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SYMPOSIUM

Challenges for Biological Interpretation of Environmental
Proteomics Data in Non-model Organisms
W. Wesley Dowd1

Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA

From the symposium ‘‘Comparative Proteomics of Environmental and Pollution Stress’’ presented at the annual meeting

of the Society for Integrative and Comparative Biology, January 3–7, 2012 at Charleston, South Carolina.

1Email: wdowd@lmu.edu

Synopsis Environmental physiology, toxicology, and ecology and evolution stand to benefit substantially from the

relatively recent surge of ‘‘omics’’ technologies into these fields. These approaches, and proteomics in particular, promise

to elucidate novel and integrative functional responses of organisms to diverse environmental challenges, over a variety of

time scales and at different levels of organization. However, application of proteomics to environmental questions suffers

from several challenges—some unique to high-throughput technologies and some relevant to many related fields—that

may confound downstream biological interpretation of the data. I explore three of these challenges in environmental

proteomics, emphasizing the dependence of biological conclusions on (1) the specific experimental context, (2) the choice

of statistical analytical methods, and (3) the degree of proteome coverage and protein identification rates, both of which

tend to be much less than 100% (i.e., analytical incompleteness). I use both a review of recent publications and data

generated from my previous and ongoing proteomics studies of coastal marine animals to examine the causes and

consequences of these challenges, in one case analyzing the same multivariate proteomics data set using 29 different

combinations of statistical techniques common in the literature. Although some of the identified issues await further

critical assessment and debate, when possible I offer suggestions for meeting these three challenges.

Introduction

Recent years have produced a flourishing of large-

scale approaches in biology that promise to revolu-

tionize systems-level understanding of cellular and

organismal function. These fields, collectively re-

ferred to as ‘‘omics’’ (Joyce and Palsson 2006),

assess the structure and functioning of organisms at

a comprehensive and unprecedented level of detail.

Proteomics, the global study of protein abundance

and modification patterns, holds particular promise

for elucidating the functional responses of organisms

to environmental and biological challenges (Cox and

Mann 2011; Tomanek 2011). Indeed, many practi-

tioners argue that the proteome best represents the

functional molecular phenotype. In the well-known

central dogma of molecular biology (depicting infor-

mation flow from genome to transcriptome to

proteome, and now to metabolome), proteins per-

form most of the molecular work of the cell and

constitute a substantial and dynamic component of

cellular structures.

The field of proteomics promises two grand, and

as yet largely unrealized, outcomes: (1) to assess the

abundances, modifications, and interactions of all

proteins present in a sample and then to determine

how these change through time (e.g., ontogeny,

stress, or disease) and (2) in so doing, to unearth

novel and integrative functional responses of organ-

isms to diverse environmental challenges, over a

variety of time scales and at different levels of orga-

nization. The first of these has been hampered

primarily by technological factors, such as mass-

spectrometer scanning rates (Mulvey et al. 2010) or

techniques for separation of native proteins (Monti
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et al. 2009). The second is often limited by excessive

costs or limited access to instruments, shortages of

genomic sequence information, incomplete knowl-

edge of protein structure and function, or insuffi-

cient analytical methods to interpret the large data

sets that are produced (Joyce and Palsson 2006).

Technological advances in protein separation,

protein identification by mass spectrometry, and

large-scale genomic and transcriptomic sequencing

(e.g., next-generation sequencing platforms such as

Roche 454 and Illumina) now allow biologists to

more easily apply proteomics techniques to

non-model organisms in environmentally realistic sce-

narios (reviewed by Tomanek 2011; Diz et al. 2012).

These technologies, which have been reviewed else-

where and which are succinctly summarized in other

contributions to this symposium, have numerous po-

tential applications for integrative biologists interested

in physiological, ecological, and evolutionary ques-

tions. Such applications lie well outside the typical

realm of proteomics, which tends to be biomedically

focused. For example, contributions to this sympo-

sium apply proteomics methods to examine responses

of organisms to environmental and toxicological chal-

lenges (Martyniuk and Denslow, this volume); corre-

lations of function with ecology and biogeography

(Fields et al., this volume); species’ differences

(Tomanek, this volume); the patterns of environmen-

tal adaptation (Abbaraju et al., this volume); and lim-

itations to adaptive processes (G. Dilly, unpublished

data). Thus, other contributions to this symposium

highlight both the scope and depth of what we have

learned and can learn by applying study of the prote-

ome to environmental questions.

In contrast, this review considers how proteomics

techniques can be more effectively applied to envi-

ronmental questions to reach sound biological con-

clusions. Specifically, I examine the dependence of

biological interpretations of proteomics data on

three factors:

� The specific experimental context (e.g., treatment

conditions and tissue type);

� The choice of statistical analysis methods;

� The degree of proteome coverage and the rate

of identification of proteins-of-interest, both of

which are typically much less than 100% (i.e.,

‘‘analytical incompleteness,’’ Wilkins et al. 2006).

These three challenges to biological inference were

identified by review of recent environmental proteo-

mics studies in the literature and from personal

experience in examining the proteomic responses

of coastal marine organisms to environmental

challenges. Although similar concerns have been

raised by others (e.g., Broadhurst and Kell 2006;

Wilkins et al. 2006; Diz et al. 2011), I argue that

the implications of these challenges are especially

profound for the field of environmental proteomics,

and I demonstrate that these three factors generally

have not received sufficient consideration in recent

environmental proteomics articles. For each chal-

lenge, I first characterize the general status in the

field through a review of recent environmental pro-

teomics literature. I then examine causes and conse-

quences of these challenges, using examples from my

own work on environmental stress proteomics in

sharks and mussels. Finally, when possible, I offer

suggestions for addressing these challenges as a

field. The first two of these challenges may well be

overcome by more robust and more sophisticated

application of techniques for experimental design

and statistical analysis, whereas the third challenge

requires advances in technology and generation of

a critical mass of shared sequence information and

functional protein analyses in non-model organisms.

