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Applications of Fractional Calculus to Newtonian Mechanics

Gabriele U. Varieschi

Department of Physics, Loyola Marymount University - Los Angeles, CA 90045, USA∗

Abstract

We investigate some basic applications of Fractional Calculus (FC) to Newtonian mechanics.

After a brief review of FC, we consider a possible generalization of Newton’s second law of motion

and apply it to the case of a body subject to a constant force.

In our second application of FC to Newtonian gravity, we consider a generalized fractional

gravitational potential and derive the related circular orbital velocities. This analysis might be

used as a tool to model galactic rotation curves, in view of the dark matter problem.

Both applications have a pedagogical value in connecting fractional calculus to standard me-

chanics and can be used as a starting point for a more advanced treatment of fractional mechanics.

PACS numbers: 02.30.-f, 45.20.D-

Keywords: fractional calculus; fractional differential equations; fractional mechanics.

∗ Email: gvarieschi@lmu.edu
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I. INTRODUCTION

Fractional Calculus (FC) is a natural generalization of calculus that studies the possibility

of computing derivatives and integrals of any real (or complex) order ([1], [2], [3]), i.e., not

just of standard integer orders, such as first-derivative, second-derivative, etc.

The history of FC started in 1695 when l’Hôpital raised the question as to the meaning

of taking a fractional derivative such as d1/2y/dx1/2 and Leibniz replied [2]: “...This is an

apparent paradox from which, one day, useful consequences will be drawn.”

Since then, eminent mathematicians such as Fourier, Abel, Liouville, Riemann, Weyl,

Riesz, and many others contributed to the field, but until lately FC has played a negligible

role in physics. However, in recent years, applications of FC to physics have become more

common ([4], [5]) in fields ranging from classical and quantum mechanics, nuclear physics,

hadron spectroscopy, and up to quantum field theory.

In theoretical physics we can now study the fractional equivalent of many standard physics

equations [4]: frictional forces, harmonic oscillator, wave equations, Schrödinger and Dirac

equations, and several others. In applied physics [5], FC methods can be used in the de-

scription of chaotic systems and random walk problems, in polymer material science, in

biophysics, and other fields.

In this paper, we will review elementary definitions and methods of fractional calculus and

fractional differential equations. We will then apply these concepts to some basic problems

in Newtonian mechanics, such as possible generalizations of Newton’s second law of motion

and applications of FC to Newtonian gravity.

II. FRACTIONAL CALCULUS: A BRIEF REVIEW

Unlike standard calculus, there is no unique definition of derivation and integration in

FC. Historically, several different definitions were introduced and used (for complete details

see, for example, Refs. [1] and [2]). All proposed definitions reduce to standard derivatives

and integrals for integer orders n, but they might not be fully equivalent for non-integer

orders of differ-integration.1

1 In FC derivation and integration are often treated and defined as a single operation—with the order q

respectively taken as a positive or negative real number—hence the names differintegrals, differintegration,
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To gain an intuitive perspective of fractional derivatives [4], we consider some elementary

functions such as the exponential function ekx, trigonometric functions sin(kx) or cos(kx),

and simple powers xk, where k is some constant. It is easy to obtain recursive relations for

derivatives of integer order n:

dnekx

dxn
= knekx (1)

dn sin(kx)

dxn
= kn sin(kx+

π

2
n)

dnxk

dxn
=

k!

(k − n)!
xk−n.

These relations can be easily generalized to real or imaginary order q, with appropriate

gamma functions replacing the factorials when necessary:

dqekx

dxq
= kqekx; k ≥ 0 (2)

dq sin(kx)

dxq
= kq sin(kx+

π

2
q); k ≥ 0

dqxk

dxq
=

Γ (k + 1)

Γ(k − q + 1)
xk−q; x ≥ 0, k 6= −1,−2, ...

with the functions restricted to k ≥ 0 and x ≥ 0 respectively, to ensure the uniqueness of

the above definitions.

