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Vector unparticle enhanced black holes: exact
solutions and thermodynamics

J. R. Mureika1

Department of Physics, Loyola Marymount University, Los Angeles, CA 90045-2659

Euro Spallucci2

Dipartimento di Fisica Teorica, Università di Trieste andINFN, Sezione di Trieste, Italy

Abstract

Tensor and scalar unparticle couplings to matter have been shown to enhance gravitational
interactions and provide corrections to the Schwarzschildmetric and associated black hole
structure. We derive an exact solution to the Einstein equations for vector unparticles, and
conclusively demonstrate that these induce Riessner-Nordström (RN)-like solutions where
the role of the “charge” is defined by a composite of unparticle phase space parameters.
These black holes admit double-horizon structure, although unlike the RN metric these
solutions have a minimum inner horizon value. In the extremal limit, the Hawking temper-
ature is shown to vanish. As with the scalar/tensor case, the (outer) horizon is shown via
entropy considerations to behave like a fractal surface of spectral dimensiondH = 2dU .

1 Introduction

Recently, it was proposed that there could be a conformally scale-invariant particle
sector of unknown composition with a non-trivial IR fixed point [1,2], at which
stronger couplings to the standard model emerge. Dubbed “unparticle physics” be-
cause of the non-intuitive phase space structure, its introduction has caused a flurry
of research into modifications to known physics and post-TeVpredictions. Accel-
erator phenomenology has been the main emphasis in the literature [3–10] [11,12],
but astrophysical/cosmological [13–18] [19–24] [25–27], low to ultra-high neutrino
phenomenology [28–35] and general quantum field theory [36–41] [42,43] appli-
cations have been of extreme importance as well.

1 e-mail address: jmureika@lmu.edu
2 e-mail address: spallucci@ts.infn.it

Preprint submitted to Elsevier 6 August 2010

http://arxiv.org/abs/1006.4556v2


Constraints on the unparticle parametersΛU, the BZ messenger massMU , and the
unparticle and Banks-Zaks dimensionsdU , dBZ are obtained through limits on mea-
surable accelerator phenomenology, astrophysical and cosmological observations.
The aforementioned parameters serve to fix the energy and distance scale at which
the interactions become relevant. It has been shown that, ifΛU ∼ 1 TeV, then strict
limits may be placed on the messengerMU for various values of the unparticle di-
mensiondU . Higher values ofdU imply lower values ofMU , whose value could be
as small as a few hundred TeV.

One of the most intriguing aspects of unparticle physics is that interactions with
standard model particles effectively modify the usual gravitational coupling strength
[26,27,45]. Dubbed “ungravity”, in the Newtonian limit this is most likely to be ob-
served as deviations in planetary orbits and perihelion precession [25,26] on large
scales, as well as constrain Big Bang Nucleosynthesis [14],dark energy [24] and
even entropic gravity [42]. Conversely, the very small-scale behavior of scalar and
tensor ungravity begins to mimic that ofn large extra compactified dimensions [44],
but withn→ 2dU−2 and the Newtonian potential proportional to 1/r2dU−1 [45–47].
The interesting property here is that, sincedU can be non-integer, ungravity repro-
duces the phenomenology not only of standard extra-dimensional physics, but also
of a “fractal” spacetime.

It was conjectured by perturbative arguments that such a modification to the New-
tonian potential would result in unparticle-driven mini-black hole creation in high
energy collisions [45,46]. More recently, exact solutionsto Einstein’s equations
were derived for unparticle interactions with matter, showing that the previous ap-
proximation holds in both the weak and strong gravity limits[48].

This paper will address the influence of vector unparticle interactions with mat-
ter, and the respective solutions of the Einstein equations. We show that, as in the
scalar/tensor case, vector unparticles modify the metric in an analogous fashion and
admit black hole solutions enhanced by the unparticle parameters. Since vector un-
gravity is repulsive, however, the resulting horizon and singularity structure is com-
parable to Riessner-Nordström class of metrics, where the“charge” is a composite
of unparticle parameters. We also discuss the unique thermodynamics of such black
holes, and consider the associated implications for the spacetime dimensionality..

2 Basics of unparticle physics

Unparticle physics is characterized by its non-integer scaling dimensiondU in phase
space, making it “look like” a system ofdU fundamental particles. A weakly-
coupled Banks-Zaks (BZ) field [49] exchanges a massive particleMU with standard
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model field, suppressed by non-renormalizable interactions

L = 1

MdS M+dBZ−4
U

OS MOBZ . (1)

Here,O is the unparticle operator, which may possess any Lorentz type (scalar,
vector, tensor, spinor). The dimensionsdS M and dBZ correspond to the standard
model and Banks-Zaks fields.