As we address these challenges explicitly in future

studies, the power and contributions of environmen-

tal proteomics will only continue to expand.

Methods: Literature review

The review of the literature focused on environmen-

tal proteomics publications appearing after 2005.

Rather than a comprehensive review of all available

studies, I focused instead on a representative

subsample. The studies were selected from a list gen-

erated by searching the Web of Science database

(Topic¼[(stress or salinity or temperature or hyp-

oxia or environment*) and proteom*] AND Year

Published¼[2011 or 2010 or 2009 or 2008 or 2007

or 2006 or 2005]), and the list included many studies

recently reviewed by Tomanek (2011). Although a

number of proteomics-focused journals exist, the se-

lected studies were published primarily in journals

that cater to integrative and comparative biologists.

This focus is consistent with the goals of the present

symposium, and the existence of such publications

indicates an effort on the part of the environmental

proteomics community to make these techniques vis-

ible and applicable to a wider audience.

In total, 31 proteomics data sets published in 19

different articles were reviewed; in cases in which

more than one species or more than one tissue was

assessed in a given article, these were counted as

separate data sets (complete list of studies and sum-

mary data are provided in Supplemental Table S1).

However, the two studies in which more than one
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tissue from the same organisms and treatments were

examined (Dowd et al. 2010a, 2010b) were treated as

single entities when analyzing criteria for experimen-

tal design. Consequently, the total number of data

sets analyzed was reduced to 29 in some cases. Each

experimental data set was initially scored for 27 cri-

teria for experimental design, statistical analysis, and

results (Table 1). These criteria covered not only the

specific designs, separation methods, and statistical

analyses of environmental proteomics studies but

also how well those details were explained in the

resulting publications. Clearly, this is not an exhaus-

tive summary of the complete body of environmental

proteomics literature, but the results are illustrative

of the three challenges outlined earlier in the text.

Summary of the data

The summary data set included organisms from sev-

eral life history stages (larvae to adults) and from a

number of taxonomic groups (bony and cartilagi-

nous fishes, molluscs, annelids, echinoderms, crusta-

ceans, urochordates, and zooxanthellae symbionts of

corals). All the studies used entire organisms for the

experimental exposures or treatments, as opposed to

cell lines or isolated tissues. Consequently, the results

could be interpreted in each case in the physiological

and biochemical context of an entire organism. Of

the 31 studies, only three fractionated the proteome

to look at specific subsets of proteins (in this case,

peroxisomal proteins) (Apraiz et al. 2006). The dis-

tribution of experimental approaches for separating

protein mixtures was heavily skewed toward

two-dimensional gel electrophoresis (2D-GE; 28 of

31 data sets) rather than liquid chromatography

mass spectrometry (LC-MS). This is likely due to a

number of factors that currently hamper application

of LC-MS to non-model organisms, most notably a

lack of sufficient sequence information to allow recon-

struction of predicted protein sequences from numer-

ous digested peptides that separate into different liquid

fractions (Cox and Mann 2011). Both the 2D-GE

and LC-MS separation approaches have their advan-

tages and disadvantages (Görg et al. 2004; Rabilloud

et al. 2010; Cox and Mann 2011); among the most

important and well known of these are under-

representation of large, membrane-bound proteins in

2D-GE studies and relatively high technical variability

in both methods (i.e., large coefficients of variation

up to 15–30% for the same peptide/protein between

replicate runs of the same sample on the same appa-

ratus) (e.g., Hunt et al. 2005; Bandow et al. 2008).

To overcome high levels of variation, previous au-

thors have advocated increasing levels of biological

replication (i.e., analyzing more individuals) before

increasing technical replication (e.g., Rocke 2004;

Chich et al. 2007), especially when analytical or

financial resources are limited. Technical replication

alone overestimates the precision of measurements

and exaggerates significant differences among treat-

ment groups, increasing the rate of false positives

(i.e., incorrect rejection of the null statistical hypoth-

esis of no significant difference) (Chich et al. 2007).

Furthermore, these authors caution against the pool-

ing of samples except in cases when the cost of anal-

ysis is prohibitively high (Rocke 2004). In the data

sets examined, there was a mean of 5� 2 (range:

3–11; median: 5; Fig. 1A) biological replicates (indi-

viduals or pools). Of these, 38% (11 of 29) used

pooled samples, sometimes because of limited avail-

ability of tissue, as in studies of larval proteomes

(e.g., Silvestre et al. 2010a). Approximately 80%

(23 of 29) of the studies did not carry out any tech-

nical replication.

Challenge 1: Experimental contexts

The challenge of designing rigorous, environmentally

relevant, and feasible experiments is not unique to

the field of environmental proteomics. It is increas-

ingly clear from many fields of biology that context

matters; experimental results depend intimately on

the timing, intensity, and duration of the experimen-

tal treatment, in addition to other factors such as

species’ interactions, behavior, multiple interacting

stressors, and chance/stochasticity. The time and ex-

pense required to carry out proteomics studies often

necessitates a focus on a few experimental conditions

or time points, thereby escalating the requirement

for very judicious and well-justified experimental

design. Furthermore, the large quantity of informa-

tion generated by a single proteomics comparison

(e.g., controls versus one treatment) may lead to re-

searchers (and readers) focusing on the breadth and

depth of the results rather than critically examining

the relevance of the data to a particular environmen-

tal question.

