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Abstract

We consider the formulation of entropic gravity in two spacetime dimensions. The usual gravita-

tional force law is derived even in the absence of area, as normally required by the holographic

principle. A special feature of this perspective concerns the nature of temperature and entropy

defined at a point. We argue that the constancy of the gravitational force in one spatial dimen-

sion implies the information contained at each point in space is an internal degree of freedom on

the manifold, and furthermore is a universal constant, contrary to previous assertions that entropic

gravity in one spatial dimension is ill-defined. We give someheuristic arguments for gravitation

and information transfer constraints within this framework, thus adding weight to the contention

that spacetime and gravitation might be emergent phenomena.
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1 Introduction

The duality between gravitation and thermodynamics is well-known, stemming from the origi-

nal considerations of Beckenstein and Hawking to black holeevaporation [1, 2]. These pioneer-

ing investigations demonstrated that the entropy of a blackhole is described completely in terms

of its horizon area, and hence its temperature as a function of the Schwarzschild radius. The

frame-dependence of temperature was noted in the celebrated Unruh effect [4], which implies a

uniformly accelerated detector in a vacuum experiences a thermal bath of radiation. The gravity-

thermodynamics connection was further elucidated in [3], where it was pointed out that the Einstein

field equations may be understood as a collective equation ofstate. The most striking instantia-

tion of gravitational duality is the AdS/CFT correspondence conjecture [6], which associates a

d−dimensional conformal field theory with a gravitational theory in one higher dimension. The

generalization of this duality is embodied by the holographic principle [5, 7], which posits that the

entropy content of any region of space is defined by the bounding area of the region.

Recently, a new perspective on gravitational holography proposing that the laws of gravitation

are no longer fundamental, but rather emerge naturally fromthe second law of thermodynamics as

an “entropic force” [8, 9], has received much attention. This framework has since been extended to

numerous situations, ranging from quantum gravity [10, 11,12] and quantum information [13, 14,

15] to cosmological implications [16], including implications for black hole temperature [17, 18,

19, 20], dark energy [21, 44, 22, 23, 24, 25], and inflation [26, 27, 28, 29]. Beyond Newtonian and

relativistic gravity, the entropic formalism has been studied in the context of MOND [30, 31],f (R)

theories [33], and even potential connections to Lifshitz gravity [34], non-commutative geometry

and unparticle physics [35]. An interesting consequence ofapplications arises in the quantum

regime, where uncertainty principle constraints applied to information transfer between the test

mass and holographic screens necessitate a lower-bound to the mass of the photon and/or graviton



[36]. While the predicted mass is within experimental constraints, this provides a robust test of

the proposed mechanism. Additionally, a potential entropic formulation for circular motion has

recently been proposed [37].

Being fundamentally based on the holographic principle, one expects that entropic gravity can

be generalized to any spatial dimension [9]. A problematic exception potentially arises ford = 1,

in which there is no concept of area and hence no intuitive extension (or rather subtension) of the

area-entropy law. We consider here the problem of formulating entropic gravity in one spatial di-

mension and demonstrate that its resultant physics is well-defined, despite the non-existence of the

prerequisite bounding area. Due also in part to the resurgence in importance of (1+1)−dimensional

physics in high energy physics (e.g in models such as causal dynamical triangulations [38], non-

commutative geometry [39], or evolving dimensions [40, 41]), a complete description from the

entropic view may provide additional insights on emergent phenonema.

Section 2 provides a review of the entropic gravity framework for a general number of dimen-

sionsd. In Section 3 we consider thed = 1 case, in which the information (and entropy) become

intrinsic degrees of freedom of the space itself, and comment on the implications of this new in-

terpretation. We comment on the feasibility of this framework, conjecture potential relativistic

extensions of the model, and outline conclusions and futuredirections in Section 4.

2 Entropic Gravity

An entropic force may be defined in a purely classical and general sense as [8, 9]

Fentropic≡ −
∆E
∆x
= −T

∆S
∆x

. (1)



By definition, Fentropic is a force resulting from the tendency of a system to increaseits entropy.

Since∆S > 0, the sign of the force –whether it is repulsive or attractive – is determined by how

one chooses the definition of∆x as it relates to the system in question3.

