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Abstract

Tensor and scalar unparticle couplings to matter have He@mrsto enhance gravitational
interactions and provide corrections to the Schwarzscehétric and associated black hole
structure. We derive an exact solution to the Einstein egosifor vector unparticles, and
conclusively demonstrate that these induce Riessnerdttord (RN)-like solutions where
the role of the “charge” is defined by a composite of unpatjghase space parameters.
These black holes admit double-horizon structure, althouglike the RN metric these
solutions have a minimum inner horizon value. In the extidimmit, the Hawking temper-
ature is shown to vanish. As with the scdlansor case, the (outer) horizon is shown via
entropy considerations to behave like a fractal surfaceettsal dimensionly = 2dy.

1 Introduction

Recently, it was proposed that there could be a conformedliesinvariant particle
sector of unknown composition with a non-trivial IR fixed pb[1,2], at which
stronger couplings to the standard model emerge. Dubbagzhttinle physics” be-
cause of the non-intuitive phase space structure, itsdottoon has caused a flurry
of research into modifications to known physics and post-peadictions. Accel-
erator phenomenology has been the main emphasis in thegliter{3-10] [11,12],
but astrophysicatosmological [13—-18] [19—-24] [25—27], low to ultra-highuteno
phenomenology [28—-35] and general quantum field theory43pf42,43] appli-
cations have been of extreme importance as well.

1 e-mail address: jmureika@Imu.edu
2 e-mail address: spallucci@ts.infn.it

Preprint submitted to Elsevier 6 August 2010


http://arxiv.org/abs/1006.4556v2

Constraints on the unparticle paramet&rs the BZ messenger mad4,, and the
unparticle and Banks-Zaks dimensiahgs dgz are obtained through limits on mea-
surable accelerator phenomenology, astrophysical arrdalogical observations.
The aforementioned parameters serve to fix the energy atahdesscale at which
the interactions become relevant. It has been shown thag, # 1 TeV, then strict
limits may be placed on the messendy for various values of the unpatrticle di-
mensiondy . Higher values ofl, imply lower values oMy, whose value could be
as small as a few hundred TeV.

One of the most intriguing aspects of unparticle physichia tnteractions with
standard model particlesfectively modify the usual gravitational coupling strength
[26,27,45]. Dubbed “ungravity”, in the Newtonian limit this most likely to be ob-
served as deviations in planetary orbits and perihelionga®ion [25,26] on large
scales, as well as constrain Big Bang Nucleosynthesis {latk energy [24] and
even entropic gravity [42]. Conversely, the very smalllsdeehavior of scalar and
tensor ungravity begins to mimic thatiofarge extra compactified dimensions [44],
but withn — 2dy —2 and the Newtonian potential proportional {2~ [45-47].
The interesting property here is that, sirtgecan be non-integer, ungravity repro-
duces the phenomenology not only of standard extra-dimneakphysics, but also
of a “fractal” spacetime.

It was conjectured by perturbative arguments that such aficatibon to the New-

tonian potential would result in unparticle-driven miabk hole creation in high
energy collisions [45,46]. More recently, exact solutidasEinstein’s equations
were derived for unpatrticle interactions with matter, shngathat the previous ap-
proximation holds in both the weak and strong gravity linpt3].

This paper will address the influence of vector unparticteractions with mat-

ter, and the respective solutions of the Einstein equatif@sshow that, as in the
scalartensor case, vector unparticles modify the metric in anagmals fashion and
admit black hole solutions enhanced by the unparticle patars. Since vector un-
gravity is repulsive, however, the resulting horizon amgysiarity structure is com-
parable to Riessner-Nordstrom class of metrics, wheréctherge” is a composite
of unparticle parameters. We also discuss the unique thigmaonics of such black
holes, and consider the associated implications for theetjpae dimensionality..