Literature review

The review of the literature relevant to this challenge

focused on two questions:

(1) Were the specific conditions and/or time points

chosen for analysis with proteomics justified

and relevant to environmental conditions expe-

rienced by organisms in the wild? Examples

of environmentally relevant experimental con-

texts included exposures designed to mimic

tidal or diel cycles (Dowd et al. 2010b) or

Challenges for environmental proteomics 707
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environmentally realistic levels of exposure in

toxicological studies (Martyniuk et al. 2010a,

2010b). Publications were grouped into three

broad categories based on the degree of justifi-

cation of the chosen experimental contexts:

none¼ no justification of levels and durations

of exposure, and/or of time points; some-

what¼ all studies falling between the other two

categories; and explicit¼ clear, thorough justifi-

cation in the article (Introduction, Materials and

Methods, Results, or Discussion) of the specific

levels and durations of exposure, and/or of the

time points that were chosen for analysis with

proteomics, including their relevance to condi-

tions experienced in the wild. An example of

explicit justification can be found in Dowd

et al. (2010b, 94):

We focused on the 24 h recovery time point for our

proteomics analyses for three reasons: 1) reoxygena-

tion induces as or more severe damage as the period

of oxygen limitation; 2) compensatory stress response

mechanisms may be more potent during the recovery

period than during the actual stress period; and 3)

hypoxic episodes are naturally spaced 24 h apart on

the reef platform. Thus, our proteomic data repre-

sent the phenotype at the time when the next stress-

ful episode would likely be encountered. This 24 h

lag also coincides with the onset of the delayed phase

of ischemic preconditioning in mammalian models.

Although the latter two categories required a degree

of subjectivity, the general pattern is robust. Of the

studies reviewed, less than half (12 of 29) included

what was deemed to be an explicit justification for

the experimental conditions and time points chosen;

in four studies, no justification could be found.

(2) How many conditions or time points were com-

pared using proteomics? Of the 29 proteomics

data sets examined, approximately half (14)

compared only one treatment condition or

time point with one control condition or time

point, and only two studies compared more

than four treatments. The average number of

experimental conditions was 3 (range: 1–8;

median: 2). Even within the relatively narrow

time frame of studies reviewed, there was a pos-

itive correlation between the year of publication

and the number of experimental conditions or

time points analyzed (Kendall’s �b correlation

coefficient¼ 0.415, P¼ 0.008). This encouraging

trend suggests that more complex experimental

designs are becoming more desirable and/or

more tractable in environmental proteomics.

Surprisingly, there was no correlation betweenT
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the extent of justification of the experimental

context and the number of conditions or time

points examined (Kendall’s �b correlation coeffi-

cient¼ 0.052, P¼ 0.757).

How does experimental context influence biological

conclusions in environmental proteomics?

The clearest evidence for the importance of experi-

mental context comes from analysis of the discussion

sections of those studies in which more than two

experimental conditions or time points were ana-

lyzed. In 13 of these 14 studies (only Silvestre et al.

2010b differed), the biological conclusions drawn

from the proteomics analysis varied—often substan-

tially—among the different treatment conditions or

time points. These differences in interpretation have

very important implications for how proteomics ex-

periments need to be designed to capture the most

environmentally relevant patterns. For example, in

thermal stress experiments with intertidal organisms,

should we sample at the peak temperature or 24 h

later when the organisms next would be exposed to

high temperature? The choice of tissue type may also

influence proteomics results. In the two studies that

examined more than one tissue from the same or-

ganisms under the same conditions, the conclusions

varied dramatically between the different tissues

(Dowd et al. 2010a, 2010b). Given that 18 of the

29 studies analyzed only a single tissue, caution

must be employed when attempting to extrapolate

from tissue-specific effects to consequences for

entire organisms. In cases in which critical tissues

are carefully chosen and the choice is explicitly jus-

tified (e.g., the heart of porcelain crabs) (Stillman

and Tagmount 2009), the approach can still be

quite powerful. Notably, nine studies analyzed the

proteomes of whole organisms; this approach may

confound interpretation if tissue-specific responses

to a particular treatment are offset by opposing pat-

terns of protein expression in different tissues.

A recent proteomics analysis (W. W. Dowd and

G. N. Somero, manuscript in preparation) further

demonstrates the importance of defining and justify-

ing experimental contexts for environmental proteo-

mics studies. This study examined context-specific

proteome responses to the same body temperature

in intertidal species of mussels of the genus

Mytilus, with the goal of examining underlying pro-

tein expression changes that might explain differen-

tial organismal consequences of elevated body

temperature in two blue mussel species (Braby and

Somero 2006b; Lockwood and Somero 2011a; W. W.

Dowd and G. N. Somero, submitted for publication).

The relatively warm-adapted invasive species Mytilus

galloprovincialis and the relatively cool-adapted

native species Mytilus trossulus can compete for

space in regions of the Pacific coast of North

America where their distributions overlap (Shinen

and Morgan 2009). The competitive outcomes in

the field seem to be dependent on the specific

Fig. 1 Quantitative characteristics of published environmental proteomics data sets. (A) Distribution of the number of biological

replicates (pools or individuals) in the published studies that were reviewed. (B) The fraction of proteins that were analyzed that

were subsequently found to be differentially expressed in environmental proteomics studies. Criteria for statistical significance

were determined by the authors. (C) Variation in proteome coverage (number of proteins analyzed) in environmental proteomics

studies.
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environmental context, including whether a specific

site is located in a warm intertidal location versus

a relatively cool subtidal location (Schneider and

Helmuth 2007; Schneider 2008). In addition, both

species exhibit lower survival following thermal chal-

lenges in seawater compared with thermal challenges

in air (W. W. Dowd and G. N. Somero, manuscript

in preparation). Although elevated body tempera-

tures are more likely to be encountered at low tide

when the organisms are emersed (Denny et al. 2011),

transcriptomic and proteomic studies of mussels’ gill

tissues (principal site of both respiratory gas ex-

change and filter feeding) conducted to date have

only compared the responses of these two species

to elevated body temperatures (24–328C) when the

organisms were immersed in seawater throughout

the experiment (Lockwood et al. 2010; Tomanek

and Zuzow 2010). Furthermore, episodes of elevated

body temperature tend to be clustered into multi-day

windows, during which body temperature rises in the

middle of 2 or more consecutive days (Denny et al.

