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Bolstered physical defences under nutrient-enriched
conditions may facilitate a secondary foundational
algal species in the South Pacific
Sarah Joy Bittick1*, Rachel Joy Clausing1, Caitlin Ryan Fong2 and Peggy Fong1

1Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Dr
South, Los Angeles, CA 90095, USA; and 2Department of Ecology, Evolution, and Marine Biology, University of
California Santa Barbara, 552 University Rd, Santa Barbara, CA 93106, USA

Summary

1. Humans have a long history of changing species’ ranges and habitat distributions, making studies
of the ecological processes that may facilitate these changes of key importance, particularly in cases
where a primary foundation species is replaced by another, less desirable species.
2. We investigated the impact of nutrients and herbivory on Turbinaria ornata, a secondary founda-
tional macroalga that depends on and likely competes with coral, the primary foundational commu-
nity. T. ornata is also rapidly expanding in range and habitat across the South Pacific. We
conducted (i) a mesocosm experiment assessing relative nutrient limitation, (ii) a field experiment
comparing importance of nutrients (+/�) and herbivory (+/�) to biomass accumulation, and (iii) an
herbivory assay and toughness test comparing enriched and ambient thalli to assess changes to anti-
herbivory defences.
3. We found no evidence of growth being nutrient limited in T. ornata; rather than stimulating
growth, nutrient addition deterred herbivores. However, when physical toughness was removed,
enriched algae were preferred, with consumption rates 25-fold those of unenriched algae. Addition-
ally, enriched thalli were tougher than ambient thalli, suggesting physical defences were bolstered
by nutrient enrichment.
4. Synthesis. We found a unique interaction where nutrients inhibit herbivory and facilitate Turbina-
ria ornata biomass accumulation. While concern is often placed on degradation of foundation spe-
cies via anthropogenic change, instead here we show that anthropogenic change can facilitate
secondary foundation species. This facilitation may allow a secondary foundation species to better
compete with primary foundation species.

Key-words: anti-herbivory defences, aquatic plant ecology, coral reefs, human impacts, secondary
foundation species, top-down and bottom-up control, Turbinaria ornata

Introduction

Human alterations of major ecological processes have
resulted in world-wide changes in species’ geographic ranges
as well as their distribution among habitats (e.g. Ellison
et al. 2005; temperate and tropical forests; Orth et al. 2006;
seagrass beds; Rohr, Mahan & Kim 2009; hemlock groves;
Veldman & Putz 2011; Amazon basin grasslands and forests;
Saintilan et al. 2014; mangroves and saltmarsh plants).
While human impacts usually result in overall loss of foun-
dation species (Ellison et al. 2005; Orth et al. 2006), in
some cases, humans may facilitate a switch from one domi-
nant foundation species to a secondary, often less desirable,

foundation species (Rohr, Mahan & Kim 2009; Veldman &
Putz 2011; Saintilan et al. 2014). While all foundation spe-
cies, by definition, support community structure, species
composition and ecosystem functioning (see Ellison et al.
2005 for a review), secondary foundation species are depen-
dent on primary foundation species for space or habitat stabi-
lization such as moss epiphytes to their oak hosts (Angelini
& Silliman 2014) or mussels in a cordgrass habitat (Altieri,
Silliman & Bertness 2007). As humans impact the physical
and abiotic environment, there can be consequences to inter-
actions between primary and secondary foundation species
that will have cascading effects to the communities they sup-
port (see Angelini et al. 2011). Because shifts between foun-
dational species have large impacts on their dependent
communities’ structure and functioning, studies of the*Correspondence author. E-mail: sbittick@ucla.edu
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ecological processes that may facilitate these changes are of
key importance.
Anthropogenic changes to major ecological controlling

