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Abstract. We quantified ambient mixing ratios of 9 monoter-
penes, 6 sesquiterpenes, methyl chavicol, the oxygenated ter-
pene linalool, and nopinone using an in-situ gas chromato-
graph with a quadrupole mass spectrometer (GC-MS). These
measurements were a part of the 2007 Biosphere Effects on
AeRosols and Photochemistry EXperiment (BEARPEX) at
Blodgett Forest, a ponderosa pine forest in the Sierra Nevada
Mountains of California. To our knowledge, these obser-
vations represent the first direct in-situ ambient quantifica-
tion of the sesquiterpenesα-bergamotene, longifolene,α-
farnesene, andβ-farnesene. From average diurnal mixing
ratio profiles, we show thatα-farnesene emissions are de-
pendent mainly on temperature whereasα-bergamotene and
β-farnesene emissions are temperature- and light-dependent.
The amount of sesquiterpene mass quantified above the
canopy was small (averaging a total of 3.3 ppt during the
day), but nevertheless these compounds contributed 7.6% to
the overall ozone-olefin loss rate above the canopy. Assum-
ing that the monoterpene-to-sesquiterpene emission rate in
the canopy is similar to that observed in branch enclosure
studies at the site during comparable weather conditions, and
the average yield of aerosol mass from these sesquiterpenes
is 10–50%, the amount of sesquiterpene mass reacted within
the Blodgett Forest canopy alone accounts for 6–32% of the
total organic aerosol mass measured during BEARPEX. The
oxygenated monoterpene linalool was also quantified for the
first time at Blodgett Forest. The linalool mass contribution
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was small (9.9 ppt and 0.74 ppt within and above the canopy,
respectively), but it contributed 1.1% to the total ozone-olefin
loss rate above the canopy. Reactive and semi-volatile com-
pounds, especially sesquiterpenes, significantly impact the
gas- and particle-phase chemistry of the atmosphere at Blod-
gett Forest and should be included in both biogenic volatile
organic carbon emission and atmospheric chemistry models.

1 Introduction

Biogenic volatile organic compounds (BVOCs), including
monoterpenes (C10H16), sesquiterpenes (C15H24), and oxy-
genated compounds, are important for atmospheric chem-
istry because they contribute to secondary organic aerosol
(SOA) production and play an important role in the oxida-
tive capacity of the atmosphere (Andreae and Crutzen, 1997;
Fuentes et al., 2000). In order to understand the role of
BVOCs in atmospheric chemistry, it is important to quantify
their emissions, atmospheric abundance, and to understand
their atmospheric oxidation.

There is evidence that a substantial fraction of gas and
aerosol phase organic mass in Earth’s atmosphere remains
unmeasured (Goldstein and Galbally, 2007). For example,
many studies indirectly suggest the presence of unmeasured
highly reactive BVOCs in forest ecosystems (Di Carlo et al.,
2004; Goldstein et al., 2004; Holzinger et al., 2005; Farmer
and Cohen, 2008). This evidence highlights the importance
of unmeasured BVOC compounds in understanding gas-
phase chemistry. These biogenic compounds can also signif-
icantly impact SOA formation and growth. Sesquiterpenes
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have become target analytes in biogenic emission analyses
because their molecular mass and reactivity make them more
efficient SOA precursors than other BVOCs. The photoox-
idation of sesquiterpenes has been shown in smog chamber
experiments to generally result in a greater aerosol yield than
monoterpenes (Hoffmann et al., 1996; Griffin et al., 1999). In
fact, the vapor pressure of sesquiterpene oxidation products
from β-caryophyllene ozonolysis andα-humulene photoxi-
dation are on the order of 104–105 times lower than the par-
ent compound (Jaoui et al., 2003; Jaoui and Kamens, 2003),
and therefore a significant fraction will partition into the par-
ticulate phase.

While analytical techniques have been well established
for measuring monoterpene mixing ratios, less volatile and
more reactive compounds, such as sesquiterpenes and oxy-
genated BVOCs, continue to present an analytical challenge
for two main reasons: 1) highly reactive compounds can
be too unstable to survive the typical sampling processes of
solid adsorbent pre-concentration followed by thermal des-
orption or solvent extraction into a gas chromatograph (GC),
and 2) large and low volatility compounds can stick to ma-
terials commonly used in analytical sampling (e.g. tubing,
trapping material, etc.) and never reach the detector (Ortega
and Helmig, 2008).

An increasing number of studies are focusing on quantify-
ing these low volatility BVOCs using a variety of techniques
(e.g. Bouvier-Brown et al., 2007; Ortega and Helmig, 2008),
but they have been concentrating on emissions in branch- or
leaf-level enclosures. The vegetation enclosure provides a
way to measure emissions of reactive BVOCs because ox-
idants can be controlled. However, branch enclosure mea-
surements do not provide direct measurements of sesquiter-
pene and oxygenated BVOC mixing ratios in ambient air.
Typical above canopy measurement techniques have been
unable to detect these highly reactive terpenes. For exam-
ple, Ciccioli et al. (1999) measuredβ-caryophyllene emis-
sions using branch enclosures, but were unable to detect this
sesquiterpene above a Spanish orange orchard.

Sesquiterpenes in ambient air have been measured both
indirectly through correlation with air ions (Bonn et al.,
2007) and by measuringm/z205 using proton transfer reac-
tion mass spectrometry (PTR-MS) (Boy et al., 2008). In-
dividual sesquiterpene compounds in ambient air have been
detected using gas chromatography (Saxton et al., 2007), but
not quantified. Saxton et al. (2007) collected ambient air near
vegetation using thermal desorption tubes packed with adsor-
bents, and they subsequently analyzed the samples in a lab-
oratory off-site. To our knowledge, we are reporting the first
in-situ quantitative measurement of speciated sesquiterpenes
in ambient air.