A mass distributionM induces a holographic screenΣ at some distancer that has encoded

on it gravitational information. Consider the situation ind spatial dimensions. According to the

holographic principle, the screen encodes all physical information contained within its volume in

bits on the screen whose numberN is given by

N =
AΣ(r)

ℓd−1
P

(2)

where

AΣ(r) =
2πd/2

Γ(d
2)

rd−1 (3)

is the area of the hyperspherical screen andℓP is a fixed length scale whose areaℓd−1
P is the minimal

area containing a single bit. Assuming that the total energyof the systemE = Mc2 is evenly

distributed over the bits4

E =
N
2

kbT (4)

one can then eliminate the inferred temperatureT in terms of the massM and areaAΣ(r), yielding

kBT =
2Mc2ℓd−1

P

AΣ(r)
(5)

A second test massm will begin to “transfer” its own information bits to the screen, a measure

3In the framework presented in [9], this force is necessarilyattractive, since by design the value of∆x is negative
(and of course∆S > 0).

4We note assuminga priori such an equipartition is not necessary. It has been showne.g. that an analogous
statistical interpretation of gravitation can be derived purely from black hole spacetimes, with equations of motion
resulting from extremization of the entropy [42, 43].



of which is taken to be

∆S = 2πkB
∆x
Ż

, Ż =
h

mc
(6)

as the particle moves a distance∆x toward the screen. Note that this yields an attractive forcefrom

Equation 1, since by construction∆x < 0. When the particle is within a distance equal to its own

Compton length,∆x = Ż, the particle itself is “indistinguishable” from the screen and their bits

merge.

Combining Equations (5, 6) with Equation ( 1), it is straightforward to show that the entropic

force yields Newton’s law of gravitation

Fentropic= −2π1− d
2Γ

(

d
2

)

c3ℓd−1
P

~

Mm
rd−1
= −Gd Mm

rd−1
(7)

in d spatial dimensions,

Gd = 2π1− d
2Γ

(

d
2

)

c3ℓd−1
P

~
(8)

is thed-dimensional gravitational constant. In this context we see thatℓP is the Planck length.

One can make further inferences regarding the nature of the screen. The gravitational force law

was derived with the only constraint on temperature being that it is a measure of the equipartition

of energy on the screen. An observer in the rest frame of the test massm will infer the existence of

a temperature

T =
~a

2πkBc
(9)

due to the Unruh effect [4], wherea is the acceleration of the test mass. This can be taken to be the

temperature of the screen, understood as the temperature required forM to induce an acceleration



a on the test mass [9]. From eq. (6), eq. (1) becomes

Fentropic=
2πkBTmc
~

= ma . (10)

or in other words the law of inertia. The entropy content of the screen can be inferred to be

S screen∼ N (11)

which by the holographic assumption (2) makes it proportional to the area of the screen ind spatial

dimensions.

3 Applications to One-Dimensional Gravity

The preceding argument holds formally for all dimensionsd ≥ 1, despite the fact that in one

spatial dimension a screen is only a point and so has no area. Furthermore, the Einstein tensor

Gµν is identically zero in two spacetime dimensions, making a connection with relativistic gravity

somewhat problematic. These observations motivate us to consider the formulation of entropic in

d = 1 as a separate case, to see what insights for emergent gravity might be gleaned.

The advent of lower-dimensional gravity yielded much insight into aspects of quantum gravity

and relativistic physics (see [45, 47, 46, 52, 48, 49] for some expository introductions). The rich-

ness of its content lies in the simplicity of the governing equations of motion. The action cannot

be that of the Einstein-Hilbert action, since the Ricci scalar is a topological invariant. While it is

common to adopt some general form of dilatonic gravity for the action, this generally yields a set

of field equations whose metric dynamics are coupled with that of the dilaton. It is possible, how-

ever, to obtain [53] what might be regarded as the most straightforward exposition of the Einstein



equation in two-dimensional spacetime

R − Λ = 8πG1T , (12)

from the action

S [gµν, φ] =
∫

d2x
√
−g(ψR − 1

2
(∇ψ)2 +Lm − 2Λ) (13)

whereψ is a scalar field andLm is the matter Lagrangian. Requiring a vanishing trace of the

resulting stress-energy tensor decouples the dilaton fromthe background and recovers the desired

vacuum spacetime structure. This theory has the unique feature that it reduces to Newtonian gravity

in 2 spacetime dimensions [50]. Such an action can also be generalized to the case of a (1+ 1)-

dimensional non-commutative geometry [51].