forces, such as nutrient limitation and its interaction with her-
bivory, are known to impact the composition and abundance
of primary producers in many ecosystems (e.g. grasslands in
Tilman & Downing 1996; terrestrial and aquatic systems in
Hillebrand et al. 2007). Overall, increased nutrients have been
found to stimulate herbivory on coral reefs (Boyer et al.
2004; Chan et al. 2012), in saltmarshes (He & Silliman 2015)
and on rocky reefs (Gruner et al. 2008). Further, theory pre-
dicts enrichment will translate directly to increased primary
productivity and more diverse food webs (e.g. Oksanen et al.
1981; with concurrent high consumption in Worm et al.
2002; but see Rosenzweig 1971 for a discussion of the para-
dox of enrichment). As for many primary producers, coral
reef macroalgae are thought to be controlled by interactions
between top-down and bottom-up forces. Although there is
high spatial and temporal variability in algal response to nutri-
ent addition, many tropical macroalgae experience opportunis-
tic growth when exposed to inputs of nitrogen and
phosphorous (e.g. Fong et al. 2003), as these nutrients tend to
be limiting in tropical systems (for a review, see Fong & Paul
2011). Macroalgae is also strongly controlled by high her-
bivory on coral reefs, though overfishing can result in a
decrease in herbivory pressure (Hughes et al. 2010; Fong &
Paul 2011). Further, a meta-analysis found that nutrients only
increased algal abundance in the absence of herbivores (Bur-
kepile & Hay 2006). Subsequent studies follow similar trends
but vary across time, space and species (e.g. Smith, Hunter &
Smith 2010). Both empirical studies and theoretical predic-
tions suggest that interactions between nutrients and herbivory
should increase both primary productivity and consumption
by herbivores. However, what is unknown is whether these
predictions hold true for secondary foundation species when
humans manipulate top-down and bottom-up controls.
Macroalgae have increased on reefs over the last 40 years

(e.g. Bellwood et al. 2004) and can (i) compete directly with
coral for space and light, as well as (ii) inhibit recruitment of
juvenile corals (see Fong & Paul 2011 for a review; also
Box & Mumby 2007). Typically, these macroalgae are oppor-
tunistic species that respond quickly to nutrients and are
highly palatable (Littler & Littler 1980). In contrast, Turbina-
ria ornata is a secondary foundational brown macroalga
(see methods for rationale) that has been increasing in range
and habitat usage within its range in the South Pacific over
the last 35 years. Prior to 1980, T. ornata was confined to the
Austral and Society islands but by 1990 appeared on the
northern and southern Tuamotu islands (Martinez et al.
2006). While it is still unclear what processes are driving this
expansion (Stiger & Payri 2005), possible explanations
include changes in top-down and bottom-up processes and
their interactions. Only a handful of studies have examined
the effect of nutrients and herbivory on T. ornata, and results
from these studies have been mixed. For example, one study
on the Great Barrier Reef showed that inshore T. ornata did
not respond to nutrients by increasing biomass but did store

nutrients in their tissues (Schaffelke 1999). A study from
Tahiti found T. ornata had greater concentrations of phenols,
the aromatic molecules responsible for chemical defence, in
an area with high nutrient input (Stiger, Deslandes & Payri
2004). This contrasts with Fucus distichus, a closely related
brown alga, that had no or a negative relationship between
nutrient availability and phenol content (Yates & Peckol
1993; Koivikko et al. 2005); rather, herbivory induced chemi-
cal defences in this alga (Koivikko et al. 2005). Finally, Chan
et al. (2012) found a congener, T. turbinata, became more
palatable in response to nutrient input in the Caribbean. Thus,
a range of interactions between nutrients and herbivory have
been found in closely related algae. It is important to further
our understanding of these complex interactions as human-
induced alterations of these controlling top-down and bottom-
up processes will only intensify in the future.
We evaluated the role of anthropogenic alterations of nutri-

ents and herbivory in promoting the persistence of T. ornata on
coral reefs of the South Pacific. Specifically, we asked (i) Does
T. ornata grow in response to nutrients? (bottom-up control),
(ii) Does herbivory control T. ornata biomass? (top-down con-
trol), and (iii) Is there any interaction between nutrients and
herbivory that may lead to the persistence of T. ornata?

Materials and methods

STUDY SPECIES

Turbinaria ornata forms dense aggregations (�x = 267.2 � 17.1 SEM
thalli per m2, n = 80) on hard reef substrates formerly dominated by
corals and has been observed to facilitate other species by providing
habitat structure, refuge, or both to other macroalgae (Bittick et al.
2010), juvenile fish (J.D. Harvey, S.J. Bittick, T.M. Johnson, T.A.
Fryman, R.J. Clausing, C.R. Fong & P.M. Fong, in prep) and inverte-
brates (S.K. Briley, unpubl. data). By supporting a high density of
epiphytes, T. ornata also provides trophic support to herbivores (S.J.
Bittick, S. Scoma, R.J. Clausing, C.R. Fong & P. Fong in prep).
Because T. ornata facilitates a diverse community but depends on
corals to form the hard substrate for attachment, it can be considered
a secondary foundation species.