These three approaches to fractional derivation were introduced respectively by Liouville,

Fourier, and Riemann and led to immediate generalizations for analytic functions expanded

in series of exponential, trigonometric, or power functions. For example, the fractional

derivative of a function f(x), according to Liouville, can be defined as

f(x) =
∞∑
k=0

ake
kx (3)

dqf(x)

dxq
=
∞∑
k=0

akk
qekx.

etc. Also, the name fractional calculus is actually a misnomer, since the order of differintegration can be

any real (or complex) number. A better name for this field might be “Differintegration to an arbitrary

order,” or similar.
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Applying instead the Riemann definition of fractional derivatives for power functions to

the case of a constant C, we obtain:

dqC

dxq
=
dq(Cx0)

dxq
=

Cx−q

Γ(1− q)
, (4)

i.e., the derivative of a constant is not equal to zero in FC, unless this condition is assumed

as an additional postulate as in the so-called Caputo derivative [4].

More general definitions of fractional differintegrals exist in the literature, such as the

Grünwald formula [1]:

dqf

[d(x− a)]q
= lim

N→∞

{[
x−a
N

]−q
Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f

(
x− j

[
x− a
N

])}
, (5)

which involves only evaluations of the function itself and can be used for both positive and

negative values of q. Another general definition is the Riemann-Liouville fractional integral

[1]:

dqf

[d(x− a)]q
=

1

Γ(−q)

∫ x

a

(x− y)−q−1 f(y)dy (q < 0) , (6)

which can only be applied directly to fractional integration (q < 0), but can be extended

to fractional differentiation by combining it with integer-order derivatives. It is beyond the

scope of this paper to analyze these and other formulas of FC more thoroughly. Interested

readers will find complete mathematical details in all the references cited in this section.

III. GENERALIZING NEWTONIAN MECHANICS

One-dimensional Newtonian mechanics for a point-particle of constant mass m is based

upon Newton’s second law of motion, a second-order ordinary differential equation:

d2x(t)

dt2
=
F

m
. (7)

We can easily think of at least two possible ways of generalizing Newton’s second law

using fractional calculus:

• Change the order of the time derivative in the left-hand-side of Eq. (7) to an arbitrary

number q. This is motivated by current studies of FC applied to physics [4], where
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second-order classical wave equations, Schrödinger and Dirac equations, and several

others are generalized to fractional order q.

• Generalize the expression of the force (or force field) F on the right-hand-side of

Eq. (7) to include differintegrals of arbitrary order q. This is also routinely done in

applications of FC to physics [4], by selecting fractional generalizations of standard

electromagnetic potentials, in order to analyze phenomena in nuclear physics, hadron

spectroscopy, and other fields.

In the next two sub-sections, we will consider examples of these possible generalizations.

A. Constant force motion

As our first example, we generalize Eq. (7) by using derivatives of arbitrary (real) order

q and by considering a constant force per unit mass f = F/m = const:2

dqx(t)

dtq
=
F

m
= f. (8)

The general solution of this (extraordinary) differential equation is [1]:

x(t) =
d−qf

dt−q
+ c1t

q−1 + c2t
q−2 + ...+ clt

q−l (9)

=
f tq

Γ(1 + q)
+ c1t

q−1 + c2t
q−2 + ...+ clt

q−l

with

 0 < q ≤ l < q + 1, if q > 0

l = 0, if q ≤ 0

 ,

having used also Eq. (4) for the fractional derivative of the constant force per unit mass f .

The l constants of integration, c1, c2, ... , cl, can be determined from the l initial conditions:

x(t0), x
′(t0), ... , x(l−1)(t0).