2 Basicsof unparticle physics

Unparticle physics is characterized by its non-integelirsgaimensiordy in phase
space, making it “look like” a system afy, fundamental particles. A weakly-
coupled Banks-Zaks (BZ) field [49] exchanges a massiveghaNl, with standard



model field, suppressed by non-renormalizable interastion

1
- dsm+dsz—4
M U

L Os MOBZ . (1)

Here, O is the unparticle operator, which may possess any Loremz ¢gcalar,
vector, tensor, spinor). The dimensiotksy and dgz correspond to the standard
model and Banks-Zaks fields.

The couplingMy will run below some energy scalg;, < My, and the field trans-
mutes to the unparticle operatol;, of dimensiondy # dgz. In this limit, the
interaction is «

L = A_kUOS MOU (2)

with ky = dsy+ dy — 4 andk redefined accordingly so the action is dimensionless.
Since unparticle interactions are heretofore undiscalete lower-limit on the
energy scale must by > 1 TeV, making it an ideal framework for high energy
phenomenology.

In an attempt to provide a concrete physical mechanism foln sunon-physical
phase space, several explanations have been put forth he tature of unpar-
ticle stuf. These include a composite Banks-Zaks particle with a naotn of
masses [50-52], or alternatively a Sommerfeld-like modehassless fermions
coupled to a massive vector field [53]. Recently, it was alsma) that unparticle-
like propagators may be mimicked by a small collection ofiraidy particles via
Padé approximations [54].

Vector-like unparticle operatoi@, couple to baryon currents with dimensionless
strengthl according to the interaction

A

= dy-1
AU

L B.Oj . @)

which will yield an dfective potential of the form [26]

A1B1B, Ammp
VU(r) ~ r2du—l - Méeru—l

(4)
where the baryon numbers for the interacting masse8are m;/Mg, andMg is
the baryon mass. The modified gravitational potential is the

_ o) [1 B (%)Zdu—z]
(5)

with the new length scalR, dependent on the coupling strendtand the other un-
particle parameters. Equation 5 highlights the repulsatem of vector ungravity,
which as we will see is crucial in determining the unique emies of the associ-

1 T(dy +I(dy - 3) (&)mu—z

O(r) = On(1) |1~ 55, I'(2dy) r




ated black hole solutions in the relativistic theory.

3 Vector unparticles correctionsto the metric

The physical system we are going to investigate is an “hylwialassical matter,
classical gravity, and “quantum” un-gravity due to the exudpe of un-vectors. An
initial treatment of the problem has been done in the wedd;ferturbative regime
[45,55], but here we present a robust derivation from firstqyples. The following
derivation assumedgz ~ 1, but departures from this value are considered more
extensively in [55].

The action for this system is the sum of a classical functi@afor matter, and
a non-localeffective actionSy smoothly extending the Einstein-Hilbert action to
include un-vectors dynamics,

SESM +SU (6)

Sy is the classical matter action for a massive, point-likefiple “sitting” in the
origin. There is some freedom to choose the explicit formhaf functional. Sim-
plicity suggests to introducBy, in the form of the action for pressure-less, static
fluid, with a “singular” (but integrable!) energy densitymmcking a “point-mass”:

SME—fd“x\/@p(x)u“uV, p(X)E%de&(X—X(T)) (7)

The un-gravity action is obtained by combining the Einstdilbert functional and
the non-local &ective action obtained in [41] :

Ag, Kf _D2 1-dy 771
1+(2du—1)sin(ndu)ﬁ( AZ ) ] R (8

1
SU:? fd4X\/g

where,D? is the generally covariant D’Alembertian, which can be tiedain the
Schwinger representation

ZdU_l_ 1 * —dU —SD2
(D) _—F(l—du)fo dss®e , dy > 1

The codficient in the numerator of the correction is

A - L1602 T(dy+12)
Y (27)* T (dy —1)I(2dy)

9)



andk. is the coupling between gravity and un-particle. In the eecase

m ([ AMp )2
Ky = ———— 10
Mp, ( Mg (10)

where,Mg ~ 1GeVis the baryon mass. Notice the minus sign taking into account
the repulsive nature of the interaction.

As the form of the ffective action (8) holds for any kind of unparticle, let uspro
ceed without specifying the coupling constantand insert eq.(10) only in the final
result.