We quantified trace reactive and semi-volatile BVOCs as
a part of the Biosphere Effects on AeRosols and Photo-
chemistry EXperiment (BEARPEX) 2007. BEARPEX was
a collaborative campaign that included measurements of gas
phase chemicals, particle phase composition, and meteoro-

logical parameters. The goal of BEARPEX was to improve
the understanding of how biogenic and anthropogenic emis-
sions affect the gas phase chemical composition as well as
the formation of SOA within and above the Blodgett Forest
canopy. Blodgett Forest, a ponderosa pine plantation on the
western slope of the Sierra Nevada Mountains, was the site
of previous studies which have concluded that there must be
rapid chemical reactions occurring in the canopy (Goldstein
et al., 2004; Farmer and Cohen, 2008). Unmeasured BVOCs
are also thought to provide a strong ozone sink (Kurpius and
Goldstein, 2003) and create a large flux of oxidation prod-
ucts out of the canopy (Holzinger et al., 2005). Most of the
BVOCs needed to explain these observations have not been
identified or quantified in the ambient air at Blodgett Forest.

We quantified the mixing ratios of 9 monoterpenes,
6 sesquiterpenes, methyl chavicol, linalool, and nopinone,
present in ambient air within and above Blodgett Forest. We
investigate the temporal changes in mixing ratios to eluci-
date controls over emissions and assess the contribution of
the newly quantified BVOCs (sesquiterpenes, methyl chavi-
col, and linalool) on: 1) the amount of carbon mass released
by the ecosystem and 2) the above canopy ozone-olefin loss
rate. We also assess the sesquiterpene contribution to the to-
tal organic aerosol.

2 Experimental methodology

2.1 Site description

The 2007 Biosphere Effects on AeRosols and Photochem-
istry EXperiment (BEARPEX) was conducted at the Blod-
gett Forest Ameriflux site. This ponderosa pine planta-
tion, owned by Sierra Pacific Industries, is located on the
western slope of the Sierra Nevada Mountains of California
(38.90◦ N, 120.63◦ W, 1315 m elevation). The vegetation is
dominated by an overstory of ponderosa pine (Pinus pon-
derosaL.) trees, with an average height of 7.9 m in 2007,
and an understory of manzanita (Arctostaphylosspp.) and
whitethorn ceanothus (Ceanothus cordulatus) shrubs. Mix-
ing ratios and fluxes of carbon dioxide, water vapor, and
ozone, along with meterological parameters, have been mea-
sured at the site since 1997, and are reported in detail else-
where (e.g. Goldstein et al., 2000; Bauer et al., 2000). Am-
bient measurements of various speciated C2-C10 VOCs at
Blodgett Forest have also been reported (Lamanna and Gold-
stein, 1999), including mixing ratios and fluxes of BVOCs
2-methyl-3-buten-2-ol (MBO) (e.g. Schade et al., 2000) and
monoterpenes (Schade et al., 1999; Schade and Goldstein,
2003; Lee et al., 2005).

BEARPEX included two distinctly different meteorolog-
ical periods (Fig. 1a). The first period from 20 August
to 12 September (day of year 232–255) was characterized
by warm and dry conditions (average daytime meteorolog-
ical parameters: temperature 27◦C, relative humidity 26%,
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Fig. 1. Measurement time series. In all panels, the shaded re-
gion (blue) corresponds to the time when the Berkeley GC-MS
was measuring at 1.5 m above the forest floor (day of year 231.7–
255.5), while the un-shaded region corresponds to the time when
the Berkeley GC-MS was sampling from 9.3 m above the forest
floor (day of year 255.6–281.3).(A) Temperature (−) and rainfall
(solid grey bars).(B) Monoterpene (represented byβ-pinene and
α-pinene),(C) sesquiterpenesα-bergamotene andβ-farnesene,(D)
sesquiterpenes longifiolene andα-farnesene,(E) methyl chavicol,
(F) linalool and nopinone mixing ratio time series.

and maximum photosynthetically active radiation (PAR)
1410µmol m−2 s−1). The second period from 13 Septem-
ber to 10 October (day of year 256–283) was characterized
by cool and wet conditions (average daytime meteorological

 

Fig. 2. Schematic of the Berkeley GC-MS instrument set-up.(A)
All tubing and fittings prior to the GC oven (indicated by thick
black lines) were made of Silcosteel (Restek) and actively heated (to
∼50◦C). (B) 1µm pore size Pall A/E glass fiber filter coated with
sodium thiosulfate.(C) Hydrocarbon trap adsorbent (Tenax TA) re-
mained at ambient temperature during the 30-min collection, then
heated to 220◦C within 10 s to inject the sample into the helium
carrier gas flowing into the GC oven.

parameters: temperature 15◦C, relative humidity 49%, and
PAR 1010µmol m−2 s−1).

2.2 Instrumental setup

Monoterpenes, methyl chavicol, and sesquiterpenes were
quantified using an in-situ gas chromatograph with a
quadrupole mass spectrometer (Berkeley GC-MS; Fig. 2).
Ambient air was pulled down through a 6.35 mm OD
(4.57 mm ID) inlet at 4 L min−1. As the inlet entered
the temperature-controlled container, the air sample passed
through a 1µm pore size Pall A/E glass fiber filter (VWR,
Ann Arbor, MI) coated with sodium thiosulfate (Sigma-
Aldrich, St. Louis, MO), following Pollmann et al. (2005),
to remove ozone. The filter, housed in a stainless steel fil-
ter holder (Cole Parmer, Vernon Hills, IL), was also used to
scrub out particulate matter. After passing through the ozone
filter, the amount of ozone in the airstream was measured
with an Ozone Monitor (Model 202, 2B Technologies), and
to ensure effectiveness, the filter was changed at least once
per day.

BVOCs in a 20 mL min−1 subsample were collected on
a hydrocarbon preconcentration trap packed with Tenax TA
(Sigma-Aldrich). With ambient water vapor present in the
sample, the hydrocarbon trap remained at ambient tempera-
ture during sample collection to prevent water accumulation
in the adsorbent bed. After a 30-min collection, the hydrocar-
bon trap was heated to 220◦C within 10 s to thermally desorb
the trapped compounds into the ultra high purity helium car-
rier gas and transfer them to the head of a chromatographic
column (30 m×0.25 mm×0.25µm phase thickness, Rtx-5;
Restek). The GC oven temperature was held at 43◦C for
4.25 min, increasing to 160◦C at 5◦C min−1, then to 220◦C
at 10◦C min−1, and held at this temperature for 11.75 min.

www.atmos-chem-phys.net/9/5505/2009/ Atmos. Chem. Phys., 9, 5505–5518, 2009
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Table 1. Dominant ion used to quantify each BVOC and average (±standard deviation) mixing ratios measured during BEARPEX. Numbers
in italics indicate that the average value is below the detection limit, while “NA” denotes that all values were below the detection limit.
Average temperature and PAR measured during each measurement time period are also noted.