For example, choosing for simplicity’s sake t0 = 1, the constants of integration are deter-

mined by a set of linear equations in matrix form Mc = d, where c = (cj) is the vector of

2 We note that, in order to ensure the dimensional correctness of Eq. (8), we would need to redefine force

so that its dimensions become M L T−q. Alternatively, if the customary dimensions of force are used,

a constant time scale factor tSC should be introduced in Eq. (8): dqx(t)
dtq = F

m t
2−q
SC = f t2−qSC . We have

adopted the former solution in the following.
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the integration constants, while the matrix M = (mij) and the vector d = (di) are obtained

as follows:

mij =

[
i−1∏
n=1

(q − j − n+ 1)

]
i,j=1,2,...,l

(10)

di =

[
xi−1(1)− f

Γ(1 + q)

i−2∏
n=0

(q − n)

]
i=1,2,...,l

If the initial conditions and the force per unit mass are simply set to unity, i.e., x(1) =

x′(1) = x′′(1) = ... = 1 and f = 1, our general solution in Eq. (9), with the integration

constants computed using Eq. (10), can be easily plotted for different values of the order q,

as shown in Fig. 1.

This figure illustrates the resulting position vs. time functions for the point-particle

motion, subject to the generalized Newton’s law in Eq. (8), with the order q ranging from

1 to 3 with fractional increments. The standard Newtonian solution, x(t) = 1
2
a (t− t0)2 +

v0 (t− t0)+x0, is obviously recovered for q = 2 (red-solid curve), for a motion with constant

acceleration a = F/m. Two other solutions for integer values of q are presented: the case

for q = 1 (blue-solid line) represents a simple motion with constant velocity v = F/m:

x(t) = v (t− t0) + x0; the q = 3 case (green-solid line) represents instead a motion with

constant jerk 3 j = F/m: x(t) = 1
6
j (t− t0)3 + 1

2
a0 (t− t0)2 + v0 (t− t0) + x0.

In Fig. 1, we also show (dashed and dotted curves) the position vs. time functions for

some fractional values of the order q in Eq. (8). These additional curves interpolate well

between the integer-order functions described above, showing that “fractional mechanics”

would simply yield solutions for the motion of the point-particle which are somewhat in-

between the integer-order solutions.

One can’t help but wonder what would the universe be like, if the fundamental Newtonian

(second) law of motion were based on an order q different from the standard value of two:

for q = 1, we would have a situation reminiscent of Aristotelian physics, where a constant

applied force would only achieve a motion with constant velocity. For q = 3, the application

of a constant force would yield a constant jerk (i.e., an acceleration changing at constant

3 The higher-order derivatives of the position vs. time function (beyond the second order) are usually called

jerk (3rd order), snap or jounce (4th order), crackle (5th order), pop (6th order), etc.
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FIG. 1: Position vs. time functions for a point-particle subject to a constant force, using the

generalized Newton’s law in Eq. (8), with the order q ranging from 1 to 3, and with fractional

increments. The standard Newtonian solution is recovered for q = 2 (red-solid curve), for a motion

with constant acceleration. The case for q = 1 (blue-solid line) represents a motion with constant

velocity, while the q = 3 case (green-solid line) represents instead a motion with constant jerk.

Other solutions (dashed and dotted curves), for some fractional values of the order q, are also

shown in the figure.

rate) resulting in a motion much more difficult to control. Fractional values of q would yield

mechanical situations somewhat in-between those with integer q, but the resulting dynamics

would possibly be lacking of the other cardinal principles of Newtonian mechanics, such as

conservation laws or others.

B. Gravitational force

Our second case of interest will be the generalization of Newton’s law of universal gravi-

tation:
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d2−→r (t)

dt2
=

−→
Fg

m
= −GM

r2
r̂, (11)

where G is the universal gravitational constant, M is the total mass of a (spherically sym-

metric) source centered at the origin of a coordinate system, r̂ and r are respectively the

radial unit vector and the radial distance between the origin and a point-particle of mass

m, subject to the gravitational attraction.