Our main purpose is to solve the field equations derived f®hby assuming the
source is static, i.e. the four-velocity fialé has only non-vanishing time-like com-
ponent

= (w,8), =2 (11)

Einstein equations are obtained by varying the action (&) véspect to the metric
0.»- By neglecting surface terms coming from the variation efdgenerally covari-
ant D’Alembertian, we find

l AdA2—sz K2
~Z§R=#|1 VU — (-D) | 1A,
R R= N I ey snragy e L2

Ad
= KETH, + =Tyl 12
T Sin(rdy) (12)

In Eq.(12) we have “shifted” the un-particle terms to thes.lheaving the |.h.s. in
the canonical form. As a matter of fact, Eq. (12) can be seéordmary” gravity
coupled to an “exotic” source term, instead of un-gravityduced by an ordinary
particle. The two interpretations are physically equingle

The energy-momentum tensbt, is given by [56]

M
0 e
To=-72-79(") (13)
T =0 (14)
M 1
T =T, = ~Tarr o (1) goodr Goo (15)

where, T/ ,T(‘; are determined by the requiremé&hfT*” = 0.
With this kind of energy-momentum tensor the 00 andomponents of the metric



tensor turn out to be of the form

g Mo
Joo

ga1=1—§l\/l(r):— (16)

where the constaity can be freely re-absorbed into the deviation of the time-coor
dinate, and

M(r) = —47rf dr r271y, r>0 (17)
r

In Equation (17) the symbofdr indicates an indefinite integration. The constant
factoré® can be safely rescaled to 1 by a redefinition of the time coatei

We find,
22021 (dy - 1/2) . p0g, (1Y
M) = 2z Ta=a,) M (F) (18)
and
R 2dy-2
gr_rlz—goo==1+VN(r)[1—(Tv) ] (19)
[ 1 T(dy-1/2)T(dy +1/2) |%2 [ AMp, \&T
Rv_ 27T2dU F(Zdu) ] ( MB ) AU (20)

where,Rs = 2MGy = 2M/M3, is the Schwarzschild radiusy (r) is the Newton
gravitational potential, anR, is the new gravitational length scale.

The horizon curve is obtained by the conditigii(ry) = 0

w1
21— (R/ry)? 2

= M(ry) (21)

The intersections between the lie= const and the curvbl (ry ) gives the radii
of the inner and outer horizons. In this regard, we notices #lifference with
respect the RN metric, where the inner horizan,can be arbitrarily small. As the
massM is positive definite, we see from Eq.(21) tmat> R,. That means that the
whole horizon curve is shifted to the right by an amount eqoi&,. Thus,r_ can
never be smaller thaR,.



If we decreaséV the two horizons approach one to the other and finally willgeer
into the single degenerate horizon of extremal black holeThe mass and the
radius of the extremal configuration can be obtained fronfHgand the condition

dMm
(W )He =0 (22)
Thus, we find
fe=(2dy - 1)™7 R, (23)
2dyy -1
3 (2dy — 1)Zu2
M= g R B>l (24)

This result allows us to distinguish thredfdrent cases:

(1) M > Mg Massive objects. They are two-horizons black holes

(2) M = Mg Critical objects. They are extremal black hole with a sirdggener-
ate horizon

(3) M < Mg Light objects. They would be “naked-singularity” , wherehmrizon
shields the curvature singularity in= O.

M. represents the lower bound for the mass of a vector unpartiodified black
hole. As we shall see in the next section, the extremal blat& has vanishing
Hawking temperature and represents an asymptotic finag sththe evaporation
process.

The conditional tense is necessary in the case of light thjas they have not to be
taken too seriously. Indeed, the appearance of a nakediaiityg is an alarm signal
that the theory we are using is blowing up, rather than aitagie physical fect.
Indeed, invocation of the Cosmic Censorship Conjecturatesghe formation of
such black holes, and can in fact be used to constrain thaticipghase space in
this situation [55].

