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RESEARCH ARTICLE

Measures of Relative Dentary Strength in
Rancho La Brea Smilodon fatalis over Time
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1 Department of Biology, Loyola Marymount University, Los Angeles, California, United States of America,
2 Department of Anatomy, Des Moines University, Des Moines, Iowa, United States of America

‡ These authors are joint senior authors on this work.
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Abstract
The late Pleistocene megafaunal extinction of approximately 12,000 years ago, included

the demise of Smilodon fatalis, a hypercarnivore from the Rancho La Brea deposits, which

has been studied across time by looking at different deposits or pits to determine morpho-

logical size and shape changes and trends during this time. To better understand functional

aspects of these changes, this study focused on a measure of jaw strength over time, which

can give an indication of morphological changes within the jaw that cannot be seen using

surface morphometrics. By radiographing dentaries, cortical bone can be seen, which pro-

vides an estimate of resistance to bending forces while biting, and can be measured and

used as an indicator of jaw strength. Measurements were taken at repeatable locations on

the dentary of the depth of the cortical bone, and of a standardized measure of cortical

bone, which allows for the comparison between different individuals. Specimens included

those of five different pits ranging from about 37 Kybp to 13 Kybp (just before the extinction

of S. fatalis). No significant difference was found in the depth of jaws at any of the measure-

ment points from any of the pits. However, significant differences were found in both the

actual thickness of cortical bone, and the standardized thickness of cortical bone at the

lower P4 between pit 13 (which had the lowest amount of bone) and pit 61/67 (which had

the highest). These conclusions support other studies that have shown that individuals in pit

13 were under physiological and perhaps dietary stress, which may be reflected in the

deposition of cortical bone, while the opposite trend is seen in the individuals in pit 61/67.

Our results further support findings suggesting Smilodon did not appear to be morphologi-

cally most vulnerable right before its extinction.

Introduction
The well-preserved natural laboratory of Rancho La Brea (RLB), spanning 30,000 years over
the late Pleistocene and into the Holocene, is an excellent site to examine ecological and envi-
ronmental changes, and how these changes led into the end-Pleistocene extinction event and
the Pleistocene-Holocene transition. This site is also well-known for its disproportionate
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numbers of big carnivores, with large numbers of dire wolves, Canis dirus, and sabertooth cats,
Smilodon fatalis. These large sample sizes give us the opportunity to examine morphological
changes in carnivore species over the course of the late Pleistocene approaching the extinction
event. Smilodon fatalis shows well-documented morphological changes in crania over its late
Pleistocene tenure at Rancho La Brea [1, 2]. These changes are likely linked to both climate and
other environmental causes [1], and give us ecological insight into S. fatalis’ prey-killing behav-
ior and interactions with other species over this time interval.

A few pits at RLB are of particular importance for ecological understanding because of their
co-occurrence with major climatic or extinction events. Pit 13 is of special interest at RLB as
carnivores from this pit show increased tooth breakage and wear that occurred during their
lifetime [3, 4]. The six known radiocarbon dates from this pit, between 17,000–18,500 years
before present [5, 6], suggest this pit was deposited during the last glacial maximum (LGM) in
western North America. [7]. The intense breakage and wear from pit 13 implies that carnivores
at RLB were undergoing ecological and physiological stress during this period of cooling in
Earth’s history [3, 4].

Pit 61–67 is another important deposit at RLB. This pit contains the largest number of car-
nivore specimens and is the latest known Pleistocene deposit at the site. The seven known
radiocarbon dates place this deposit between 5,000–14,300 years before present with five of
those dates falling between 13–14.3 Kybp, thousand calibrated years before present [5]. These
older dates place the deposition of pit 61–67 concurrent with the end-Pleistocene extinction
events [8]. Surprisingly, S. fatalis specimens from pit 61–67 are robust, large, and show no indi-
cation of ecological or physiological stress [1, 4, 9].

Smilodon fatalismandibles change over time throughout the late Pleistocene at RLB with
fluctuations between less and more derived sabertooth-like morphologies. In Meachen et al.
[1], S. fatalismandibles from pit 77 (32–40 Kybp) and from pit 2051 (approx 23–25 Kybp)
show ancestral sabertooth-type morphology with small gracile mandibles that have higher cor-
onoid processes and smaller mandibular flanges; whereas mandibles from pit 91 (approx. 27–
28 Kybp) [6] and pit 61–67 (13–14 Kybp) show derived sabertooth morphologies with larger
size, more robust mandibular corpora, shorter coronoid process and larger mandibular flanges.
Pit 13 (17–18.5 Kybp) showed intermediate morphologies between the two extremes [1].
Although these changes are visible in the external osteological measurements, we may get even
more information from the radiographic cross-sections.