Day Night Day Night

Dates 20 Aug–12 Sept 20 Aug–12 Sept 13 Sept–10 Oct 13 Sept–10 Oct
Time (PST) 10:00–17:00 19:00–06:00 10:00–17:00 19:00–06:00
Average temperature (◦C) 26.4±2.4 12.8±2.6 14.8±5.1 5.2±2.9
Average PAR ( molm−2s−1) 1356±454 24±83 970±512 11±44

BVOC measurement height 1.5 m 1.5 m 9.3 m 9.3 m
BVOC sample size N=105 N=227 N=152 N=311

BVOC Ion (ppt) (ppt) (ppt) (ppt)

β-pinene 93 311±250 915±301 118±58 170±13
3-carene 93 210±163 612±166 54±33 75±82
α-pinene 93 104±72 313±121 39±24 60±60
limonene (+β-phellandrene) 93 76±46 223±66 19±9 33±27
myrcene 93 10±5 20±6 2.91±1.07 2.29±1.86
camphene 93 5.91±4.39 21±11 0.82±1.00 3.25±3.18
terpinolene 93 3.52±2.22 4.89±2.61 0.37±0.59 0.17±0.63
γ -terpinene 93 1.46±2.25 4.10±2.71 NA NA
α-terpinene 93 NA NA NA NA
Total monoterpenes 722 2113 234 344

methyl chavicol 148 127±99 212±89 90.1±60.4 26.5±20.0
linalool 93 9.90±3.36 0.76±1.48 0.74±0.89 NA
nopinone 83 7.49±7.96 19.4±10.3 6.73±4.84 9.05±6.63

α-bergamotene 93 24.1±11.2 13.2±7.7 1.84±2.22 0.40±1.01
longifolene 161 3.61±3.56 14.7±5.3 0.60±0.81 1.78±1.61
α-farnesene 93 9.42±8.19 12.2±5.8 0.87±1.47 0.53±1.37
β-farnesene 69 5.97±5.59 3.35±4.74 NA 0.13±0.72
SQT 9 93 0.91±1.71 0.23±0.83 NA NA
SQT 10 93 0.52±1.84 0.34±1.12 NA NA
Total sesquiterpenes 44.5 43.9 3.3 2.9

The mass spectrometer was operated in single ion mode and
the quantification ions are listed in Table 1.

Modifications to the original set-up described by Millet
et al. (2005) were made to minimize the potential for low
volatility compounds to be lost through condensation or ad-
sorption (Fig. 2). To reduce sample loss due to condensa-
tion in the sample pathway, all tubing and fittings prior to
the GC oven were made of Silcosteel (Restek) and heated to
∼50◦C using heating cables and ropes (Omega Engineering
Stamford, CT). The metal tubing allows for even heat dis-
persal and the internally passivated surface minimizes wall
reactions and subsequent losses. Helmig et al. (2004) suc-
cessfully recovered sesquiterpene standards after heating the
valves and tubing downstream of preconcentration adsorbent
cartridges to 50◦C, and due to the limits of the instrument
set-up, this was the highest achievable temperature.

Two heated sample inlets were used at different times dur-
ing the experiment. From 19 August through the morning of
12 September (day of year 232–255), the sample was drawn

from 1.5 m above the canopy floor (Fig. 1) through∼11 m
of tubing (giving∼2.9 s residence time) into a temperature-
controlled container. From the afternoon of 12 September
through 8 October (day of year 255–281), biogenic VOCs
were pulled through∼18 m of tubing from 9.3 m above the
forest floor (giving∼4.5 s residence time) (Fig. 1). This
height corresponds to∼2 m above the mean forest canopy
height. Measurements at the different heights coincided with
the two distinct meteorological periods during BEARPEX.

Blanks and standards were run at least once per day.
A zero air blank for the system was created by flow-
ing ambient air through a heated platinum catalyst (Mil-
let et al., 2005). Gas standards (Scott Marrin Inc. and
Apel & Riemer) containing one or more of the dominant
monoterpenes found at the field site (α-pinene,β-pinene,
3-carene, and limonene) were used for monoterpene cali-
brations. These ppm-level standards were diluted dynami-
cally into the larger∼4 L min−1 zero air flow. The sesquiter-
penes and oxygenated compounds are known to be unstable

Atmos. Chem. Phys., 9, 5505–5518, 2009 www.atmos-chem-phys.net/9/5505/2009/
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Table 2. Ions used for quantification and percent recovery from liquid standard injections. Sample sizeN=1 andN=10 for the 1.5 m and
9.3 m inlet, respectively. BVOCs are listed in order of increasing chemical reactivity.

Quantified % recovery % recovery
BVOC ion 1.5 m inlet 9.3 m inlet τOH

a (min) τO3
b(min)

nopinone 83 101 92±15 180d 2.8×106d

longifolene 161 81 66±6 64 2.8×104

verbenone 91 85 77±34 38c 190c

methyl chavicol 148 19 108±64 57c 926c

α-cedrene 119 110 71±6 47 504
α-copaene 119 105 83±12 33 89
aromadendrene 91 119 84±15 490c 2e

linalool 93 87 58±14 19 33
β-caryophyllene 93 26 19±27 15 1
α-humulene 93 22 19±27 10 1

a,b all rate constants from Atkinson and Arey (2003) and references within, except where noted
a [OH]=5.4×106 molec cm−3 (W. Brune, J. Mao, personal communication, 2008)
b [O3]=1.18×1012molec cm−3

c rate constants estimated from Environmental Protection Agency’s Estimation Program Interface Suite (US EPA AOPWIN, 2000)
d rate constants from Calogirou et al. (1999)
e kO3 estimated from Pollmann et al. (2005)