2011). Consequently, we examined the proteomic re-

sponses of individuals of these two species over 3

consecutive days during which temperatures gradu-

ally ramped up to 338C and back down to 138C over

a 4-h period each day, a thermal regimen that

approximates field patterns. The mussels were

either immersed or emersed during these tem-

perature ramps. Using 2D-GE, we then compared

protein expression patterns with individuals held

in 138C seawater throughout the same period

(W. W. Dowd and G. N. Somero, manuscript in

preparation).

The proteomic response to the same elevated body

temperature varied significantly, depending on the

mussels’ emersion/immersion status (Table 2).

M. galloprovincialis mounted a greater proteomic re-

sponse to elevated body temperature in seawater,

whereas M. trossulus mounted a greater response to

the same temperature in air. Qualitative differences

in protein expression were also noted among the

treatments within the same species. Of the 1340

spots on the two-dimensional gels for M. gallopro-

vincialis, only 7 of the 51 spots that were found to be

significantly differentially expressed among the three

treatment groups changed in the same direction

under both emersion and immersion. Of the 1374

spots on the gels for M. trossulus, only 3 of the 34

significantly differentially expressed spots changed in

the same direction under both conditions. Mass

spectrometry protein identification and subsequent

functional interpretation of these data are pending,

but it is reasonable to expect that different biochem-

ical processes are represented in the different lists of

proteins responsive to thermal stress in air versus in

water. These results have potentially critical implica-

tions for understanding the context-specific out-

comes of interactions between these two species

and for design of future comparative studies.

Meeting the challenges of experimental context

Overall, these findings highlight the importance of

designing experiments that maximize the environ-

mental relevance before conducting proteomics

analyses. Explicit justification of the specific experi-

mental conditions and/or time points should be

clear from the Introduction or Materials and

Methods sections of publications. Results of the

literature review also demonstrate the importance

of not extrapolating too liberally from two-treatment

or single-tissue experiments. The technology and

expertise now exist to design more complex, integra-

tive experiments covering a wider variety of experi-

mental contexts and types of tissues; trends in the

reviewed data sets suggest that the environmental

proteomics field is moving in that direction. Of

course, even the recent laboratory experiments

described earlier for Mytilus mussels still fail to

capture the contextual richness of field exposures.

For example, other recent work has documented

species-specific biochemical responses in these mus-

sels to changes in salinity (Evans and Somero 2010;

Lockwood and Somero 2011b). This is in agreement

with field observations showing that a complex in-

terplay between thermal and osmotic stress may be

driving mussels’ distributions in estuarine habitats

(Braby and Somero 2006a). Notably, only one of

the reviewed studies analyzed samples that were col-

lected directly from the field (Silvestre et al. 2010b).

Field studies are perhaps the best way to capture the

complex environmental contexts that many are

ultimately interested in understanding, and efforts

to extend proteomics into the field should be

encouraged.

Table 2 Summary of the numbers of statistically significantly

differentially expressed proteins in two congeneric mussel species

exposed to the same elevated body temperature under two

different contexts: emersion (air) and immersion (seawater)

Species Seawater Air

Mytilus galloprovincialis (1340 protein spots) 25 "; 11 # 12 "; 4 #

Mytilus trossulus (1374 protein spots) 3 "; 8 # 13 "; 7 #

Up and down arrows indicate proteins that increased or decreased in

abundance relative to controls, respectively. Data were arcsine-square

root transformed and analyzed with a univariate analysis of variance

and a significance threshold of P50.01.
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Challenge 2: Statistical choices

In all quantitative biological studies, robust and

appropriate statistical analyses are paramount for

reaching sound biological inferences (Sokal and Rohlf

1995). This requirement assumes even greater impor-

tance in environmental proteomics (and in ‘‘omics’’

studies generally), given the massive and complex

data sets that are produced (Domon and Aebersold

2006; Chich et al. 2007). These data do not always con-

form to the assumptions of normality and homosce-

dasticity of parametric, univariate (i.e., feature-by-

feature, where each protein is a feature) statistical

tests (Rocke 2004; Wilkins et al. 2006). Consequently,

a wide array of data transformations and modified uni-

variate statistical approaches (e.g., generating an em-

pirical distribution by resampling the data) (Dudoit

et al. 2003) have been proposed and tested with

‘‘omics’’ data sets, each designed to overcome one or

more shortcomings of the standard, parametric

Student’s t-test or analysis of variance (Table 3).

Proteomics data sets also suffer from an extreme

degree of undersampling (Smit et al. 2007), such that

the number of features analyzed for each replicate (av-

erage of 592 proteins in the reviewed studies; see later)

far exceeds the number of replicates (average of five

replicates; see earlier). In undersampled scenarios, the

risk of spurious, false positives in univariate,

feature-by-feature statistical tests (i.e., the type I error

rate �, set by the author as the critical P value) needs to

be taken into account. For example, if 592 univariate

tests are conducted on a proteomics data set with an �
of 0.05, then 592� 0.05¼ 29 proteins may be called

significant by chance alone. Consequently, several

methods that control the proportion of false positives

(i.e., the false discovery rate [FDR]) have been pro-

posed: the classical Bonferroni correction that controls

the family-wise error rate with 0% FDR (Chich et al.

2007); the Benjamini and Hochberg (1995) linear

step-up method; and the Bayesian q value (Storey

2002; Storey and Tibshirani 2003). These FDR

methods vary considerably in their stringency, giving

researchers a choice in the tradeoff between avoiding

false discoveries (e.g., use of the conservative

Bonferroni correction P¼�/n is advocated for

biomarker development) (Broadhurst and Kell 2006;

Chich et al. 2007) and making no discovery (Devlin

et al. 2003). Of these methods, the Bayesian q value

approach is the least conservative. This method

determines the FDR when a given level of � sets the

statistical significance level; researchers are free to

choose the proportion of ‘‘false leads’’ (typically 10%

or less) (Karp et al. 2007) they are willing to risk. At the

opposite extreme, some would argue that there is no

need to correct for multiple comparisons (e.g.,

Rothman 1990), because a ‘‘universal null’’ hypothesis

does not align with conceptual models of natural

processes.