Radiographs can show the cortical structure of the mandible, which can be modeled as a
hollow beam. This can give a good indication of bending strength and resistance to torsion dur-
ing killing and feeding [10–12]. Radiographic cross-sections can give us additional information
that cannot be gleaned from external measurements such as how the forces applied to the man-
dible have evolved in S. fatalis. Mandibular resistance to bending is governed by killing and
feeding behaviors in carnivores and can evolve over time, such as a shift in a preferred prey spe-
cies, a change in prey-killing behavior involving the crania, or different tissues (e.g., flesh versus
bone) that S. fatalismight ingest.

Using microwear DeSantis, Schubert (9) determined that S. fatalis consumed bone at Ran-
cho La Brea, but the proportion of bone consumption may have changed over time as environ-
mental conditions changed. Consumption of hard foods, such as bone, can be reflected in
mandibular cortical bone thickness in carnivorans, as the mandibular corpus continues to
remodel throughout life [11, 13]. We would not expect a sabertooth cat to show the same corti-
cal thickness as a durophagous specialist, like a hyena; however, when comparing the cortical
thickness within a species over time, we do expect to find nuanced differences in cortical thick-
ness relative to dietary changes.

Dentary Strength in La Brea Smilodon fatalis
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Here, we examine whether the results from our previous studies on Smilodon fatalis pertain-
ing to mandibular shape change through time [1] and tooth breakage and wear [4] are reflected
in the cortical structure of the mandible. If the external morphology is echoed in the cortical
bone we might expect to see increased dorsoventral thickness in mandibles from pits 91 and
61–67, thinner cortical bone in mandibles from pit 77 (we did not measure pit 2051 for logisti-
cal reasons) and intermediate values in pit 13, which have intermediate mandibular morphol-
ogy. Alternatively, results from tooth breakage and wear studies suggest that we will find the
highest amount of cortical thickness in individuals from pit 13, as teeth from that pit show the
greatest amount of wear [4].

Materials and Methods
Data was collected from S. fatalis hemi-mandibles from the La Brea Tar Pits and Museum col-
lection, from pits 61–67, 13, 3, 91 and 77 (see Table 1). These pits were chosen to match the
previous study by Meachen et al. [1], and differences in sample size are a product of the num-
ber of available dentaries. Pit 13 had the lowest overall sample size and only 2 dentaries from
pit 13 contained canine teeth. A portable x-ray machine was used to take lateral radiographs of
individual dentaries, and radiographs were taken using radiographic film in rare-earth cas-
settes, which magnify and clarify the images. Dentaries were positioned buccal side downward
on the cassettes for consistency. While an occlusal radiograph of the dentaries could also have
been taken to allow for estimates of bone thickness on the medial and lateral sides, we chose
not to take an x-ray in that plane as Smilodon hemi-mandibles are heavy (impregnated with
asphalt) bent bones that are unstable on their ventral margins, which would introduce a large
amount of variance (and error) due to positioning on a very small measure. As the vast major-
ity of the bone occurs in the ventral portion visible from the lateral view, we chose to use the
two measurements in that plane alone. All measurements were taken from radiographs placed
upon a light table using digital calipers to within 0.01mm.

Measurements of dentary dorsoventral thickness and cortical bone dorsoventral thick-
ness were recorded in relationship to the borders of the cheek teeth, including posterior to
M1, P4 and anterior to P4, which is denoted P3 (although P3 wasn’t present in our sample),
which serve as repeatable landmarks [10]. Cortical and cancellous bone can be visibly dif-
ferentiated, due to their different densities in radiographs, and the denser cortical bone
which is concentrated on the ventral side of the dentary was measured from the ventral bor-
der of the dentary to the top of the cortical bone mass at each junction, 90 degrees to the
long axis of the dentary; all axes were estimated prior to measurements to consistently mea-
sure the depth angle (Fig 1). Dentary height measurements (from the ventral border to the
alveoli, including both the cortical and cancellous bone) were also taken in the same loca-
tions, 90 degrees to the long axis of the jaw (Fig 1). The mandibular height measurements
were used to give a standardized estimate of cortical width (measured as cortical/mandibu-
lar thickness).

Table 1. Pit age ranges andmaximum sample sizes of S. fatalis dentaries per pit.