In this case, we will modify the right-hand-side of Eq. (11) by considering a generalized

gravitational Riesz potential [4] VRZ :

VRZ(−→r ) = −G
a

∫
R3

dM

(s/a)q
= −G

a

∫
R3

ρ(
−→
r′ )d3

−→
r′(∣∣∣−→r −−→r′ ∣∣∣ /a)q , (12)

where s =
∣∣∣−→r −−→r′ ∣∣∣ is the distance between the infinitesimal source mass element dM =

ρ(
−→
r′ )d3

−→
r′ and the position−→r being considered. Due to the presence of the fractional order

q, a “length scale” a is needed to ensure the dimensional correctness of Eq. (12).4

For a spherical source of radius R0 and uniform density ρ0 = M/
(
4
3
πR3

0

)
,

ρ(
−→
r′ ) = ρ0 H(R0 − r′) =

ρ0, for 0 ≤ r′ ≤ R0

0, for r′ > R0

 , (13)

the integral in Eq. (12) can be evaluated analytically for any (real) value of the fractional

order q, inside and outside the source. In general, we have [4]:

VRZ(r) = −Gρ0
r

2πaq−1

(q − 2) (q − 3) (q − 4)
(14)

×



 (r +R0)
3−q (r − (3− q)R0)

+ (R0 − r)3−q (r + (3− q)R0)

 , for 0 ≤ r ≤ R0 (r +R0)
3−q (r − (3− q)R0)

− (r −R0)
3−q (r + (3− q)R0)

 , for r > R0


,

4 This approach [4] is based on a 3D-generalization of the convolution integral: V (−→r ) =∫
R3 ρ(

−→
r′ )w

(∣∣∣−→r −−→r′ ∣∣∣) d3−→r′ =
∫
R3

ρ(
−→
r′ )∣∣∣−→r −−→r′ ∣∣∣d3

−→
r′ , with a fractional weight function: w

(∣∣∣−→r −−→r′ ∣∣∣) =

1∣∣∣−→r −−→r′ ∣∣∣q . The resulting potential in Eq. (12) is equivalent to a 3D-version of the Riesz fractional derivative,

which corresponds to a linear combination of fractional Liouville integrals.
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for the inner and outer solutions. The special cases for q = 2, 3, 4 can be obtained by

recomputing the integrals for these particular values of q, or by considering appropriate

limits of VRZ(r), from the previous equation, for q → 2, 3, 4. For example, for q = 2, we

obtain:

VRZ(r)|q=2 = −Gρ0
r
πa


[
2rR0 + (R2

0 − r2) ln
(

r+R0

R0−r

)]
, for 0 ≤ r ≤ R0[

2rR0 − (r2 −R2
0) ln

(
r+R0

r−R0

)]
, for r > R0

 . (15)

Setting instead q = 1 in Eq. (14), and using ρ0 = M/
(
4
3
πR3

0

)
, we recover the standard

Newtonian potential:

VRZ(r)|q=1 = VNewtonian(r) =

−GM
2R3

0
(3R2

0 − r2) , for 0 ≤ r ≤ R0

−GM
r
, for r > R0

 , (16)

which yields the universal law of gravitation in Eq. (11), by using just the outer potential

from the last equation. Another very simple case is the one for q = 0, which yields a constant

potential VRZ(r)|q=0 = −GM
a

, for both inner and outer solutions.

In Fig. 2, we illustrate the shape of these generalized gravitational Riesz potentials

following Eqs. (14)-(16), for different values of the fractional order q ranging from zero

to two. The q = 1 case (red-solid curve) represents the standard Newtonian gravitational

potential. All these plots were obtained by setting G = M = R0 = a = 1 for simplicity’s

sake, therefore the vertical grid line at r = 1.0 in the figure denotes the boundary between

the inner (0 ≤ r ≤ R0) and the outer (r > R0) potentials. As already mentioned above, the

q = 0 case (blue-solid line) corresponds to a constant potential VRZ(r)|q=0 = −GM
a

, while

the q = 2 case (green-solid curve) is plotted using Eq. (15).