Ultimately, no univariate statistical test is capable of

detecting correlated changes in protein abundance or

of assessing and describing global changes in protein

expression patterns. Importantly, such patterns may

offer greater insight into pathway-level or systems-level

responses to environmental challenges. In recent years,

multivariate statistical approaches capable of address-

ing these systems-level issues have gained greater

prominence in the proteomics community. The most

commonly used are principal components analysis

(PCA) (e.g., Marengo et al. 2006) and partial

least-squares discriminant analysis (PLS-DA). PCA de-

termines the combinations of individual protein ex-

pression levels (so-called latent variables) that best

explain the global spread in the data, regardless of the

treatment group to which each sample belongs (i.e., the

test is unsupervised). The more powerful, supervised

PLS-DA technique is a regression extension of PCA;

PLS-DA takes into account treatment-group member-

ship to maximize between-groups variation explained

by the latent variables (Pérez-Enciso and Tenenhaus

2003; Karp et al. 2005). The PLS-DA technique is

robust to correlated expression changes (in statistical

terms, multicollinearity), it outperforms PCA when

between-group variability does not dominate data

sets (Dai et al. 2006), and it allows the proteins to be

ranked by their influence on treatment-group separa-

tion using the magnitudes of variable importance in the

projection (VIP) scores (Wold et al. 2001; Palermo

et al. 2009). PLS-DA has proven very effective in pro-

teomics analyses, especially when used in combination

with univariate approaches (e.g., Lee et al. 2003; Karp

et al. 2005; Pedreschi et al. 2009; Dowd et al. 2010b).

Other multivariate methods are rapidly becoming

available, including artificial neural networks (Smit

et al. 2008), genetic algorithms (Li et al. 2004), and

Bayesian networks (Werhli and Husmeier 2007).

Although these new methods hold great promise for

elucidating global patterns in ‘‘omics’’ data sets, their

utility for environmental proteomics remains to be

demonstrated.

Literature review

Given the plethora of possible techniques available

and the statistical considerations just described, lit-

erature review relevant to this challenge focused on

the following two questions:

(1) Which statistical techniques of the many available

univariate and/or multivariate approaches were
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used to analyze proteomics data sets, and were the

assumptions of the tests explicitly mentioned and

tested? Each of the reviewed studies used a univar-

iate, feature-by-feature statistical approach; 26 of

29 studies used a standard t-test/analysis of vari-

ance (ANOVA) or Mann–Whitney U test. As far as

could be determined from the publications, few, if

any, of these studies explicitly tested the assump-

tions of the chosen univariate tests. In five cases, a

univariate resampling approach was used because

the authors stated that the assumptions of a stan-

dard parametric test likely could not be met. Only

seven of 29 studies combined the univariate anal-

yses with a multivariate approach (five used PCA

and two used PLS-DA and VIP for feature

selection).

(2) Was any correction or adjustment made for testing

multiple hypotheses to control the FDR? Although

each of the studies incorporated some form of

univariate, feature-by-feature statistical analysis,

only 6 of 29 explicitly mentioned multiple-

hypothesis testing and the false-discovery problem.

However, none of the reviewed studies used the

FDR-controlling procedures described earlier.

Instead, only six studies used a more stringent crit-

ical P value (e.g., P50.01 or P50.02), lowering the

type I error rate but perhaps doing so at the ex-

pense of missed information.

How do statistical choices influence biological

conclusions in environmental proteomics?

Differences in statistical analysis choices confound

biological interpretation across proteomics studies.

In the data sets that were reviewed, the percentage

of proteins in the data set reported to be significantly

differentially expressed ranged from 0.04% to 54.6%

(mean 14.8%� 13.4% standard deviation [SD];

median: 11.8%; Fig. 1B). There was no relationship

between the number of proteins that changed signif-

icantly and the number of proteins that were ana-

lyzed (linear regression, P¼ 0.893). Similarly, there

was no detectable effect of analyzing individual tis-

sues versus analyzing entire organisms (Mann-

Whitney U test, P¼ 0.572). Notably, the fraction of

the proteome found to change significantly in abun-

dance increased with the number of biological

Table 3 Partial list of univariate statistical methods that may be employed to discern differentially expressed features among treatments

in ‘‘omics’’ data sets; not all methods are commonly used in proteomics data analysis

Statistical test or transformation

Transformation

formula Comments or assumptions References

Raw data

Parametric t-test/ANOVA Y ¼ X Assumptions of normality and

homoscedasticity

Non-parametric

Mann–Whitney U test

Y ¼ X Less power than parametric tests

Variance-stabilizing transformations

Logarithmic Y ¼ log10X

Power (Box-Cox) Y ¼ Xb b determined by regression

Arcsine-square root Y ¼ asinðX0:5Þ Useful for % volumes in 2D-GE studies

Transformations that specifically protect against high variance at low expression level

Inverse hyperbolic sine Y ¼ asinhðXÞ Jung et al. (2006) and

Karp et al. (2008)

Generalized logarithm Y ¼ ln½X � �þ ððX � �Þ2 þ cÞ0:5� Requires technical replication for empirical

calibration of c; �¼mean background

expression level

Durbin et al. (2002)

Started logarithm Y ¼ lnðX þ cÞ Rocke and Durbin (2003)

Log-linear hybrid Y ¼

(X

k
þ lnðkÞ � 1;X � k

lnðXÞ;X > k

Rocke and Durbin (2003)

Other alternatives

Resampling

(bootstrap, permutation)

May not be appropriate with small sample

sizes (see text)

Dudoit et al. (2003)

Outlier-based methods Not well-developed Vuong et al. (2011)

Many transformations are intended to stabilize variance across all features in a data set. For each transformation of data, the raw data X are

transformed according to the formula presented, and statistical analyses are conducted using the resulting data Y.
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replicates analyzed (logistic regression, P50.001).