in a gas standard (e.g. Helmig et al., 2003; Ortega and
Helmig, 2008), so liquid standards were made from dilut-
ing 6 sesquiterpenes (α-cedrene,α-copaene, longifolene,β-
caryophyllene,α-humulene, aromadendrene), 3 oxygenated
terpenes (linalool, nopinone, verbenone), and methyl chav-
icol (a.k.a. 4-allyanisole or estragole) in cyclohexane. All
chemicals have>97% purity and were obtained from Sigma-
Aldrich or from Fluka Chemicals through Sigma-Aldrich.
Small amounts (0.25–1.0µL) of these liquid standards were
manually injected with a microliter syringe (Restek) into a
100–200 mL min−1 stream of nitrogen, where the injector
port was heated to 100◦C. Concentrations ranged from 2–
63 ppt for sesquiterpenes and 3–94 ppt for oxygenated ter-
penes and methyl chavicol. This standard flow was then sub-
sampled and collected through the same tubing and at the
same flow rate as an ambient sample. To ensure no liq-
uid standard condensed in the sampling lines, subsequent
blank nitrogen samples were also collected through the cal-
ibration pathway. The daily standard injections were also
used to quantify the drift in instrument response during the
study period. The final time-dependent response factor ap-
plied to each analyte accounted for the−0.51 to−1.4% per
day instrument drift and concentration-dependent response.
The ions used for quantification (in standards (see Table 2)
and samples (see Table 1)) were the dominant ions for each
compound, with the exception ofβ-farnesene and aromaden-
drene, which were 3rd and 2nd most abundant, respectively.
Each of these dominant ions averaged 8±3% of the total
fragmentation abundance. Therefore, sesquiterpene peak ar-
eas not corresponding to a liquid standard were calibrated
using the average response of the dominant ions of sesquiter-
pene standards.

The detection limits are defined as the amount of standard
required to create a peak 3 times the baseline noise. The
average detection limit for monoterpenes, oxygenated ter-
penes, sesquiterpenes, and methyl chavicol was 1.26±0.12
(mean±standard deviation), 2.51±0.22, 1.86±0.12, and
1.96±0.45 ppt, respectively. Average mixing ratios for each
BVOC quantified during BEARPEX are listed in Table 1.
The quoted measurement uncertainty includes reproducibil-
ity, accuracy of the calibration slope, sampling and standard
addition mass flow measurements, and the accuracy of the
standards. The average uncertainty for monoterpenes, oxy-
genated terpenes, sesquiterpenes, and methyl chavicol was
18%, 26%, 23%, and 27%, respectively.

To assess inlet line losses of the semi-volatile oxygenated
compounds and sesquiterpenes, liquid standards were in-
jected at the sample inlet and diluted with ambient air. Per-
cent recovery for each standard is listed in Table 2. Most
standards are efficiently recovered, withβ-caryophyllene
andα-humulene as notable exceptions. There were no traces
of β-caryophyllene orα-humulene in 6 out of the 10 tests
using the longer 9.3 m inlet. We did not correct the data for
line losses, so the reported measurements are lower limits for
some compounds.

2.3 NOAA GC-MS measurements

Volatile C2-C10 organic compounds, in particular isoprene,
methacrolein (MACR), methyl vinyl ketone (MVK), 2-
methyl-3-buten-2-ol (MBO), 3-methylfuran, propene, and
ethene, were quantified using a gas chromatograph with mass
spectrometer detector (NOAA GC-MS). The sample acquisi-
tion procedure is described in detail by Goldan et al. (2004),

www.atmos-chem-phys.net/9/5505/2009/ Atmos. Chem. Phys., 9, 5505–5518, 2009
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β-farnesene, and unidentified SQT9 and SQT10, as compared to myrcene, measured at 1.5 m.(C) Average diurnal profiles of sesquiterpenes
α-farnesene and longifolene, as compared to myrcene, measured at 1.5 m.(D) Methyl chavicol average diurnal profile, as compared to
α-pinene at 1.5 m. The temperature diurnal cycle is measured at 4.9 m above the ground.(E) Linalool and nopinone average diurnal profiles,
as compared to myrcene, at 1.5 m. Photosynthetically active radiation (PAR) was measured at 15 m above the ground and its diurnal cycle
is represented by solid grey bars.(F) Average diurnal profiles of ozone and carbon dioxide measured at 12.5 m and 1.2 m above the ground,
respectively.

and more recent modifications were briefly described by
Bouvier-Brown et al. (2009b). The 12 m 6.35 mm OD PFA
inlet of this system was located at 9.3 m above the canopy
floor for three days (24 September–27 September, day of
year 267–270). Two 5 min samples were acquired concur-
rently every 30 min. Light alkanes and alkenes (C2-C5) were
separated on a KCl washed Alumina column. The heavier

species (C2-C10) were cryofocused and then separated using
a metal MXT-624 column (Restek). All VOCs were detected
using a quadrupole mass spectrometer (Agilent 5973).
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Table 3. Structures and reactivity of all BVOCs measured using the Berkeley GC-MS instrument during BEARPEX.

kOH τOH 
a

kOH τOH 
a

kO3 τO3 
b

kO3 τO3 
b

Compound Structure kNO3 τNO3 
c

Compound Structure kNO3 τNO3 
c

(cm3molec‐1s‐1) (min) (cm3molec‐1s‐1) (min)

longifolene 4.8 x 10‐11 60 myrcene 2.1 x 10‐10 15

(C15H24) 5.0 x 10‐19 2.8 x 104 (C10H16) 4.7 x 10‐16 30

6.9 x 10‐13 1150 1.1 x 10‐11 70

α‐bergamotene 1.8 x 10‐10 
d

17 camphene 5.34 x 10‐11 58

(C15H24) 8.6 x 10‐16 
d

16 (C10H16) 9.19 x 10‐19 1.5 x 104

? 6.54 x 10‐13 1210

α‐farnesene 3.2 x 10‐10 
d

10 terpinolene 2.3 x 10‐10 13

(C15H24) 1.0 x 10‐15 
d

14 (C10H16) 1.9 x 10‐15 7

? 9.5 x 10‐11 8

β‐farnesene 2.8 x 10‐10 
d

11 γ‐terpinene 1.8 x 10‐10 17

(C15H24) 4.01 x 10‐16 
e

35 (C10H16) 1.4 x 10‐16 100

? 3.3 x 10‐11 20

α‐pinene 5.3 x 10‐11 58 α‐terpinene 3.6 x 10‐10 9

(C10H16) 8.4 x 10‐17 170 (C10H16) 2.1 x 10‐14 0.7

6.1 x 10‐12 130 1.3 x 10‐10 6

β‐pinene 7.7 x10‐11 40 methyl chavicol 5.4 x 10‐11 
d

57

(C10H16) 1.5 x 10‐17 940 (C10H12O) 1.2 x 10‐17 
d

926

2.5 x 10‐12 320 ?