An interesting consequence of these generalized gravitational potentials is the analysis

of the resulting orbital circular velocities, for the inner and outer solutions. From the

generalized gravitational potentials in Eq. (14), we can easily obtain the related gravitational

force per unit mass:
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FIG. 2: The generalized gravitational Riesz potentials, following Eqs. (14)-(16), for different values

of the fractional order q. The q = 1 case (red-solid curve) represents the standard Newtonian

gravitational potential. We set G = M = R0 = a = 1 for simplicity’s sake, thus the vertical grid

line at r = 1.0 in the figure denotes the boundary between the inner (0 ≤ r ≤ R0) and the outer

(r > R0) potentials. The q = 0 case (blue-solid line) corresponds to a constant potential, while

the q = 2 case (green-solid curve) is plotted using Eq. (15). Other potentials (dashed and dotted

curves), for some fractional values of the order q, are also shown in the figure.

−→
F RZ(r)

m
= −dVRZ(r)

dr
r̂ = −Gρ0

r2
r̂

2πaq−1

(q − 2) (q − 3) (q − 4)
(17)

×




(r +R0)

2−q (r − (3− q)R0) (R0 − (2− q)r)

+ (R0 − r)2−q (r + (3− q)R0) (R0 + (2− q)r)

−r((r +R0)
3−q + (R0 − r)3−q)

 , for 0 ≤ r ≤ R0


(r +R0)

2−q (r − (3− q)R0) (R0 − (2− q)r)

+ (r −R0)
2−q (r + (3− q)R0) (R0 + (2− q)r)

−r((r +R0)
3−q − (r −R0)

3−q)

 , for r > R0


,
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from which we can obtain the orbital circular velocities:

vcirc(r) =

√√√√
r

∣∣∣−→F RZ(r)
∣∣∣

m
=

√
r

∣∣∣∣dVRZ(r)

dr

∣∣∣∣. (18)

Fig. 3 shows the plots of these orbital circular velocities for the same values of the

fractional order q used in Fig. 2, and also by setting G = M = R0 = a = 1 as done

previously. The q = 1 case (red-solid curve) represents the standard Newtonian situation,

with the circular velocity vcirc =
√

GM
R3

0
r ∼ r for 0 ≤ r ≤ R0, and vcirc =

√
GM
r
∼ 1/

√
r for

r ≥ R0 (the vertical grid line at r = 1.0 in the figure represents the boundary between the

inner and outer regions).

The q = 0 case (blue-solid line) would not yield any circular velocity because it corre-

sponds to a zero-force case. The q = 2 case (green-solid curve) is computed using the special

potential in Eq. (15), while in all the other (fractional) cases the velocity plots interpolate

well between the integer cases outlined above.

It is interesting to note that, for values of q decreasing from one toward zero, the rotational

velocity curves in the outer (r ≥ R0) region show a definite “flattening” effect, which becomes

more pronounced for the lowest q values (for example, in the q = 0.25 case, blue-dotted

curve). This consideration might be of some interest in relation with the well-established

problem of dark matter in galaxies, as evidenced by the galactic rotation curves and their

lack of Newtonian behavior in the outer regions.

It is beyond the scope of this paper to perform any fitting of galactic rotational curves, by

means of our fractional model of the Riesz gravitational potentials. However, it is interesting

to note that the main feature of the observed galactic rotational curves, i.e., their conspicuous

flatness at larger distances could be actually recovered for values of the fractional order q

close to zero.

We also recall that one of the most popular alternative gravitational models, Modified

Newtonian Dynamics (MOND) ([6], [7]), originated from a simple modification of Newton’s

second law, to account for the observed properties of galactic motion. The MOND mod-

ification can be applied to either side of Newton’s second law [7]: by setting the force to

be proportional to a certain function of the acceleration, or alternatively by changing the

dependence of the gravitational force on the distance. In this work we have shown that

similar modifications to the dynamics of a body in motion can also be obtained by means of

11



q = 0.00

q = 0.25

q = 0.50

q = 0.75

q = 1.00

q = 1.25

q = 1.50

q = 1.75

q = 2.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

v
ci
rc

FIG. 3: The orbital circular velocities, following Eqs. (17)-(18), for different values of the fractional

order q. The q = 1 case (red-solid curve) represents the standard Newtonian situation. Again, we

set G = M = R0 = a = 1, thus the vertical grid line at r = 1.0 in the figure denotes the boundary

between the inner (0 ≤ r ≤ R0) and the outer (r > R0) velocities. The q = 0 case (blue-solid line)

corresponds to a zero force situation, while the q = 2 case (green-solid curve) is plotted using Eq.