However, because of the variety of statistical tech-

niques, underlying assumptions, and critical P values

used, it is nearly impossible to directly compare these

percentages—and, more importantly, their corre-

sponding biological implications—across studies.

Any underlying relationships would also be con-

founded by differences among studies in other factors

such as the species under study, the technique em-

ployed for separating proteins, the tissue analyzed

(see earlier in the text), and, perhaps most importantly,

the different experimental conditions that represent

different degrees of challenge to the organisms.

To more concretely demonstrate the influence of

the choice of statistical analysis on subsequent bio-

logical conclusions, I analyzed a single published

2D-GE proteomics data set (Dowd et al. 2010b)

using 29 different combinations of statistical meth-

ods. The list of univariate analyses included both

non-parametric (Mann–Whitney U test) and para-

metric methods using several data transformations

from Table 3 (t-test on raw data, t-test on logarithm

base 10 transformed data, t-test on arcsine-square

root transformed data, and t-test on inverse hyper-

bolic sine transformed data). The percentages of pro-

teins in the untransformed data set that met the

assumptions of normality (Lilliefor’s test) and homo-

scedasticity (Levene’s test) for a t-test were 82.0%

and 91.8%, respectively. The only data transforma-

tion to achieve any increase in both values was an

arcsine-square root transformation (slight improve-

ments to 88.0% and 92.2%, respectively). The

arcsine-square root transformation is recommended

by statistical texts for percentage data, and 2D-GE

data are often presented for each protein as a

percentage of the total proteome. For each of the

parametric methods, I conducted the t-test using

both the standard t-distribution and a resampled

t-distribution generated by 2000 bootstrap iterations

of the data for that protein. Furthermore, the results

of each statistical test were adjusted using two of the

three different FDR-controlling methods described

earlier (the Bonferroni technique is far too conser-

vative). The analyses were conducted in Matlab

v7.12 (The Mathworks, Inc., Natick, MA, USA)

using commands (mattest, mafdr) available in the

Bioinformatics Toolbox. To examine systems-level

patterns in the data, I also used two multivariate

approaches: PCA in Matlab and PLS-DA in

SIMCA-Pþ software (Umetrix, Umeå, Sweden).

The data set, including abundances for 768 protein

spots on 2D gels, was previously used to assess the

responses in the rectal gland of epaulette sharks

(Hemiscyllium ocellatum) to episodic hypoxia and

anoxia (Dowd et al. 2010b). Animals were exposed

to one of four treatments: normoxic handling con-

trols (n¼ 5), one episode of hypoxia (n¼ 6), one

episode of anoxia (n¼ 4), or two episodes of hypoxia

separated by 24 h (n¼ 6). In the original analysis, we

were most interested in comparing expression pat-

terns within each treatment group with the normoxic

controls (Dowd et al. 2010b). For comparison with

the published results and for simplicity, the present

univariate statistical analyses were limited to compar-

ing protein expression levels in each of the low

oxygen groups with those in the control group

(i.e., a two-treatment comparison); analogous

trends emerged when the data were analyzed across

all treatments with a more appropriate one-way

ANOVA (data not shown). The multivariate analyses

were conducted on data from all four treatments.

The consequences of choosing different statistical

tests included both quantitative and qualitative

effects. The number of proteins found significant

with a univariate, parametric t-test varied by

27–41% of the maximum number depending on

the transformation (Table 4). In each pair of stan-

dard t-distribution versus bootstrap t-distribution

analyses, the bootstrap generated a greater number

of significant differences (Table 4). This pattern may

arise from the sample sizes being too small for

application of the bootstrap (Molinaro et al. 2005;

Chich et al. 2007). Qualitatively, the lists of proteins

found to be significant also varied widely among the

different statistical methods. For example, only 13 of

the 37 different proteins that returned a statistically

significant result for the anoxia treatment in one or

more technique were found to be significant by all

the techniques (Fig. 2). Clearly, such differences will

have profound consequences for subsequent biologi-

cal interpretation.

The FDR-controlling methods also yielded sub-

stantially different results. Although the Bonferroni

correction may be dismissed as far too strict for en-

vironmental proteomics data, even the less-stringent

Benjamini and Hochberg (1995) method yielded few,

if any, significant differences in the pairwise compar-

isons (Table 4). Similarly, the Bayesian q value

FDR-controlling technique (at 510% FDR) also re-

vealed no statistically significant results when com-

paring rectal gland proteomes after exposure to

anoxia relative to control conditions (Table 4). In

comparison, using an arbitrarily ‘‘strict’’ critical

P value of 0.01 without controlling the FDR pro-

duced four significant proteins for the anoxia treat-

ment. Treatment differences were substantial; when

comparing a single episode of hypoxia with controls,

the same Bayesian q value approach yielded
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reasonable lists of 31–42 significant proteins for the

standard parametric tests (37–38 using a critical

P value of 0.01). It is unclear why, in some cases,

the Bayesian q value approach inflated the number of

significant proteins so dramatically when performed

on statistics derived from bootstrap distributions

(Table 4; hypoxia 1 data).