For a vacuum (T = 0) showsR completely determines the Riemann tensor. The surprising

implication is that even a spacetime devoid of matter may still possess curvature provided the

cosmological constant is nonzero [45]. In the presence of energy (matter), a number of black hole

and event horizon solutions are possible [48, 49], which canpossess either attractive or repulsive

properties. For arbitrary cosmological constantΛ, the vacuum solution to Equation 12 is [49]

ds2 = −
(

∓1
2
|Λ|x2 − 2G1M|x| − C

)

dt2 +
dx2

(

∓1
2 |Λ|x2 − 2G1M|x| −C

) (14)

where the parameterM corresponds to the ADM mass, andC < 0 is a arbitrary constant whose

value determines the causal structure of the spacetime [54]. The sign convention is deSitter (−)

and anti-deSitter (+). For M > 0 the above metric describes the 2-dimensional analogue of

a Schwarzschild black hole [49]. A two-dimensional Riessner-Nordström spacetime with point

chargeQ can be shown to mimic the above metric with the equivalence|Λ| = Q2/4 [55].



In the absence of a cosmological constant, two point massesM and m will experience an

attractive gravitational force, where the mass separationx as a function of proper timeτ is governed

by the familiar inertial equation [49]

x(τ) = −M
2
τ2ǫ(x) + v0τ + x0 , ǫ(x) = θ(x) − θ(−x) (15)

Note that this expression is manifestly position independent, as the functionǫ(x) reflects only the

relative position ofm to M (v0 and x0 are constants of integration). Unlike classical Newtonian

gravity in three spatial dimensions, the (1+1)-gravitational acceleration between masses is con-

stant, and therefore so is the force law. This is further evident from the form of (14), whoseg00

component is linear in|x|, and thus by association so is the gravitational potentialφ(x) = G1M|x|.

Another key novelty of two-dimensional black hole solutions is the existence of a gravitational

temperature [49], whose value can be calculated via a Wick rotation (14),

ds2 = α(x) dτ2 + α−1(x) dx2 −→ α(x(r)) dτ2 + dr2 , α(x) =

(

dx
dr

)2

(16)

The periodicity ofα yields the standard temperature at the horizonxH

T =
~

2π

∣

∣

∣

∣

∣

α′(xH)
2

∣

∣

∣

∣

∣

=
~

2π

√

M2 − C
Λ

2
(17)

where the latter equality follows upon using (14). In contrast to (3+1)- and higher dimensional

gravity, it has been shown [49] that the temperature of theseblack holes scales with its mass.

It follows from foundational principles that if these solutions exhibit a Hawking temparture, an

associated Beckenstein-Hawking entropy must also be a feature of 1+1-dimensional models. It is

thus natural to extend (or subtend) the (3+1)-formalism of entropic gravity to lower dimensional



spacetimes, since as noted in [9], the formalism may be extended to any higher-dimensional space

(i.e. d = 3+ n dimensions) thanks to the generalizability of the holographic principle,S ∼ An+3/4.

While the Newtonian potential varies spatially asφ(r) ∼ r−(n+1) for n > 0, and thus the force as

F(r) ∼ r−(d+2), their characteristics are notably different whend < 3.

As demonstrated above the one-dimensional spatial potential is linear inx, thus it should be

possible to derive an associated entropic force. The derivation for such is identical to that of

Verlinde, except that it is halted short of invoking the relationship between bit densityN and area

A (and implicitly spatial separationr) due to dimensional limitations. The general entropic force

expression is thus

Fentropic= −T
∆S
∆x
= −mM

(

4πc3

N~

)

. (18)

upon using eqs. (4) and (6), withE = Mc2 = N
2 kbT . Note that the expression (18) does not require

the use of (2) and is valid inany number of dimensions.

The spatial dependence of the entropic force is introduced implicitly though the dependence of

N onA(r) via eq. (2), which at first suggests that the method cannot beimplemented in linear space.

The above relation suggests, however, that the fundamentalquantity of interest is the bit-countN,

and not the bounding area. As a result, in one spatial dimension we have

F1 = G1mM , (19)

which is in agreement with the well-known result that the gravitational force in one dimension is

constant, provided the coupling itself is defined as

G1 =

(

4πc3

N~

)

. (20)



implying that

N = 4πc3/G1~ (21)

expressing the number of bits in terms of the speed of light, Planck’s constant, andG. Using

Eq. (8) thed = 1 coupling isG1 = 2πc3/~, one can obtain a numerical value for the number of bits

N that reside at each point in the spacetime. Since Eq. (2) gives a value ofA = 2 in this case – ı.e.

both antipodal points (−x, x) comprising the boundary of the 1-volume – we divide the resulting

calculation by two and conclude that

N = 1 . (22)

That is, there is one bit of information at every point in the two-dimensional spacetime. We note

that the relation betweenG and the generalized Planck area in different dimensions has also been

considered in References [58] and [59]. The case of (1+ 1)-dimensions was not considered, how-

ever, so our result may be compared for consistency to the general cases discussed therein.