(15) and (18). Other solutions (dashed and dotted curves), for some fractional values of the order

q, are also shown in the figure.

fractional calculus. Also, given possible connections between fractional calculus and fractal

geometry ([8], [9], [10], [11], [12]), a fractional approach to mechanics might be useful to

analyze complex structures such as galaxies or similar.

IV. CONCLUSIONS

In this work, we have applied fractional calculus to some elementary problems in standard

Newtonian mechanics. The main goal was to show that FC can be used as a pedagogical

tool, even in introductory physics courses, to gain more insight into basic concepts of physics,
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such as Newton’s laws of motion and universal gravitation.

An intriguing consequence of FC, in connection with gravitational physics, is the possi-

bility of applying fractional mechanics to the problem of galactic rotation curves. We will

leave to further studies to investigate in more detail a possible connection between fractional

mechanics and the dark matter puzzle.

Acknowledgments

This work was supported by a grant from the Frank R. Seaver College of Science and

Engineering, Loyola Marymount University, Los Angeles.

[1] K. B. Oldham and J. Spanier, The fractional calculus (Academic Press [A subsidiary of Har-

court Brace Jovanovich, Publishers], New York-London, 1974), theory and applications of

differentiation and integration to arbitrary order, With an annotated chronological bibliogra-

phy by Bertram Ross, Mathematics in Science and Engineering, Vol. 111.

[2] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential

equations, A Wiley-Interscience Publication (John Wiley & Sons, Inc., New York, 1993), ISBN

0-471-58884-9.

[3] I. Podlubny, Fractional differential equations, vol. 198 of Mathematics in Science and Engi-

neering (Academic Press, Inc., San Diego, CA, 1999), ISBN 0-12-558840-2, an introduction to

fractional derivatives, fractional differential equations, to methods of their solution and some

of their applications.

[4] R. Herrmann, Fractional calculus: An introduction for physicists (2011), ISBN 9789814340243,

9789814462075.

[5] R. Hilfer, ed., Applications of fractional calculus in physics (World Scientific Publishing

Co., Inc., River Edge, NJ, 2000), ISBN 981-02-3457-0, URL http://dx.doi.org/10.1142/

9789812817747.

[6] M. Milgrom, Astrophys. J. 270, 365 (1983).

[7] M. Milgrom, Acta Phys. Polon. B32, 3613 (2001), astro-ph/0112069.

13

http://dx.doi.org/10.1142/9789812817747
http://dx.doi.org/10.1142/9789812817747


[8] F. B. Tatom, Fractals 3, 217 (1995), ISSN 0218-348X, URL http://dx.doi.org/10.1142/

S0218348X95000175.

[9] L. Nottale, Found. Sci. 15, 101 (2010), arXiv:0812.3857 [physics.gen-ph].

[10] L. Nottale, Scale relativity and fractal space-time (2011), URL http://www.icpress.co.uk/

physics/p752.html.

[11] G. Calcagni, Phys. Rev. D95, 064057 (2017), arXiv:1609.02776 [gr-qc].

[12] G. Calcagni, JHEP 03, 138 (2017), [Erratum: JHEP06,020(2017)], arXiv:1612.05632 [hep-th].

14

http://dx.doi.org/10.1142/S0218348X95000175
http://dx.doi.org/10.1142/S0218348X95000175
http://www.icpress.co.uk/physics/p752.html
http://www.icpress.co.uk/physics/p752.html

	Applications of Fractional Calculus to Newtonian Mechanics
	Repository Citation

	I Introduction
	II Fractional calculus: a brief review
	III Generalizing Newtonian mechanics
	A Constant force motion
	B Gravitational force

	IV Conclusions
	 Acknowledgments
	 References