Divergence in the Riemann curvature, or tidal forces, attfigin is the unavoid-
able side-fect of modeling the source of the field as a “point-mass”. Bgkpay

a finite energy inside a vanishing spacelike volume disrthpsspacetime fabric
itself. This is not a physicalfgect, but it is the due response of a classical theory,
i.e. General Relativity, to an unphysical infinite densipuice. At short distance
from the origin General Relativity must be supplemented lja@um Mechanics
inputs in order to provide self-consistent results [57-8he whole model we are
discussing here, can be trusted only far away from the Placale, where, not only
matter, but gravity itself must be upgraded to some propantum theory.



4 Thermodynamics

Scalar and tensor unparticle-enhanced black hole themardigs and their evap-
oration modes have been addressed previously [46,4862hel case of vector
ungravity, the Hawking temperature is

1

47rr+[1—(&)2d”2]l

Ty, =

U
+

2dy-2
1—(2du—1)(;ﬁ) ] (25)

e

by comparing (25 with (23), we see that

Tdu (r+ = rextr.) =0 (26)

As it was expected, the extremal black hole has vanishingkiegstemperature.
The second zero-temperature configuration is asymptiytaaproached when —
co. Thus, the Hawking temperature increases up a finite maxiwaloe, forr . >
lextr, @nd then drops down to zeroBS— reyy

It is interesting to consider the temperature in the two 4&%d of the model :
i) weak-couplingphase, whera << 1, R, << r,; Ty, takes the standard form

1
Tg, 2Ty = 27
dy H 47rrH ( )
ii) strong-couplingohase, wherg >> 1, R, >> r,; Tq, turns into
2dy -1
~ 28
dy 47rrH ( )

Eq.(28) has the same form as the Hawking temperature for &asehild black
hole inD spacetime dimensions

D-3

~ 29
4ty ( )

To

It is important to remark that beyond the formal analogyrehis a substantial
difference betweefy, andTp: the topological dimensioD is an integer number
while the scaling dimensiady, is areal number. Thus, in the strong coupling phase,
the event horizon behaves likactal surfaceof spectral dimensiongd= 2d,. Let



us elaborate this picture by investigating the Area Law.
We start from the first law of black hole thermodynamics

dM = Ty, dS (30)

wheredM = dr, (dM/ar, ). Equation (30) describes a transformation between two
states characterized by df@rent radius of the event horizon. This transformation
is a “path” in the M ,r,) plane along @, = const trajectory.

2nr,

[1_(%)2@)—2]

ds = dr, (31)

In the weak-coupling phase, unvector contributions candggeatted and Equation
(31) takes the standard form

dS =~ 2xr . dr, (32)

which gives after integration the celebrated area-enttayy

S:7rr2—i

- oA (33)

In the strong-coupling-phase black hole evolution tsaslent. The key-point is that
the final configuration can be, at most, an extremal black, fienothing smaller
than that. Actually, this configuration is asymptoticalppaoached, asiti;, — O
and smaller and smaller amount of mass is evaporated awag, Tdhhcompute the
entropy (change) from Equation (31) the lower integrationiticannot be smaller
thanrey, . In this phase, we find

ds ~ R;f_z r2-1dr, (34)
and ﬂ'% r 2du r ‘ 2du
S:El(ﬁv) ( Rv) ] (39)



5 Conclusions

We have demonstrated that vector unparticles can modifg¢hevarzschild metric

for uncharged, unrotating matter, creating a Riessned$taim class of solution.
The majority of expected characteristics of the resultilagk hole — double hori-

zon, extremality conditions and vanishing temperatate,..— are commensurate
with the classical case, although we have shown that in teawity case there is
a minimum (non-zero) inner horizon radius,> R,. The small diference in inner

horizon size between the standard RN black hole and un-RMigons suggests
there might be deeper discrepancies in the underlying cteistics. A future path

of inquiry might be to investigate the influence of unpagsgcbn the physics of the
Cauchy horizon [63,64], which for RN black holes are gengrahstable.