Turbinaria ornata belongs to the thick-leathery functional form
group that is predicted to be slower growing and less responsive to
nutrients compared to other types of more opportunistic macroalgae
(Littler & Littler 1980). Previous studies showed that T. ornata has
high morphological plasticity where flow increases tensile (breaking)
strength (Stewart 2006a). Reproductive T. ornata thalli detach season-
ally through natural senescence and as a result of high wave energy.
This results in formation of rafts that may facilitate dispersal, though
the direct effect on dispersal has not been studied (Stewart 2006b).
Turbinaria ornata also contains chemical (Deslandes, Payri & Stiger
1997; Stiger, Deslandes & Payri 2004) and mechanical (physical
toughness; Payri, N’Yeurt & Oremp€uller 2004) defences to deter her-
bivores, though in Australia T. ornata was found to be highly palat-
able (Mantyka & Bellwood 2007).

STUDY SITES

To evaluate whether our results showed the same overall pattern
across space and time, all experiments were repeated for two different
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patch reef sites; however, logistical constraints prohibited running the
experiments simultaneously. Our two sites were Gump Reef
(17°29017.25″S, 149°49032.26″W) situated at the mouth of Cook’s
Bay and Sailing School (17°28059.81″S, 149°50045.70″W) located at
the mouth of Opunohu Bay. We expected higher ambient nutrients at
Gump Reef due to a larger human population, more agricultural
development, and greater mean riverine input in Cook’s Bay (Letour-
neur et al. 2013). This expectation was evaluated by analysing tissue
nitrogen and phosphorous for T. ornata thalli collected from the two
sites because T. ornata store nutrients in its tissues (Schaffelke 1999).
Tissue nutrient concentrations (% nitrogen and phosphorous) con-
firmed lower nutrient levels at Sailing School (see Appendix S1, in
Supporting Information). Additionally, a follow-up study determined
herbivore abundance to be much lower at Gump than Sailing School
(J.L. Bergman, B.N. Dang, M. Tabatabaee, M.M. McGowan, C.R.
Fong, S.J. Bittick & P. Fong, unpubl. data).

EXPERIMENTAL APPROACHES

To determine whether T. ornata growth was nutrient limited, we con-
ducted a two-factor bioassay varying the supply of nitrogen (+/� N)
and phosphorous (+/� P) in a fully crossed factorial design. Forty small
T. ornata (5–10 cm tall) thalli were collected from two sites, Gump
Reef on 25 April 2012 and Sailing School Reef on 6 May 2012. All (�)
treatments used ambient sea water from the respective site. For enriched
(+) treatments, nitrate (NaNO3) and phosphate (NaH2PO4) were added
to ambient sea water from each site to achieve concentrations 20 lM N
and 2 lM P above ambient as in Fong et al. (2003). Each thallus was
spun in a salad spinner for 1 min, wet weighed (�x = 3.45 g � 0.12
SEM) and randomly assigned to one of the four treatments with 10
replicates. Eight hundred mL of the appropriate treatment sea water
(�N�P, +N�P, �N+P, +N+P) and a T. ornata thallus were put into
each of 40 1000 mL plastic cups. The cups were set haphazardly in a
flow through water-table for temperature regulation. After 5 days, thalli
were reweighed, and growth was calculated as per cent change from ini-
tial biomass. Data from both sites met the assumptions of normality and
homogeneity of variance and were analysed by a two-factor ANOVA

using the statistical software JMP version 11.

An in situ two factor, fully crossed experiment varying nutrient
addition (+/� N) and access to herbivores (+/� H) was repeated at
Gump (25–30 April 2012) and Sailing School (9–14 May 2012) reefs
to determine whether T. ornata biomass was controlled by bottom-up
and/or top-down processes or their interaction. Herbivore access was
limited by exclusion cages (six sided; 10 9 10 9 15 cm3