The multivariate techniques varied in their ability

to discriminate the four treatment groups. A PCA

analysis on the complete log-transformed and

mean-centered data set (to normalize across spots

with highly variable volumes on 2D gels) explained

41% of the variation in the data set with the first

three latent variables (a.k.a. principal components),

but the analysis failed to clearly distinguish the four

treatment groups (Supplemental Figure S1A). It

should be noted that although a PCA or other mul-

tivariate analysis conducted using only those proteins

found to be significantly differentially expressed with

a univariate statistical test (as in several of the

reviewed studies) will certainly distinguish the treat-

ment groups, such an analysis generates no further

insight than do the univariate tests alone. Rather,

multivariate analyses should first be conducted on

Table 4 The number of epaulette shark rectal gland proteins meeting statistical significance criteria in pairwise com-

parisons of low oxygen treatments with normoxic controls

Treatment

Statistical test and transformation

Mann–Whitney U t-test t-test log10 t-test asin-sq rt t-test asinh

Standard t-distribution

Anoxia 20 / 0 / 0 28 / 0 / 0 22 / 0 / 0 30 / 0 / 0 27 / 0 / 0

Hypoxia 1 87 / 0 / 41 126 / 1 / 34 126 / 0 / 42 133 / 0 / 35 127 / 1 / 34

Hypoxia 2 37 / 0 / 0 63 / 0 / 0 58 / 0 / 0 62 / 0 / 0 63 / 0 / 0

Bootstrap t-distribution

Anoxia 35 / 0 / 0 30 / 0 / 0 35 / 0 / 0 34 / 0 / 0

Hypoxia 1 151 / 0 / 220 147 / 0 / 211 147 / 0 / 233 140 / 0 / 243

Hypoxia 2 72 / 0 / 0 69 / 0 / 0 74 / 0 / 2 79 / 0 / 3

The same data set was analyzed using each of the tests and data transformations listed (described in Table 3). For each of the

nine statistical tests, results are presented for three degrees of control of the false discovery rate (FDR): no correction (i.e.,

P50.05) / correction using the Benjamini and Hochberg (1995) linear step-up method / correction using the Bayesian q value

approach with FDR less than 10%. Treatments are as described in text.

Fig. 2 Poor correlation among univariate statistical tests in proteins found to be significantly differentially expressed for the comparison

of anoxia with control conditions in the study of the epaulette shark rectal gland. Shading in each square indicates the percent of unique

proteins found to be significant using the row test and that were also found to be significant using the column test. Shading scale on

right; boot¼ bootstrap distribution.
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the complete data set, after which a subset of pro-

teins with significant influence on the separation can

be determined using additional criteria (Chong and

Jun 2005; Niijima and Okuno 2009; Palermo et al.

2009). In contrast to the PCA, the PLS-DA analysis

of the complete data set clearly separated the four

treatment groups (data not shown), and the first

three latent variables described 35% of the variation

in the data set. When we (arbitrarily) selected the top

5% of proteins (38 proteins) based on their VIP

scores (VIP scores have a mean of 1; all selected

scores were >1), the new reduced PLS-DA model

explained 49% of the variation in the data

(Supplemental Figure S1B).

Meeting the challenges of statistical choices

It is clear from the examples earlier that the choice of

statistical test may have profound effects on the bi-

ological conclusions drawn from a single proteomics

data set. Despite the availability of a wide array of

statistical techniques in the literature, only a few

were employed in the reviewed studies. In the most

general sense, the level of statistical sophistication in

the field of proteomics has lagged behind that of the

transcriptomics community and has also lagged

behind the rapidly increasing sophistication of meth-

ods for separation and identification of proteins.

This is perhaps a consequence of vendor-specific

analysis packages included in proteomics software;

as far as could be determined from the publications,

20 of the 31 studies that were reviewed conducted

statistical analyses solely in proprietary proteomics

software rather than in statistical software packages.

In contrast, shared analysis workflows such as those

hosted on Bioconductor (Gentleman et al. 2004) for

the R statistical programming environment have es-

sentially standardized data processing for microar-

rays, including use of FDR-controlling procedures.

Consistent, robust use of statistical tools and easy

interpretation of experimental designs and statistical

methods should be focal points for the environmen-

tal proteomics community. At the very least, there is

a need for FDR-controlling techniques in univariate

analyses, for two reasons: (1) not only to prevent

false discoveries but also (2) in some cases, to max-

imize the yield of information from costly and

time-consuming proteomics experiments rather

than using an arbitrarily strict P value cutoff. For

multivariate, systems-level analyses, PCA is useful

as an exploratory technique, whereas PLS-DA is

more powerful. Although not the most statistically

rigorous technique, Karp et al. (2005) recommended

a combination of univariate analysis and multivariate

PLS-DA, highlighting overlap in the lists of proteins

generated by the univariate tests and the VIP

method. In the analysis of epaulette sharks, only 14

of the 38 top VIP scores were found to be statistically

differentially expressed in any treatment relative to

the control using the univariate approach. Thus,

PLS-DA corroborated 40–70% of the univariate re-

sults (depending on the univariate test chosen), and

it generated a reasonable list of additional proteins-

of-interest for downstream interpretation and

subsequent validation studies. However, several out-

standing questions remain regarding the PLS-DA

approach (e.g., how many latent variables to include

in the model and what VIP-score criteria to use to

select features of interest).

Further collaboration between practitioners of en-

vironmental proteomics and biostatisticians is crucial

for developing greater ability to interpret the

systems-level biological consequences of the large

data sets produced in proteomics studies. Any new

techniques will need to account for the facts that

subtle numerical changes in protein abundance may

be biologically meaningful yet difficult to detect with

statistical rigor (e.g., for transcription factors or

other low-abundance proteins), that individual

proteins can have multiple functions in numerous

biochemical pathways (e.g., glucokinase functions

both in glycolysis and apoptosis) (Kim and Dang

2005), that individuals may vary in their response

to a given environmental challenge (Rocke et al.

2005), and that protein interaction networks are

complex and non-linear (Urfer et al. 2006).

Challenge 3: Analytical incompleteness

The third challenge, termed analytical incompleteness

(Wilkins et al. 2006), concerns variation among stud-

ies in the degree of proteome coverage and the pro-

portion of proteins-of-interest (i.e., those that are

judged significant by some statistical criteria) that

were identified by mass spectrometry. Low levels of

both measures create two problems: (1) difficulty in

comparing biological conclusions from studies with

different levels of proteome coverage and (2) diffi-

culty in drawing systems-level mechanistic conclu-

sions when only a subset of proteins that met the

criteria of statistical significance are identified.