The couplingMU will run below some energy scaleΛU < MU, and the field trans-
mutes to the unparticle operatorOU of dimensiondU , dBZ. In this limit, the
interaction is

L = κ

ΛkU
OS MOU (2)

with kU = dS M+ dU − 4 andκ redefined accordingly so the action is dimensionless.
Since unparticle interactions are heretofore undiscovered, the lower-limit on the
energy scale must beΛU ≥ 1 TeV, making it an ideal framework for high energy
phenomenology.

In an attempt to provide a concrete physical mechanism for such a non-physical
phase space, several explanations have been put forth as to the nature of unpar-
ticle stuff. These include a composite Banks-Zaks particle with a continuum of
masses [50–52], or alternatively a Sommerfeld-like model of massless fermions
coupled to a massive vector field [53]. Recently, it was also shown that unparticle-
like propagators may be mimicked by a small collection of ordinary particles via
Padé approximations [54].

Vector-like unparticle operatorsOU couple to baryon currents with dimensionless
strengthλ according to the interaction

L = λ

Λ
dU−1
U

BµOµU , (3)

which will yield an effective potential of the form [26]

VU(r) ∼ λB1B2

r2dU−1
−→ λm1m2

M2
Br2dU−1

(4)

where the baryon numbers for the interacting masses areB j ≈ mj/MB, andMB is
the baryon mass. The modified gravitational potential is then

Φ(r) = ΦN(r)













1− 1
2π2dU

Γ(dU +
1
2)Γ(dU − 1

2)

Γ(2dU)

(R∗v
r

)2dU−2












= ΦN(r)

[

1−
(Rv

r

)2dU−2]

(5)
with the new length scaleRv dependent on the coupling strengthλ and the other un-
particle parameters. Equation 5 highlights the repulsive nature of vector ungravity,
which as we will see is crucial in determining the unique properties of the associ-

3



ated black hole solutions in the relativistic theory.

3 Vector unparticles corrections to the metric

The physical system we are going to investigate is an “hybrid” of classical matter,
classical gravity, and “quantum” un-gravity due to the exchange of un-vectors. An
initial treatment of the problem has been done in the weak-field, perturbative regime
[45,55], but here we present a robust derivation from first principles. The following
derivation assumesdBZ ≈ 1, but departures from this value are considered more
extensively in [55].

The action for this system is the sum of a classical functional SM for matter, and
a non-localeffective actionSU smoothly extending the Einstein-Hilbert action to
include un-vectors dynamics,

S ≡ SM + SU (6)

SM is the classical matter action for a massive, point-like, particle “sitting” in the
origin. There is some freedom to choose the explicit form of this functional. Sim-
plicity suggests to introduceSM in the form of the action for pressure-less, static
fluid, with a “singular” (but integrable!) energy density mimicking a “point-mass”:

SM ≡ −
∫

d4x
√

gρ ( x ) uµ uν , ρ ( x ) ≡ M
√

g

∫

dτ δ ( x− x (τ) ) (7)

The un-gravity action is obtained by combining the Einstein-Hilbert functional and
the non-local effective action obtained in [41] :

SU =
1

2κ2

∫

d4x
√

g















1+
AdU

( 2dU − 1) sin( π dU )
κ2∗
κ2

(

−D2

Λ2
U

)1−dU














−1

R (8)

where,D2 is the generally covariant D’Alembertian, which can be treated in the
Schwinger representation

(

D2
)dU−1

=
1

Γ ( 1− dU )

∫ ∞

0
dss−dU e−sD2

, dU > 1

The coefficient in the numerator of the correction is

AdU ≡
16π5/2

( 2π )2dU

Γ ( dU + 1/2)
Γ ( dU − 1)Γ ( 2dU )

(9)
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andκ∗ is the coupling between gravity and un-particle. In the vector case

κ∗ ≡ −
π

MPl.

(

λMPl.