Pit Age Range (Kypb) Overall sample size

61/67 13–14 24

13 17–18.5 8

3 14–24 27

91 27–28 19

77 32–40 24

doi:10.1371/journal.pone.0162270.t001
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This measure was based upon and modified from a hollow symmetrical model of the man-
dible using a linear measurement, a technique previously determined to give a consistent indi-
cation of cortical bone thickness [10] and estimate strength in bending rigidity. Although this
model is less accurate than a hollow asymmetrical model [10], the difference between the two
models is limited (the hollow symmetrical model has been shown to deviate from true second
moments of area by 7–16%, while the hollow asymmetrical model deviates by 4–8%), and
using a symmetrical model was the most feasible in this situation given that we could not
destroy nor CT scan the dentaries, and estimating distances in the mesio-distal plane would
have introduced a variable and unreliable measurement. In this study we aim to estimate rela-
tive dentary strength through cortical bone thicknesses among S. fatalis individuals in different
pits, rather than to attempt to measure absolute bending strength in the dentary, and therefore
we are looking for nuanced differences in cortical thickness through time.

Dentary length measurements were taken from the posterior tip of the condyloid to two dif-
ferent locations: the anterior tip of the alveolar point of emergence of the canine, and the poste-
rior alveolar point of the emergence of the canine. The former measure includes the canine,
while the later measure doesn’t; however as canines were very often missing from the dentaries,
and due in part to the anterior curvature of the bone, the posterior canine border is often the
most anterior distance that can be consistently measured from the radiographs due to the
shape and orientation of the mandible. Statistical analyses including ANOVA and post-hoc
Tukey’s tests were done with SPSS v22.

Results
Sample sizes per pit and mean measurements of jaw length and standardized cortical thickness
are shown in Table 1. Our cortical ANOVA results do not show significant differences in corti-
cal thickness nor percent cortical thickness (cortical/total dentary length) at posterior M1 or
P3, but our ANOVA results do show a significant difference at P4. This difference at P4 is only
seen between pits 13 and 61–67. The dentaries from pit 61–67 are significantly thicker than
those from pit 13, but all of the other pits fall in between these two extremes (Table 2, Fig 2A).
Interestingly, the trend in the mandible lengths is exactly the opposite of the cortical thick-
nesses. For jaw length including the canine, pit 61–67 still has the longest values, but it is

Fig 1. Radiograph of mandible of S. fatalis, with the relative cortical width, Cort, measurement (C, the cortical bone width); D,
the mandible width, and L, the jaw length (posterior condyloid to the posterior alveolar emergence of the canine).

doi:10.1371/journal.pone.0162270.g001
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followed closely by pit 13 with the second longest values (Fig 2B). All of the other pits show sig-
nificantly shorter jaw lengths. The values for the jaw lengths excluding to the canine, however
show different results more in line with the cortical measurements (Table 2). Sample sizes are
low for some pits which may be problematic.

Discussion
Our results show interesting findings for the sabertooth cat populations at Rancho La Brea.
Although this study, along with another [1] have shown there is microevolution present span-
ning all of the time-periods that are captured at this site, pits 13 and 61–67 show the most
interesting patterns. S. fatalis from pit 61–67 is consistently the largest and most robust, includ-
ing its cortical thickness [1, 2]. This suggests that S. fatalis leading up to the extinction event
were healthy and thriving. Large mandibles suggest that individuals are increasing in size, and
robust, cortically thick dentaries support feeding on large prey that produce forces from which
there would need to be sufficient resistance, increasing bone deposition in the dentary. These
assertions from pit 61–67 have been backed up by several studies of Rancho La Brean mega-
fauna, showing that the pit that was deposited directly before the extinction event was not
experiencing environmental stresses [1, 4, 9, 14]. This time in Southern California was one of
warming and drying [15], which would suggest that S. fatalis became larger and more special-
ized during warm, dry times [1].

Smilodon fatalis from pit 13 show a different result. Sabertooth cats from this pit demon-
strate evidence of environmental stress. Although they have longer mandibles than S. fatalis
from pits 3, 77, and 91, they have the lowest relative cortical thickness. This might suggest that

Table 2. Measurements of S. fatalis dentaries showing significant differences between individual pits (from Tukey’s post-hoc analyses of
ANOVAs).

Measurement Pit Sample size Mean Significant differences (and p-values)*

Lower jaw length (excluding canine) (mm) 3 23 105.19 61–67 (0.003)

13 7 109.03 none

77 17 101.52 61–67 (<0.001)

91 19 105.77 61–67 (0.014)

61–67 24 113.68 3, 77, 91 (see above)

Lower jaw length (including canine) (mm) 3 20 119.91 61–67 (0.002)

13 2† 128.45 none

77 4 117.8 61–67 (0.050)

91 10 120.81 61–67 (0.049)

61–67 22 125.97 2, 77, 91 (see above)

Cortical thickness–P4 3 27 5.52 none

13 7 4.64 61–67 (0.041)

77 20 5.96 none

91 18 5.86 none

61–67 23 6.25 13 (see above)

Standardized cortical thickness–P4 3 27 0.1403 none

13 6 0.1103 61–67 (0.009)

77 19 0.1459 none

91 18 0.1412 none

61–67 23 0.1557 13 (see above)

*Only p-values less than 0.10 are reported here. For significant differences means and p-values are in bold.