3‐carene 8.7 x 10‐11 36 linalool 1.6 x 10‐10 19

(C10H16) 3.7 x 10‐17 380 (C10H18O) 4.3 x 10‐16 33

9.5 x 10‐12 80 1.1 x 10‐11 70

limonene 1.7 x 10‐10 18 nopinone 1.7 x 10‐11  
f

180

(C10H16) 2.0 x 10‐16 71 (C9H14O) <5 x 10‐21  
f

3 x 106

1.3 x 10‐11 60 <2 x 10‐15  
f

4 x 105

a,b,c  All data from Atkinson and Arey (2003) and references therein except where noted
a [OH] = 5.4 x 106 molec cm‐3 (0.25 ppt) (W. Brune and J. Mao, personal communication, 2008)
b [O3] = 1.18 x 10

12 molec cm‐3 (55 ppb)
c [NO3] = 2.1 x 10

7 molec cm‐3 (1 ppt) (R. Cohen, personal communication, 2008)
d  estimated from EPA’s Estimation Program Interface Suite (US EPA AOPWIN, 2000)
e from Kourtchev et al. (2009)
f
 from Calogirou et al. (1999)

HO

O

O

a,b,c All data from Atkinson and Arey (2003) and references therein except where noted
a [OH]=5.4×106 molec cm−3 (0.25 ppt) (W. Brune, J. Mao, personal communication, 2008)
b [O3]=1.18×1012molec cm−3 (55 ppb)
c [NO3]=1.2×107 molec cm−3 (1 ppt) (R. Cohen, personal communication, 2008)
d estimated from Environmental Protection Agency’s Estimation Program Interface Suite (US EPA AOPWIN, 2000)
e from Kourtchev et al. (2009)
f from Calogirou et al. (1999)

3 Results

Monoterpene, sesquiterpene, methyl chavicol, linalool, and
nopinone mixing ratio data are shown as both time series and
average diurnal profiles. Timelines of BVOC mixing ratios
over the 7-week BEARPEX campaign are presented in con-
junction with temperature and rainfall patterns (Fig. 1). The
diurnal profile data focus on ambient mixing ratios measured
from the 1.5 m inlet (Fig. 3). For comparison, average day
and night mixing ratios from both inlets are found in Table 1.
For reference, chemical structures of all quantified BVOCs
are listed in Table 3.

3.1 Monoterpenes

Using the GC-MS system, 9 monoterpenes were separated;
these included:β-pinene,α-pinene, 3-carene, limonene+β-
phellandrene, myrcene, camphene, terpinolene,γ -terpinene,
and α-terpinene. The monoterpene mixing ratio timelines
(Fig. 1b), represented byβ-pinene andα-pinene, emphasize
their dependence on temperature and measurement height.
A significant decrease in ambient mixing ratios is observed
with the simultaneous decrease in ambient temperature and
increase in inlet height. Monoterpene mixing ratios at Blod-
gett Forest are also greatly enhanced by precipitation. Even

www.atmos-chem-phys.net/9/5505/2009/ Atmos. Chem. Phys., 9, 5505–5518, 2009



5512 N. C. Bouvier-Brown et al.: Implications for gas- and particle-phase chemistry

at low temperatures, high monoterpene mixing ratios are ob-
served immediately following rain events, especially after
the first storm of the year (day of year 263–266). Humid-
ity effects on monoterpene emissions have been previously
observed at this site by Schade et al. (1999). The domi-
nant monoterpene at Blodgett Forest isβ-pinene (Fig. 3a);
on average, it accounts for 47% of the total monoterpene
mass. 97% of the monoterpene mass is emitted as a com-
bination ofβ-pinene,α-pinene, 3-carene, and limonene+β-
phellandrene.

3.2 Sesquiterpenes

We report the first in-situ direct quantification of speci-
ated sesquiterpenes, includingα-bergamotene, longifolene,
α-farnesene,β-farnesene, and two unidentified sesquiter-
pene compounds (SQT 9 and 10), in ambient air. The
sesquiterpene mixing ratio timelines (Fig. 1c, d) show signif-
icant decreases with lower temperatures and increased mea-
surement height. The dominant sesquiterpene in the day-
time wasα-bergamotene (Table 1, Fig. 3b), just as it was
in the ponderosa pine branch enclosures at Blodgett Forest
(Bouvier-Brown et al., 2009a). Longifolene was the dom-
inant sesquiterpene at night (Table 1, Fig. 3c). All identi-
fied sesquiterpenes were quantified at ambient mixing ratios
similar to that of the monoterpene myrcene (Fig. 3b, c).β-
farnesene, SQT 9, and SQT 10 are not detected at 9.3 m (Ta-
ble 1).

3.3 Oxygenated compounds

We report abundant mixing ratios of methyl chavicol. Methyl
chavicol, an important biogenic emission from ponderosa
pine trees, was recently characterized by Bouvier-Brown
et al. (2009b). The methyl chavicol mixing ratio time se-
ries (Fig. 1e) generally mirrors that of monoterpenes and
sesquiterpenes because there is a significant decrease in av-
erage mixing ratios with the simultaneous decrease in tem-
perature and increase in sampling height. On the other hand,
unlike the terpenes, methyl chavicol emissions are also sig-
nificantly enhanced a few days following rain events (see also
Bouvier-Brown et al., 2009b). Methyl chavicol mixing ratios
are significant, for they are comparable to major monoter-
penes such asα-pinene (Table 1, Fig. 3d).

We also report the first measurements of linalool at Blod-
gett Forest. Linalool is an oxygenated terpene emitted in
large amounts from other sites, such as Mediterranean forests
(Owen et al., 2001) and a Spanish orange orchard (Ciccioli
et al., 1999). The mixing ratio time series (Fig. 1f) empha-
sizes linalool’s dependence on temperature and inlet height.
Only a small amount of linalool is quantified at Blodgett For-
est. At solar noon, maximum linalool mixing ratios are com-
parable to the simultaneous minimum myrcene mixing ratio
(Fig. 3e).