The implications for entropic gravity are profound. Since the right-hand-side of eq. (22) is

a constant, the immediate implication is thatN itself is also constant. That is, unlike in higher

dimensional spaces, the number of bits contained at a point in (1-D) space is constant, irrespective

of the distance from the massM that generates the screen.

This is a novel result that is specific to the (1+ 1) framework, albeit one that contains several

subtleties that merit discussion. First, the original Verlinde argument relies on temperature, a

quantity that traditionally is associated in the Maxwellian sense with vibrational modes of a system.

A similar argument could be extended to the temperature on a black hole horizon. In our context,

the temperature is that associated with the degrees of freedom located at a point, which henceforth

must be considered as internal degrees of freedom. A relatedargument pertains to the applicability

of energy equipartition at a point.



An additional point to highlight is the dependence of the coupling on bit density. The result of

equation (20) is applicable in arbitrary dimensions, implying N ∼ G−1. This yields the potentially

counter-intuitive conclusion that more information implies weaker gravity, and vise versa. In the

generalized model, however, the bit density depends on the area of the screen,N ∼ A. Larger

screen areas imply largerN, and consequently this leads to a system with weak gravitation. The

two points can be reconciled, nevertheless, by interpreting thatN implies the possible number of

total states that may result. From this perspective, systems withlargeN are very “disordered”, a

characteristic one would anticipate from a theory with weakgravity. Likewise, a large value ofG

stems from a smallN, which simply implies a very strongly-coupled system with few degrees of

freedom.

This conclusion is in general agreement with tthat of Reference [56], which through construct-

ing a holographicc-function that applies to black holes solutions as well as renormalization group

flow backgrounds, derives a relation between the number of degrees of freedom and Wald entropy

N = S Wald/Ω. In this case,Ω is a measure of the holographic phase space volume –i.e. the number

of states – which in our formulation corresponds toN. From this relationship, Verlinde’s entropic

gravity can be rigorously derived from Einstein’s equations. Our above interpretation ofN as a

state count and the argument of [56] are thus equivalent.

A recent pedagogical analysis of the entropic gravity formalism [57] suggested that the frame-

work is applicable in spaces of any dimensiond (which is of course true), except the “pathological”

case ofd = 1. The reason given is that area is not defined ford < 2. As we have demonstrated,

however, this point can be rendered moot if one stops short ofassociating the number of bits with

an area.

Indeed, the thrust of our conclusions lies in the interplay between entropy, area, number of bits,

and gravitation, as exemplified in Equation (20). This implicit relationship betweenG,N, andA



is also highlighted in [57], where it is noted therein that sinceA ∼ GN, the number of bits may

actually be excluded from the calculation sinceN is determined by the values ofA andG. We

note that this relationship breaks down in one dimension, however, sinceA1 → 0, suggesting that

entropic gravity is ill-defined for this manifold. In the general formulation for entropic gravity, the

appearance ofA emerges fromN ≡ N(r) = A(r)/ℓd−1
P . Our definition (20) does not necessitate the

introduction of an area, if one accepts the notion thatN is an internal parameter.

Furthermore, one may use this fact to reinterpret the very notion of area. SinceA does not enter

the entropic gravity formulation directly except by substitution for the bit countN(r) → A(r), one

may regard there to be no formal difference betweend = 1 andd > 1. That is, each case depends

fundamentally onN, and not on area. In this sense, area is an emergent quality ofhow information

permeates a space. In 1− D, it concentrates at a point, but ind > 1 spaces it evenly distributes

itself in space and thus defines the “area” asAd(r) = Nℓd−1
p .

4 Concluding Remarks and Future Considerations

We have provided a comprehensive treatment of (1+ 1)−dimensional entropic gravity in the clas-

sical limit. The formalism correctly reproduces the expected constant gravitational law, which has

the profound implication that the information density at any point along the line must be constant.

Furthermore, we have introduced a new interpretation of area as a uniform distribution of entropy

in d−dimensions. This allows for a natural extension of the entropy gravity mechanism to one

spatial dimension, where “area” does not exist.

Based on these conclusions, it is tempting to postulate a relativistic extension to this mecha-

nism. Area – and hence entropy – is a natural characteristic of spacetime foliations. The union of

such objects thus defines the complete manifold, from which Einstein’s equations may be extracted



in the same spirit as Newton’s laws. Geodesics are then the extremal flow lines of entropy. Future

work on these ideas, and thus a model of emergent entropic general relativity, is thus warranted.
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