MB

)2

(10)

where,MB ∼ 1GeV is the baryon mass. Notice the minus sign taking into account
the repulsive nature of the interaction.
As the form of the effective action (8) holds for any kind of unparticle, let us pro-
ceed without specifying the coupling constantκ∗, and insert eq.(10) only in the final
result.
Our main purpose is to solve the field equations derived fromS by assuming the
source is static, i.e. the four-velocity fielduµ has only non-vanishing time-like com-
ponent

uµ ≡
(

u0 , ~0
)

, u0 =
1

√

−g00
(11)

Einstein equations are obtained by varying the action (8) with respect to the metric
gµν. By neglecting surface terms coming from the variation of the generally covari-
ant D’Alembertian, we find

Rµν −
1
2
δµν R = κ2















1+
AdUΛ

2−2dU
U

( 2dU − 1) sin( π dU )
κ2∗
κ2

(−D )dU−1















Tµν

≡ κ2 Tµν + κ
2
∗

AdU

sin( π dU )
TU
µ
ν (12)

In Eq.(12) we have “shifted” the un-particle terms to the r.h.s. leaving the l.h.s. in
the canonical form. As a matter of fact, Eq. (12) can be seen as‘ordinary” gravity
coupled to an “exotic” source term, instead of un-gravity produced by an ordinary
particle. The two interpretations are physically equivalent.
The energy-momentum tensorTµν is given by [56]

T0
0 = −

M
4π r2

δ ( r ) (13)

Tr
r = 0 (14)

Tθθ = Tφφ = −
M

16π r
δ ( r )

1
g00
∂r g00 (15)

where,Tθθ ,T
φ
φ are determined by the requirement∇µTµν = 0.

With this kind of energy-momentum tensor the 00 andrr components of the metric
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tensor turn out to be of the form

g−1
rr = 1− 2

r
M ( r ) = −e−h0

g00
(16)

where the constanth0 can be freely re-absorbed into the deviation of the time coor-
dinate, and

M(r) = −4π
∫ ∞

r
dr r2T0

0 , r > 0 (17)

In Equation (17) the symbol
∫

dr indicates an indefinite integration. The constant
factoreh0 can be safely rescaled to 1 by a redefinition of the time coordinate.

We find,

M ( r ) =
22dU−2

4π1/2

Γ ( dU − 1/2)
Γ ( 2− dU )

MΛ2−2dU
U

(

1
r

)2dU−2

(18)

and

g−1
rr = −g00 == 1+ VN ( r )

[

1−
( Rv

r

)2dU−2 ]

(19)

Rv ≡
[

1
2π2dU

Γ ( dU − 1/2)Γ ( dU + 1/2)
Γ ( 2dU )

]
1

2dU−2
(

λMPl.

MB

)
1

dU−1

Λ−1
U (20)

where,Rs = 2MGN = 2M/M2
Pl. is the Schwarzschild radius;VN ( r ) is the Newton

gravitational potential, andRv is the new gravitational length scale.

The horizon curve is obtained by the conditiong−1
rr (rH) = 0

M =
rH

2
1

1− ( Rv/rH )2dU−2
≡ M ( rH ) (21)

The intersections between the lineM = const and the curveM ( rH ) gives the radii
of the inner and outer horizons. In this regard, we notice a first difference with
respect the RN metric, where the inner horizon,r−, can be arbitrarily small. As the
massM is positive definite, we see from Eq.(21) thatrH > Rv. That means that the
whole horizon curve is shifted to the right by an amount equalto Rv. Thus,r− can
never be smaller thanRv.
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If we decreaseM the two horizons approach one to the other and finally will merge
into the single degenerate horizon of anextremal black hole. The mass and the
radius of the extremal configuration can be obtained from Eq.(21) and the condition

(

dM
dr

)

r=re

= 0 (22)

Thus, we find

re = ( 2dU − 1)
1

2dU−2 Rv , (23)

Me =
( 2dU − 1)

2dU−1
2dU−2

4( dU − 1)
Rv , dU > 1 (24)

This result allows us to distinguish three different cases:

(1) M > Me Massive objects. They are two-horizons black holes
(2) M = Me Critical objects. They are extremal black hole with a singledegener-

ate horizon
(3) M < Me Light objects. They would be “naked-singularity” , where nohorizon

shields the curvature singularity inr = 0.

Me represents the lower bound for the mass of a vector unparticle modified black
hole. As we shall see in the next section, the extremal black hole has vanishing
Hawking temperature and represents an asymptotic final stage of the evaporation
process.

The conditional tense is necessary in the case of light objects, as they have not to be
taken too seriously. Indeed, the appearance of a naked-singularity is an alarm signal
that the theory we are using is blowing up, rather than a legitimate physical effect.
Indeed, invocation of the Cosmic Censorship Conjecture negates the formation of
such black holes, and can in fact be used to constrain the unparticle phase space in
this situation [55].