We report the first GC-MS measurements of nopinone, the
primary oxidation product ofβ-pinene, at Blodgett. This re-
lationship is highlighted by the way nopinone’s mixing ra-
tios mirror that of its precursorβ-pinene (Fig. 1f). In an
average diurnal profile, nopinone shows decreasing mixing
ratios throughout the daytime reaching a minimum at 14:00–
19:00 PST (Fig. 3e). A similar pattern was observed by
Holzinger et al. (2005) at this site using proton-transfer mass
spectrometery (PTR-MS) (m/z139) but at much higher mix-
ing ratios. The PTR-MSm/z139 may include fragments
of larger compounds. Holzinger et al. (2005) attributed the
afternoon mixing ratio decrease to phase partitioning from
the gas to the particle phase. Nopinone mixing ratios at
BEARPEX are comparable to that of myrcene.

4 Discussion

4.1 BVOC emission models

BVOC emissions are typically modeled with either
temperature-dependent or temperature- and light-dependent
algorithms (e.g. Guenther et al., 1993). BVOC mixing ra-
tio patterns in the average diurnal profiles provide clues
about the emission drivers. Most emission models assume
the majority, if not all, of monoterpenes are emitted as a
function of temperature (e.g. Levis et al., 2003; Heald et
al., 2008; Sakulyanontvittaya et al., 2008), but due to lim-
ited studies, sesquiterpene data is either eliminated from
global models or vast assumptions have to be made about
their emission drivers. For example, Sakulyanontvittaya
et al. (2008) assume that 50% of sesquiterpene emissions
are driven by temperature and 50% are also influenced by
light. We will determine the dominant emission driver(s)
for monoterpenes, four sesquiterpenes (α-farnesene, longi-
folene,α-bergamotene, andβ-farnesene), methyl chavicol,
and linalool in the next two sections; our conclusions gen-
erally support the assumptions made by Sakulyanontvittaya
et al. (2008). No mixing ratio pattern was discernable for
SQT 9 and SQT 10 because they were often below the detec-
tion limit.

4.1.1 Temperature-dependent emissions

The monoterpene average diurnal patterns indicate that their
emissions are driven by temperature because elevated mixing
ratios occur at night and in the morning (07:00–08:00 PST)
(Fig. 3a). These times occur when temperatures are warm
enough to induce emissions and both oxidation and verti-
cal mixing are slow (Fig. 3f). In Fig. 3f, oxidation is rep-
resented by ozone mixing ratios and carbon dioxide mix-
ing ratios are used as a proxy for vertical mixing. This
pattern has been shown at Blodgett Forest previously (e.g.
Holzinger et al., 2005). Our data suggest that some, but not
all, sesquiterpene emissions at Blodgett Forest can be mod-
eled as temperature-dependent processes. For example, the
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mixing ratios of sesquiterpeneα-farnesene exhibit a similar
diurnal pattern to that of the monoterpene mycrene (Fig. 3c),
with higher mixing ratios at night than during the day. Since
we know thatα-farnesene and myrcene have similar sources
(Bouvier-Brown et al., 2009a) and comparable loss processes
with reaction rates of similar magnitude (Table 3), we in-
fer that temperature is also the main driver ofα-farnesene
emissions. Similarly, longifolene, the dominant sesquiter-
pene present at night (Fig. 3c), is also likely driven by tem-
perature, but further branch enclosure studies are required
to definitively determine the emission drivers. As a conse-
quence of its relatively long lifetime (Table 3), the observed
longifolene diurnal pattern may simply reflect height of the
boundary layer and intensity of vertical mixing.

Although its diurnal profile at 1.5 m (Fig. 3d) shows
high mixing ratios at night, thus suggesting that its emis-
sions are dependent on temperature, there is ample evi-
dence that methyl chavicol emissions are best modeled as
a light- and temperature-dependent emission process (see
Bouvier-Brown et al., 2009b). For example, Bouvier-Brown
et al. (2009b) showed a strong correlation between methyl
chavicol and MBO in terms of diurnal profile and atmo-
spheric lifetime, thus suggesting that the two compounds
have a similar light- and temperature-dependent emissions
mechanism.

4.1.2 Light-dependent emissions

The other sesquiterpenes with discernable diurnal trends ap-
pear to have light-dependent emissions.α-Bergamotene,
β-farnesene, as well asα-farnesene, have similar sources
(Bouvier-Brown et al., 2009a) and comparable estimated
OH and ozone reaction rates (Table 3), so the discrepan-
cies in their diurnal profiles can be attributed to differences
in emission mechanisms.α-Bergamotene andβ-farnesene
have higher mixing ratios during the daylight hours, suggest-
ing that light plays a large role in their emissions (Fig. 3b). It
is reasonable to suspect that the emissions of some sesquiter-
pene compounds are light-dependent because this emission
model has been noted previously for the sesquiterpeneβ-
caryophyllene (Hansen and Seufert, 2003; Duhl et al., 2008
and references therein). The mixing ratios of oxygenated ter-
pene linalool follow the diurnal variation in PAR (Fig. 3e),
indicating that light is essential for its emissions. Previous
studies have also shown little or no emissions of linalool at
night (e.g. Staudt et al., 1997; Staudt et al., 2000).

4.2 Newly measured BVOC mass

The quantification of the 6 sesquiterpenes, linalool, and
methyl chavicol at the 1.5 m inlet adds an average of
0.87µgC m−3 during the day (Table 4) and 1.2µgC m−3 at
night to the mass of carbon present in the atmosphere from
BVOC emissions in the Blodgett Forest ecosystem. This
is 28% and 13% of the monoterpene mass during the day

Table 4. Average daytime (10:00–17:00 PST) mixing ratios
(N=105) of BVOCs directly emitted by the Blodgett Forest ecosys-
tem measured at 1.5 m. Numbers in italics indicate that the average
value is below the detection limit, while “NA” denotes that all val-
ues were below the detection limit.