The fractal nature of the outer horizon is similar to thataoteéd for the black holes
in [48], furthering the notion that unparticles can inceeti®e éfective dimensional-
ity of spacetime by a (non-integer) number of dimensionsréater understanding
of the thermodynamics and decay modes of such black holegatentially yield
observationally-distinct signatures in current or futesgeriments. Lower mass
limits on primordial un-vector black holes have been praslg obtained [55], thus
if such objects exist in the Universe their evaporation ranms will be visible in
this era.

Acknowledgements
JRM is supported by the Research Corporation For Sciencamement.

References

[1] H. Georgi, Phys. Rev. Let@8, 221601 (2007).
[2] H. Georgi, Phys. Lett. B550, 275 (2007).
[3] Y.Liaoand J.Y. Liu, Phys. Rev. Letf9, 191804 (2007).

[4] Y. Liao, “Impact of Unparticles on Asymptotic Freedomdabynification of Gauge
Couplings,” arXiv:0708.3327 [hep-ph].

[5] Y. Liao, Phys. Rev. Dr6, 056006 (2007) [arXiv:0705.0837 [hep-ph]].
[6] T.G.Rizzo, JHERO710, 044 (2007).
[7] K. Cheung, W.Y. Keung and T. C. Yuan, Phys. Rev/& 055003 (2007).

[8] M.Bander, J. L. Feng, A. Rajaraman and Y. Shirman, Phgs. R76, 115002 (2007).

10



[9] K. Cheung, W. Y. Keung and T. C. Yuan, “Collider signatsiréor un-particle,”
arXiv:0710.2230 [hep-ph].

[10] K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. L8%.051803 (2007).

[11] T. Kikuchi and N. Okada, “Unparticle physics and Higgfiepomenology,”
arXiv:0707.0893 [hep-ph].

[12] T. Kikuchi, N. Okada and M. Takeuchi, “Unparticle phgsiat the photon collider”
arXiv: 0801.0018 [hep-ph].

[13] A. Freitas and D. Wyler, “Astro Unparticle Physics” anx0708.4339 [hep-ph].
[14] O. Bertolami and N. M. C. Santos, Phys. Revi®) 127702 (2009)

[15] S. Hannestad, G. Ralt and Y. Y. Y. Wong, Phys. Rev. 06, 121701 (2007).
[16] H. Davoudiasl, Phys. Rev. Lef@9, 141301 (2007).

[17] P. K. Das, Phys. Rev. 06 123012 (2007).

[18] G. L. Alberghi, A. Y. Kamenshchik, A. Tronconi, G. P. \@& and G. Venturi,
“Cosmological Unparticle Correlators,” arXiv:0710.42[Hep-th].

[19] J. McDonald, ‘Cosmological Constraints on UnpartiglearXiv:0709.2350 [hep-ph].

[20] I. Lewis, “Cosmological and Astrophysical Constrainbn Tensor Unparticles,”
arXiv:0710.4147 [hep-ph].

[21] S. L. Chen, X. G. He, X. P. Hu and Y. Liao, “Thermal Unpelgis: A New Form of
Energy Density in the Universe,” arXiv:0710.5129 [hep-ph]

[22] T. Kikuchi and N. Okada, “Unparticle Dark Matter,” anKD711.1506 [hep-ph].
[23] O. Bertolami, J. Paramos and P. Santos, Phys. R&@, D22001 (2009)

[24] D. Dai, S. Dutta, D. Stojkovic, Phys. ReD.80, 063522 (2009)

[25] S. Das, S. Mohanty and K. Rao, Phys. Rew) 076001 (2008)

[26] N. G. Deshpande, S. D. H. Hsu and J. Jiang, Phys. Le369B 888 (2008)

[27] H. Goldberg and P. Nath, Phys. Rev. L&f20, 031803 (2008)

[28] S. L. Chen, X. G. He and H. C. Tsai, JHBPL1, 010 (2007)

[29] D. Majumdar, “Unparticle decay of neutrinos and itSeet on ultra high energy
neutrinos,” arXiv:0708.3485 [hep-ph](2007)