† small sample size here for pit 13, which likely contributes to the lack of significant difference between this pit and others.

doi:10.1371/journal.pone.0162270.t002
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they are processing softer foods than their conspecifics in different pits [11], which would con-
tradict the findings of Binder and Van Valkenburgh [4] who found that S. fatalis in pit 13 had
extreme tooth wear and breakage, suggesting a hard diet incorporating more bones.

One explanation for this seeming contradiction could be nutritional stress. A study on rats
showed that offspring who were gestated by and suckled from a protein deficient mother

Fig 2. Distribution of measures by pit. Fig 2A shows the different distributions of the values of standardized
cortical thickness at P4 in each pit (pit 3, with the lowest value is in red, while pit 61/67 in blue has the
highest), and Fig 2B shows the different distributions of jaw length in each pit.

doi:10.1371/journal.pone.0162270.g002
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showed decreased cortical axis moment of inertia in the mandible even into early adulthood
when compared to well-nourished offspring [16]. Other studies examining bone densities in
offspring of malnourished mothers have found a similar result [17, 18]. A 2010 study also
showed that perinatal nutritional conditions are so important to bone density and health that if
given nutritional supplements later in life, individuals cannot fully recover from these effects
even as adults [19]. In contrast, a study that showed that nutritional stress applied to adult indi-
viduals (who were healthy neonates) produces no difference in bone density or cortical area
[20]. Further, protein malnutrition across generations has been shown to cause variations in
size and other cranial parameters in rats, affecting multigenerational growth trajectories [21].
These results, taken together, suggest that pit 13 S. fatalismay have not only been experiencing
increased competition during their lifetimes (evidenced by greater tooth breakage and wear),
but they may have inherited a generational nutritional deficit from their mothers in utero and
during their early development, from which they couldn’t fully recover even as adults, resulting
in thinner, but similarly distributed cortical bone.

The timing of the deposition of pit 13 may hold some clues to this nutritional deficit. The
six known dates for pit 13 are 18.412, 18.569, 18.111, 17.149, and 17.394 thousand years before
present and one uncalibrated outlier of 7.665 thousand radiocarbon years old. These five clus-
tered dates between 17–18.5 thousand years ago coincide with the last glacial maximum in
western North America [7]. This time of relative cold could have put stresses on mammal pop-
ulations. A study showed that during times of cold stress herbivore populations are at lower
densities, which puts stress on carnivore populations [22]. However, this study looked at popu-
lations in a very cold locality (Norway), and even in times of relative cold the Los Angeles basin
may not have experienced the same types of effects. A high amount of Pinus pollen in lake sedi-
ment cores from Southern California during the last glacial maximum indicate a cool and wet
environment, with higher precipitation variability, but overall increased precipitation relative
to the early Holocene [15]. Not many studies have examined the complex interplay between
precipitation and carnivore competition. However a few studies have examined the effects of
precipitation on mesopredators (opossums in one case and smaller carnivorans in another)
and found that variation in precipitation has a rather large effect–greater than mean annual
temperature–on the hunting activities of these smaller carnivores [23, 24]. Vegetational
changes that accompany changes in temperature and precipitation at this time in Southern
California (i.e., invasion of pine forest), most certainly would affect the types of prey that
would be present, which would have in turn affected Smilodon populations at Rancho La Brea.
One final possibility to consider is that our small sample size of individuals from pit 13 (n = 7)
may be anomalous and not truly indicative of the entire Smilodon population from that time
period. However, our results indicate that most of our specimens show the same trends and a
pattern of small cortical thickness relative to length for a population of animals that show signs
of extensive carcass processing behavior [4].

Conclusions
This study focused on a measure of jaw strength over time by radiographing Smilodon den-
taries. This provides an estimate of cortical thickness and can be used as an indicator of jaw
strength. Using specimens from five different pits ranging from about 37 Kybp to 13 Kybp
(just before the extinction of S. fatalis), significant differences were found in both the actual
thickness of cortical bone, and the standardized thickness of cortical bone at the lower P4
between pit 13, which had the lowest amount of bone, and pit 61/67 which had the highest.
This supports other studies that have shown that individuals in pit 13 were under physiological
and perhaps dietary stress, which may be reflected in their deposition of cortical bone, while
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the opposite trend is seen in the individuals in pit 61/67. This opens the door for future studies
on the effects of nutritional stress in S. fatalis and other carnivores at Rancho La Brea and
throughout the Pleistocene. The unique sample of juvenile S. fatalis present at Rancho La Brea
would be excellent for a continuation of this work.

Supporting Information
S1 Dataset. Smilodon fatalismeasurement data by pit.
(XLSX)
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