Literature review

I compiled data from recently published environ-

mental proteomics studies to examine two questions:

(1) How many proteins were quantified in

environmental proteomics studies? On average,

recent studies assessed 592� 526 SD proteins
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(range: 77–2266; median: 456; Fig. 1C). This av-

erage number represents only approximately 6%

of the proteome, if we very conservatively

assume a proteome size of 10,000 proteins per

tissue (Harrison et al. 2002). In general, LC-MS

studies analyzed fewer features, due to the bio-

informatic complications of reconstructing pro-

teins from individual peptides in non-model

organisms (see earlier). Theoretically, there may

be 5000 to 20,000 or perhaps many more pro-

teins depending on the organism, cell type, and

developmental stage. Thus, biological conclu-

sions are generally limited to a very small

subset of the most abundant and most soluble

proteins present in a particular sample. The ac-

companying risk of substantial bias is one that

deserves attention in environmental proteomics

(as in mammalian studies) (Petrak et al. 2008).

Variable proteome coverage of the same tissue

under different experimental conditions may also

confound biological interpretations and compar-

isons across studies. In the only example from

the literature review in which the same tissue

was analyzed twice in the same laboratory (two

studies of mussels’ gills’; Tomanek and Zuzow

2010; Fields et al. 2012), there was a 17% (554

versus 458 proteins in M. galloprovincialis) to

29% (465 versus 331 proteins in M. trossulus)

difference in the number of proteins on 2D

gels in the separate studies. More dramatically,

there was a more than 100% difference in pro-

teome coverage between these two studies and

the more recent analysis of Mytilus mussels de-

scribed in Challenge 1 earlier (1340 and 1374

spots) (W. W. Dowd and G. N. Somero, manu-

script in preparation). Even if identical experi-

mental designs and statistical methods were used

in these different studies, the biological infer-

ences would undoubtedly differ, based on these

differences in proteome coverage.

(2) Of the proteins that met the criteria for statisti-

cal significance chosen in each study, what pro-

portion was unambiguously identified using

mass spectrometry? In the studies reviewed,

protein-of-interest identification rates ranged

from 0 to 100% with a mean of 44.1%

(median: 41.8%). Although explanations for

these low rates were generally not given, they

are likely a consequence of lack of sequence

data for non-model organisms, variations in

stringency of search criteria for bioinformatics

(Kültz et al. 2007), technical limitations (e.g.,

for identifying post-translationally modified

forms of proteins), limited abundance of pro-

teins for tryptic digestion and detection, or

limited access to instrument time. Regardless,

only approximately two of every five

proteins-of-interest are identified and interpreted

biologically in recent environmental proteomics

studies.

How does analytical incompleteness influence biolo-

gical conclusions in environmental proteomics?

On an average, only a small fraction of the proteome

is currently assessed in any given environmental pro-

teomics study, and more than half of the significantly

differentially expressed proteins in a given study

remain unidentified. These findings represent

unquantifiable, but certainly profound, limitations

for biological interpretation of environmental prote-

omics data sets. For example, although a low rate of

protein identification may not completely impede

discovery (e.g., by validation of the roles of individ-

ual proteins), it will certainly hamper systems-level

insight. Consider methods of downstream interpre-

tation such as Ingenuity Pathway Analysis

(Ingenuity� Systems, www.ingenuity.com). In some

cases, failure to identify a single protein-of-interest

could disrupt the algorithmic recognition of a bio-

chemical pathway crucial to the organisms’ response

to a given environmental challenge. A systematic

analysis of such effects is beyond the scope of this

review, but the implications warrant consideration.

Meeting the challenges of analytical incompleteness

Increasing proteome coverage (including increasing

protein identification rates) is one of the major

goals and one of the primary technological challenges

in proteomics (Mann and Kelleher 2008), especially

when attempting to apply these techniques to

non-model organisms (Kültz et al. 2007). It should

be emphasized that substantial progress has already

been made and that current levels of proteome cov-

erage far surpass anything previously possible. Very

promising hypotheses have been generated using ex-

isting technologies and databases (Cravatt et al. 2007;

see also contributions to this symposium). The pos-

sibility also exists of mining existing data sets as new

information on sequences becomes available.

However, the relatively low protein identification

rates and their consequences (outlined earlier) con-

stitute a strong argument for greater investment in

generation and annotation of genomic sequence in-

formation and greater access to mass spectrometers

among integrative biologists.
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Concluding thoughts

Although the results of the literature review

presented in this study are somewhat sobering, they

in fact highlight the exceptional potential of envi-

ronmental proteomics approaches. The simple

recommendations outlined earlier in some cases

may improve the design, analysis, and interpretation

of environmental proteomics data sets. Numerous

opportunities exist to further address these challenges

and to make significant contributions to our under-

standing of organisms’ interactions with their

environment, especially when interdisciplinary col-

laborations include comparative physiologists, bio-

chemists, ecologists, evolutionary biologists, and

biostatisticians.

One might reasonably ask whether the true chal-

lenge in environmental proteomics is philosophical,

rather than experimental, statistical, or analytical.

Rather than focusing on the biological and logistical

tradeoffs in experimental designs, the sophisticated

and standardized analysis of complex data sets, or

the under-representation or lack of identification of

particular groups of proteins in data sets, perhaps

practitioners of proteomics should solely embrace

the discovery-driven power of the approach. They

might then focus attention and resources on follow-

ing the most compelling of the many leads generated

by any given proteomics experiment (although only

seven of the reviewed studies included any orthogo-

nal validation). Although this stance holds substan-

tial practical merit (Kültz et al. 2007), particularly

given current analytical limitations and pressures to

generate biological stories for publication, I argue

that widespread adherence to such a philosophical

approach would hinder the development of true

systems-level understanding. Sophisticated, global

analyses that capitalize on the systems-level patterns

emergent in complex proteomics data sets are likely

to hold the greatest potential for generating novel

biological insights. Only by meeting and overcoming

the three challenges presented herein (and others)

can practitioners of environmental proteomics

make concrete steps toward realizing this vast

potential.
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