Divergence in the Riemann curvature, or tidal forces, at theorigin is the unavoid-
able side-effect of modeling the source of the field as a “point-mass”. By packing
a finite energy inside a vanishing spacelike volume disruptsthe spacetime fabric
itself. This is not a physical effect, but it is the due response of a classical theory,
i.e. General Relativity, to an unphysical infinite density source. At short distance
from the origin General Relativity must be supplemented by Quantum Mechanics
inputs in order to provide self-consistent results [57–61]. The whole model we are
discussing here, can be trusted only far away from the Planckscale, where, not only
matter, but gravity itself must be upgraded to some proper quantum theory.
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4 Thermodynamics

Scalar and tensor unparticle-enhanced black hole thermodynamics and their evap-
oration modes have been addressed previously [46,48,62]. In the case of vector
ungravity, the Hawking temperature is

TdU =
1

4π r+
[

1−
(

Rv

r+

)2dU−2
]













1− ( 2du − 1)

(

Rv

r+

)2dU−2 











(25)

by comparing (25 with (23), we see that

TdU ( r+ = rextr. ) = 0 (26)

As it was expected, the extremal black hole has vanishing Hawking temperature.
The second zero-temperature configuration is asymptotically approached whenr+ →
∞. Thus, the Hawking temperature increases up a finite maximumvalue, forrmax>

rextr, and then drops down to zero asr+ → rextr.

It is interesting to consider the temperature in the two “phases” of the model :
i) weak-couplingphase, whereλ << 1, Rv << r+; TdU takes the standard form

TdU ≃ TH =
1

4πrH
(27)

ii ) strong-couplingphase, whereλ >> 1, Rv >> r+; TdU turns into

TdU ≃
2dU − 1

4πrH
(28)

Eq.(28) has the same form as the Hawking temperature for Schwarzschild black
hole inD spacetime dimensions

TD ≃
D − 3
4πrH

(29)

It is important to remark that beyond the formal analogy, there is a substantial
difference betweenTdU andTD: the topological dimensionD is an integer number
while the scaling dimensiondU is areal number. Thus, in the strong coupling phase,
the event horizon behaves likefractal surfaceof spectral dimension dH = 2dU. Let
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us elaborate this picture by investigating the Area Law.
We start from the first law of black hole thermodynamics

dM = TdU dS (30)

where,dM = dr+ ( ∂M/∂r+ ). Equation (30) describes a transformation between two
states characterized by a different radius of the event horizon. This transformation
is a “path” in the (M , r+) plane along adU = const. trajectory.

dS =
2π r+

[

1−
(

Rv

r+

)2dU−2
] dr+ (31)

In the weak-coupling phase, unvector contributions can be neglected and Equation
(31) takes the standard form

dS ≃ 2π r+ dr+ (32)

which gives after integration the celebrated area-entropylaw

S = π r2
+ =

1
4GN

A+ (33)

In the strong-coupling-phase black hole evolution is different. The key-point is that
the final configuration can be, at most, an extremal black hole, but nothing smaller
than that. Actually, this configuration is asymptotically approached, as it isTdU → 0
and smaller and smaller amount of mass is evaporated away. Thus, to compute the
entropy (change) from Equation (31) the lower integration limit cannot be smaller
thanrextr.. In this phase, we find

dS ≃ 2π

R2dU−2
v

r2dU−1
+ dr+ (34)

and

S =
πR2

v

dU













(

r+
Rv

)2dU

−
(

rextr.

Rv

)2dU












(35)
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5 Conclusions

We have demonstrated that vector unparticles can modify theSchwarzschild metric
for uncharged, unrotating matter, creating a Riessner-Nordström class of solution.
The majority of expected characteristics of the resulting black hole – double hori-
zon, extremality conditions and vanishing temperature,etc...– are commensurate
with the classical case, although we have shown that in the ungravity case there is
a minimum (non-zero) inner horizon radius,r− > Rv. The small difference in inner
horizon size between the standard RN black hole and un-RN solutions suggests
there might be deeper discrepancies in the underlying characteristics. A future path
of inquiry might be to investigate the influence of unparticles on the physics of the
Cauchy horizon [63,64], which for RN black holes are generally unstable.

The fractal nature of the outer horizon is similar to that obtained for the black holes
in [48], furthering the notion that unparticles can increase the effective dimensional-
ity of spacetime by a (non-integer) number of dimensions. A greater understanding
of the thermodynamics and decay modes of such black holes canpotentially yield
observationally-distinct signatures in current or futureexperiments. Lower mass
limits on primordial un-vector black holes have been previously obtained [55], thus
if such objects exist in the Universe their evaporation remnants will be visible in
this era.
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