, so K4,n must contain at least 2
�n

4

�
links.

However, in the fan embedding ofK4,n, the embedding of any such subgraph is
isotopic to the fan embedding ofK4,4 in Fig. 7, which is isotopic to the embedding
of K4,4 in Fig. 3, and hence has exactly 2 links. Moreover, any link inK4,n must
involve all theai ’s and four of theb j ’s, and so is contained in one of these subgraphs.
Therefore, the fan embedding has exactly 2

�n
4

�
links. So mnl(K4,n) = 2

�n
4

�
, realized by

the fan embedding.

This result inspires the following conjecture:
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Conjecture 1. The fan embedding of Km,n realizes mnl(Km,n).

However, it is not so easy even to compute the number of non-trivial links in the
fan embedding. It clearly suffices to consider the case ofKn,n, since any link inKm,n,
m> n, is contained in a subgraph isomorphic toKn,n.

QUESTION 1. How many non-trivial links are in the fan embedding ofKn,n?

We know that there are two non-trivial links in the fan embedding of K4,4, and a
computer calculation shows that there are 150 non-trivial links in the fan embedding of
K5,5 (50 square-square links and 100 square-hexagon links). Thenumber of non-trivial
links is increasing very rapidly, so computer calculationsquickly become infeasible.

6. Minimal book embeddings

We define ann-book Bn as the subset ofR3 consisting of a lineL (the spine) and
n distinct half-planesS1, S2, : : : , Sn (the pages) withL as their common boundary.

DEFINITION 2. Let G be a graph. Ann-book embeddingof G is a tame em-
bedding f : G ! Bn � R3 such that:
(1) f (V(G)) � L.
(2) For each edgee2 E(G), there is exactly one sheetSi such that f (e) � Si .

A minimal book embeddingof a graphG is a book embedding which minimizes
the the number of pages; thepagenumberof G is the number of pages in a minimal
book embedding. Book embeddings, and particularly minimalbook embeddings, mini-
mize the entanglement among the edges of the graph (for example, a book embedding
of a graph cannot contain any local knots along the edges). Soit is reasonable to
think that minimal book embeddings will also minimize the linking or knotting in an
embedding.

Otsuki [14] gave the first results along these lines. Since Conway and Gordon
[2] showed that every embedding ofK6 contains a pair of linked triangles, and ev-
ery embedding ofK7 contains a knotted 7-cycle, it is immediate that every embedding
of Kn contains at least

�n
6

�
pairs of linked triangles, and

�n
7

�
knotted 7-cycles. Otsuki

constructed a particular minimal book embedding ofKn called thecanonical book rep-
resentation, which has the property that removing any vertex gives a canonical book
representation ofKn�1. He used this property to show that the canonical book repre-
sentation ofKn containedexactly

�n
6

�
pairs of linked triangles and

�n
7

�
knotted 7-cycles,

attaining the minimum possible.
In fact, the embedding ofK7 shown in Fig. 2 is a canonical book representation

of K7 ([14], Lemma 3.1). So we can use Theorem 1 to extend Otsuki’s result:
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Fig. 8. Canonical book representation forK8.

Corollary 1. A canonical book representation of Kn contains exactly14
�n

7

�
triangle-square links, attaining the minimum possible.

Proof. EveryK7-subgraph of a canonical book representation ofKn is a canonical
book representation ofK7, and is therefore ambient isotopic to the embedding ofK7

shown in Fig. 2 (by [14], Theorem 1.2). Therefore, each such subgraph contains 14
triangle-square links, and the embedding ofKn contains 14

�n
7

�
triangle-square links. By

Theorem 1, this is minimal.

We can also look at a canonical book representation forK8, as shown in Fig. 8.
We can compute that this embedding contains exactly 305 non-trivial links—28 triangle-
triangle links, 112 triangle-square links, 112 triangle-pentagon links and 53 square-
square links. This is the same total number of links as the embedding shown in Fig. 4,
which leads us to conjecture:

Conjecture 2. For any graph G, there is a minimal book embedding of G which
realizes mnl(G).

However, notice that the embeddings ofK8 in Figs. 4 and 8, while they have the
same total number of non-trivial links, donot have the same number of non-trivial
links of each type; so an embedding which minimizes the totalnumber of non-trivial
links may not minimize the number of non-trivial links of each type.

QUESTION 2. Given integersk and l , is there an embedding ofKn (n � k + l )
which minimizes both the total number of non-trivial links and the number of non-
trivial links between ak-cycle and anl -cycle?
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Fig. 9. An embedding ofK8 with only Hopf links.

Our discussion of complete bipartite graphs in Section 5 also provides some ev-
idence in favor of Conjecture 2. The fan embeddings discussed there are easily seen
to be book embeddings, although not minimal (the fan embedding of Kn,n has a page-
number of n, while Enomoto et al. [5] have shown that the pagenumber is atmostd2n=3e + 1). So once again, it seems reasonable to focus on book embeddings, and if
possible on minimal book embeddings, when trying to minimize the total number of
non-trivial links in a graph embedding.

There are also issues about the interplay between differentmeasures of the com-
plexity of the linking in a graph embedding. For example, while the embeddings ofK8

in Figs. 4 and 8 each have 305 non-trivial links (the smallestnumber we have found),
they also each contain a link with linking number 2. On the other hand, there is an
embedding with only Hopf links (all links have linking number �1), shown in Fig. 9,
but this embedding contains 330 non-trivial links. So it seems there may be a tradeoff
between the number of non-trivial links and the complexity of the individual links.
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