[30] D. Montanino, M. Picariello and J. Pulido, Phys. ReviD) 093011 (2008)
[31] S. Dutta and A. Goyal, Phys. Lett. &4, 25 (2008)

[32] L. Anchordoqui and H. Goldberg, Phys. Lett6B9, 345 (2008)

[33] X. Q. Li, Y. Liu and Z. T. Wei, Eur. Phys. J. 66, 97 (2008)

11



[34] S. Zhou, Phys. Lett. B59, 336 (2008)

[35] G. Gonzalez-Sprinberg, R. Martinez and O. A. Sampayg,sPRev. D79, 053005
(2009)

[36] M. A. Stephanov, Phys. Rev. 5, 035008 (2007),

[37] D. I. Kazakov and G. S. Vartanov, “Phenomenology of tfié;1Expansion for Field
Theories in Extra Dimensions”, arXiv:0710.4889 [hep-ph].

[38] D. I. Kazakov and G. S. Vartanov, JHER06, 081 (2007).

[39] J. P. Lee, “Unparticles and holography,” arXiv:07102Z [hep-ph].
[40] P. Gaete and E. Spallucci, Phys. Lett6@3, 336 (2008)

[41] P. Gaete and E. Spallucci, Phys. Lett6@l, 319 (2008)

[42] P. Nicolini, “Entropic force, noncommutative gravityand un-gravity,”
arXiv:1005.2996 [gr-qc].

[43] P. Nicolini and E. Spallucci, “Un-spectral dimensiamdeguantum spacetime phases,”
arXiv:1005.1509 [hep-th].

[44] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, PhysvR259, 086004 (1999)
[45] J. R. Mureika, Phys. Rev. 29, 056003 (2009)

[46] J. R. Mureika, Phys. Rev. 29, 056003 (2009)

[47] J. P. Lee, arXiv:0911.5382 [hep-th].

[48] P. Gaete, J. A. Helayel-Neto and E. Spallucci, “Un-gav corrections to the
Schwarzschild black hole,” arXiv:1005.0234 [hep-ph].

[49] T. Banks and A. Zaks, Nucl. Phys.1®6, 189 (1982).
[50] N. V. Krasnikov, Int. J. Mod. Phys. 82, 5117 (2007)
[51] H. Nikolic, Mod. Phys. LettA 23 (31), 2645-2649 (2008)

[52] J. McDonald, “Unparticles: Interpretation and Cosogyl”, arXiv:0805.1888 [hep-
ph]

[53] H. Georgi and Y. Kats, Phys. Rev. Lei0D1, 131603 (2008)
[54] M. Perez-Victoria, JHEP901, 011 (2009)

[55] J. R. Mureika, “Constraints on vector unparticle plegsfrom cosmic censorship,”
arXiv:0909.4511 [hep-ph].

[56] A. DeBenedictis, “Developments in Black Hole ResearClassical, Semi-classical,
and Quantum,” arXiv:0711.2279 [gr-qc].

[57] P. Nicolini, A. Smailagic and E. Spallucci, Phys. L&t632, 547 (2006)
[58] E. Spallucci, A. Smailagic and P. Nicolini, Phys. Rev78 084004 (2006)

12



[59] S. Ansoldi, P. Nicolini, A. Smailagic and E. SpallucBihys. Lett. B645, 261 (2007)
[60] E. Spallucci, A. Smailagic and P. Nicolini, Phys. L&t670, 449 (2009)

[61] P. Nicolini and E. Spallucci, Class. Quant. Gray, 015010 (2010)

[62] D. Dai and D. Stojkovic, Phys. Rel 80, 064042 (2009)

[63] R. A. Matzner, N. Zamorano and V. D. Sandberg, Phys. Rel9, 2821 (1979)
[64] E. Poisson and W. Israel, Phys. RevdD} 1796 (1990)

13



	Vector unparticle enhanced black holes: exact solutions and thermodynamics
	Digital Commons @ LMU & LLS Citation

	arXiv:1006.4556v2  [hep-ph]  5 Aug 2010