BVOC ppt µgBVOC m−3 µgC m−3

β-pinene 311±250 1.51 1.33
3-carnene 210±163 1.02 0.90
α-pinene 104±72 0.51 0.45
limonene
(+β-phellandrene) 76±46 0.37 0.32
myrcene 10±5 0.05 0.04
camphene 5.9±4.4 0.03 0.03
terpinolene 3.5±2.2 0.02 0.02
γ -terpinene 1.5±2.2 0.007 0.006
α-terpinene NA NA NA
sum monoterpenes 722 3.50 3.09

methyl chavicol 127±99 0.67 0.54
linalool 9.9±3.4 0.05 0.04

α-bergamotene 24±11 0.18 0.15
longifolene 3.6±3.5 0.03 0.03
α-farnesene 9.4±8.2 0.07 0.06
β-farnesene 6.0±5.6 0.04 0.04
SQT 9 0.9±1.7 0.007 0.006
SQT 10 0.5±1.8 0.004 0.003
sum sesquiterpenes 44.5 0.32 0.29

newly measured BVOCs 181 1.1 0.87

and night, respectively. Among the newly measured species,
methyl chavicol represents the highest mass fraction with
17% of the monoterpene mass during the day and 9.9% dur-
ing the night.

Branch enclosure measurements, scaled to represent emis-
sions of the entire ecosystem, as described by Bouvier-
Brown et al. (2009a), show a large (33.8%) sesquiterpene
contribution to the total terpene + methyl chavicol emission
mass (Fig. 4a). Conversely, the ambient air data show a
small (7.2% at 1.5 m and 1.1% at 9.3 m) sesquiterpene mass
contribution to total terpene + methyl chavicol mixing ratios
(Fig. 4b). The discrepancy between the relative mixing ra-
tios measured in the branch enclosures and that measured in
ambient air must be due to more rapid chemical losses of
the reactive semi-volatile sesquiterpene compounds for two
reasons: 1) many sesquiterpenes observed in branch enclo-
sure experiments cannot be detected in ambient air due to
their rapid loss via oxidation. In fact,β-caryophyllene was
never detected in the ambient air samples even though it was
a major emission from manzanita branches (Bouvier-Brown
et al., 2009a), and at last account, the percent leaf area con-
tribution of each species to the ecosystem was 52% pon-
derosa pine, 29% manzanita, and 19% ceanothus in 2003.
2) Some of these highly reactive compounds may also fail
to survive the sampling system: the two most reactive com-
pounds in the liquid standard mixture,β-caryophyllene and
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Fig. 4  
 

Fig. 4. (A) Percent contribution of SQT (sum of total sesquiterpenes), MC (methyl chavicol), and MT (sum of total monoterpenes) mass
measured using branch enclosures (Bouvier-Brown et al., 2009a).(B) Average SQT, MC, and MT mixing ratios (ppt) from 10:00–17:00 PST
measured at 1.5 m (light shade) and 9.3 m (dark shade) during BEARPEX. Percentages listed on each bar indicate the percent contribution
by mass. Linalool is excluded because it only contributes 1% and 0.1% to the BVOC mass measured at 1.5 m and 9.3 m, respectively.
The 9.3 m data presented here correspond to measurements made during day of year 267–270 (24 September–27 September) when all
VOC measurements were co-located (see also Bouvier-Brown et al., 2009b).(C) VOC percent contribution to total ozone-olefin loss rate
at Blodgett Forest measured at 9.3 m from average VOC mixing ratios measured from 10:00–17:00 PST. OXT denotes the contribution of
oxyterpene linalool. Additional VOCs include MBO (2-methyl-3-buten-2-ol), ISO (isoprene), ISO OX (methacrolein, methyl vinyl ketone,
and 3-methyl furan), ALKE (alkenes, such as propene and ethene) measured over the same time period (day of year 267–270).

α-humulene, had poor sample recovery (Table 2). The pres-
ence of oxidants in the sample lines would have a larger
impact on sesquiterpenes due to their high reaction rates
and their low mixing ratios. By comparing air samples
with and without the presence of ozone, Hoffman (1995)
showed that even with only 23 ppb of ozone, there was
<5% recovery ofβ-caryophyllene andα-humulene whereas
15% of α-bergamotene was recovered.α-Bergamotene has
an estimated longer lifetime than eitherα-humulene orβ-
caryophyllene (Table 3).

4.3 Impact of BVOC on ecosystem oxidant loss rates

Here we assess the average contribution of the newly mea-
sured BVOCs to the total above canopy ozone-olefin loss
rate at Blodgett Forest ([VOC]×kO3). Each compound’s
contribution to the average ozone-olefin loss rate was calcu-
lated using average daytime (10:00–17:00 PST) mixing ra-
tios (to limit the influence of a changing boundary layer)

measured at 9.3 m and known rate constants (Table 3). Rate
constants not found in the literature were calculated based
on chemical structure using the Environmental Protection
Agency’s Estimation Program Interface Suite (US EPA AOP-
WIN, 2000). Using estimates introduces uncertainty in the
rate constants, particularly withkO3. For example, the EPA
estimate forβ-caryophyllene andα-humulene is 27 and 13
times slower than the literature values, respectively, but the
estimate for longifolene is 23 times faster than the litera-
ture value. In addition to all of the compounds detailed in
this manuscript, we also included VOC concentrations of
MBO, isoprene, isoprene oxidation products (methyl vinyl
ketone (MVK), methacrolein (MACR), and 3-methylfuran),
and alkenes, such as ethene and propene, that were measured
by the NOAA GC-MS. The average mixing ratios measured
from 10:00–17:00 PST from 24 September–27 September
and the ozone rate coefficients of these VOCs are listed in
Table 5.
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Table 5. Average mixing ratios measured from 10:00–17:00 during day of year 267–270 (24 September–27 September) of volatile organic
compounds measured by the NOAA GC-MS and their ozone reactivity. All rate constants are from Atkinson (2000) and references therein,
except where noted.

VOC (ppt) kO3 (cm3 molec−1 s−1) τO3
b (min)

isoprene 132±91 1.3×10−17 1.1×103

methacrolein (MACR) 103±62 1.1×10−18 1.2×104

methyl vinyl ketone (MVK) 100±97 4.6×10−18 3.1×103

3-methylfuran 5.3±2.4 2.1×10−17a
680

2-methyl-3-buten-2-ol (MBO) 459±174 9.7×10−18 1.5×103

ethene 111±30 1.6×10−18 8.9×103

propene 23±5 1.0×10−17 1.4×103

a from Atkinson and Arey (2003)
b [O3]=1.18×1012molec cm−3 (55 ppb)

While methyl chavicol dominated the newly measured am-
bient BVOC mixing ratios and mass (Table 4; Fig. 4b), it has
relatively little impact on the total ozone reactivity (Fig. 4c).
Conversely, even the very small amount of linalool (0.1% of
mass at 9.3 m) has a larger impact on the total ozone-olefin
loss rate (1.1%) relative to its mass contribution (Fig. 4c).
More importantly, the small amount of sesquiterpenes quan-
tified at 9.3 m significantly contributes to the overall ozone-
olefin loss rate at Blodgett Forest. The newly measured
BVOCs add 14% to the total ozone-olefin loss rate (Fig. 4c).
54% of this new reactivity is due to sesquiterpenes even
though they only account for 4% (1.1%/(1.1%+27.5%)) of
the newly measured mass at 9.3 m (Fig. 4b). The contribu-
tion of highly reactive compounds to ozone-olefin loss rate
calculated here is a lower limit considering that compounds
such asβ-caryophyllene were not adequately measured. Us-
ing emission rates and estimated ozone reaction rates (kO3)

from Bouvier-Brown et al. (2009a), the sesquiterpene con-
tribution to ozone loss at the point of emission is 2.4 (0.74
emission mass ratio xkO3 ratio x molecular weight ratio)
times that of the monoterpene ratio. The impact of ozone
loss due to sesquiterpenes above the canopy is much lower
(13% (7.6%/30%) of the monoterpene contribution), but it is
still a significant contribution.

Terpenes have a much larger impact on the ozone-olefin
loss rate than the OH reactivity at Blodgett Forest. Together,
the measured monoterpene, oxyterpene (linalool), sesquiter-
pene, and methyl chavicol mixing ratios make up 74% of
the ozone-olefin loss rate (Fig. 4c) whereas these same com-
pounds only contribute∼17% to the total OH loss rate, of
which the newly measured compounds contribute only∼4%
(J. Mao, personal communication, 2008). Little is known
about the NO3 reactivity of newly-measured BVOCs, such
as α-bergamotene and methyl chavicol, and to our knowl-
edge, there is no reliable way to estimate these NO3 reaction
rate constants.

4.4 Contribution to total organic aerosol

Sesquiterpenes are oxidized rapidly in the forest canopy
as a consequence of their reactivity, and a significant por-
tion of their oxidized mass likely partitions into the aerosol
phase. In order to assess their potential contribution to
SOA, we estimate their potential ambient mixing ratio as-
suming loss due to reactivity did not occur. First, we assume
the total sesquiterpene to total monoterpene mass ratio ob-
served in the branch enclosures (0.74) is constant through-
out the ecosystem during the warm conditions experienced
during the branch enclosure measurements and the first half
of BEARPEX. Using daytime (10:00–17:00 PST) averages
and assuming sesquiterpenes should be 74% of the total
monoterpene mixing ratio at 1.5 m (722 ppt, Table 4) gives
a potential sesquiterpene mixing ratio of 356 ppt. Subtract-
ing the sesquiterpenes actually measured 1.5 m (44.5 ppt)
from the potential sesquiterpene mixing ratio (356 ppt) re-
veals a 312 ppt chemical loss. Removing this amount of
sesquiterpene mass from the Blodgett Forest canopy is real-
istic given average canopy conditions of [O3]=55 ppb and an
averaged ecosystem sesquiterpene reaction rate constant of
3.3×10−15 cm3 molec−1 s−1 (Bouvier-Brown et al., 2009a).
Under these conditions, the average sesquiterpene lifetime
is ∼4 min, which is well within the estimated canopy res-
idence time of 7–10 min (Kurpius and Goldstein, 2003;
Farmer and Cohen, 2008), and only slightly longer than
the 90 s between canopy air sweeps (exchange events) es-
timated by Holzinger et al. (2005). Although this estimate
is based on a highly uncertain ozone reaction rate, the cal-
culated lifetime is consistent with our measurements show-
ing only small amounts of sesquiterpenes above the forest
canopy. To the best of our knowledge, the SOA yields
from some sesquiterpenes measured in this study, such as
α-bergamotene andα-farnesene, have yet to be measured, so
a 10–50% SOA yield is used in the following analysis. With
this assumption, the sesquiterpene mass lost in the forest
canopy must contribute 0.2–1.0µg m−3 to the aerosol mass.
This accounts for 6–32% of the average total organic aerosol
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mass (3.10±2.06µg m−3, mean±standard deviation) mea-
sured by aerosol mass spectrometry (AMS) at BEARPEX
(D. K. Farmer, K. S. Docherty, J. L. Jimenez, personal com-
munication, 2008), where the high SOA yield estimate likely
requires multiple oxidation steps. Using a similar analysis
for the sesquiterpene contribution to SOA during the cool
period at 9.3 m gives 0.07–0.36µg m−3 of organic aerosol
mass, or 2–12% of the average total organic aerosol mass.

5 Conclusions

We successfully modified an in-situ GC-MS instrument
to quantify sesquiterpenes, linalool, methyl chavicol, and
nopinone in ambient air with hourly time resolution. We
report the first direct in-situ ambient air quantification of
α-bergamotene, longifolene,α-farnesene,β-farnesene, and
two unidentified sesquiterpenes.α-Bergamotene dominated
the daytime sesquiterpene mixing ratios.α-Farnesene emis-
sions are shown to be dependent on temperature, andα-
bergamotene andβ-farnesene emissions are shown to also
be light-dependent. While branch enclosure measurements
reveal a very large sesquiterpene contribution (33.8%) to the
BVOC emission mass of total terpene plus methyl chavicol
(Bouvier-Brown et al., 2009a), the small relative sesquiter-
pene mass contribution in ambient air reveals significant
chemical loss before these compounds escape the forest
canopy due to their high reactivity. These data provide
a strong corroboration of previous evidence that oxidation
products are abundant within the forest canopy, but re-
main poorly characterized. Even with the small amounts
of sesquiterpene mass quantified at 9.3 m, these compounds
contribute 7.6% to the overall above canopy ozone-olefin
loss rate at Blodgett Forest. Assuming sesquiterpene-
to-monoterpene emission ratios during warm temperatures
should reflect data from branch enclosure experiments, the
sesquiterpenes oxidized in the forest canopy lead to forma-
tion of 6–32% of the total organic aerosol mass measured
during BEARPEX.
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