L 9 W 9 H) constructed from hardware cloth with 1 cm openings.
Light restriction by caging material was < 10%, and there was no mea-
sured restriction to flow in similar cages used at the same site (Claus-
ing et al. 2014). Thalli open to herbivores were attached to square
(10 9 10 cm) bases of the same hardware cloth. Forty T. ornata thalli
were collected from Gump and Sailing School reefs and wet weighed
(�x = 6.26 g � 0.25 SEM). Individual thalli were assigned to four
treatments: ambient nutrients and uncaged (�N+H), ambient nutrients
and caged (�N�H), nutrient enriched and uncaged (+N+H) and nutri-
ent enriched and caged (+N�H). Nutrient enrichment was achieved
by placing 20 g of slow-release fertilizer (Osmocote 19N:6P:12K) in
a mesh bag attached either to a cage bottom or open platform. Ten
replicates of each treatment were deployed at both sites by randomly
attaching the cage or open platform to hard substrate. After 6 days,
all experimental units were collected, and the final wet weight and
height of each thallus were recorded. Data from both sites were non-
normal and heteroscedastic, and these issues were not resolved by
common transformations. We used a two-factor univariate variation of

permutational multivariate analysis of variance (PERMANOVA) in PRI-
MER-e v6. This technique has been found to be robust against viola-
tions of normality and heterogeneity of variance (McArdle &
Anderson 2001; McNatty, Abbott & Lester 2009; Anderson & Walsh
2013). Similarity matrices were constructed using Euclidean distances,
which is appropriate for biomass change data where values can be
zero or negative (Norkko et al. 2013). The model was run on untrans-
formed data for 999 permutations to obtain P-values.

A one-factor experiment was conducted to determine whether
nutrient-enriched thalli deter herbivores due to increases in chemical
defence. Dried nutrient-enriched and ambient thalli from the Gump
Reef in situ experiment were ground into as fine a powder as possible
to remove the influence of any physical defence. The ground material
was added to trays of hot agar solution and poured over window
screen mesh as thinly as possible. This method was adapted from a
technique used by Hay, Kappel & Fenical (1994). No algae were
added to a third tray resulting in a control treatment of only agar. Ten
experimental units (~5 cm 9 7 cm) were cut from each of the three
trays and set out in a blocked pattern on Gump Reef on 23 May
2012. Photographs were taken of each plate before and after 3 days
in the field. Initial and final surface areas were estimated using Ima-
geJ software. Herbivory was calculated as per cent change in area.
Data met the assumptions of parametric statistics and were analysed
in JMP using a one-factor blocked ANOVA.

To evaluate whether physical defences were impacted by nutrients,
an enrichment experiment was conducted, and then a penetrometer
used to determine the relative toughness of nutrient-enriched and
ambient T. ornata thalli. Twenty T. ornata thalli were collected from
Gump Reef on 20 April 2013 assigned to nutrient-enriched (as
described for field experiment) or ambient treatments and placed back
on Gump Reef. Thalli were collected 6 days later, and a blade
selected from the most apical (newest algal growth) ring was placed
on a platform under an insect-dissecting pin with a small plastic cup
attached. Incremental weight was then added to the cup until the pin
just pierced the T. ornata blade. This method was adapted from
Duffy & Hay (1991). The weight was recorded as the mass required
to penetrate the thallus, and differences between means for ambient
and enriched thalli were determined by a t-test in JMP.

Results

Although patterns of growth varied between Sailing School
and Gump Reef, there were no significant increases in growth
in response to either nitrogen or phosphorous addition. For
both sites, growth ranged from < 1 to 6% over the 5-day
experiment (Figure 1).
At Sailing School, there was a significant interaction

between nutrients and herbivory on per cent change in algal
biomass (PERMANOVA, NutrXHerb interaction P = 0.027),
where herbivores only consumed algae under ambient nutrient
conditions (Table 1; Figure 2a). The pattern was the same at
Gump Reef (Figure 2b), but the interaction was not signifi-
cant (P = 0.107). While both sites had greatest herbivory
rates when nutrients were ambient and herbivores allowed
access, net loss in this treatment (�N+H) was nearly threefold
greater at Gump compared to Sailing School. When nutrients
were added, consumption by herbivores was greatly reduced,
resulting in only small losses in biomass at Gump Reef, and
increased biomass at Sailing School, presumably due to
growth exceeding herbivory in this treatment. When caged,
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algae at Sailing School grew an average of 10–15% while
those at Gump Reef either did not change or showed small
losses. Similarity in the magnitude of the caging by nutrient
interaction between the two sites (net difference of 25–30%
change in biomass between �N+H treatments and all others)
indicated that the difference between sites was driven by
higher growth at Sailing School than Gump as opposed to
different herbivory rates.
In contrast to the field manipulation, when physical

defences were removed, herbivores preferentially grazed on
agar containing nutrient-enriched thalli (Figure 3a). Only the
agar plates containing thalli enriched by fertilizer showed
significant loss in surface area by herbivory (blocked ANOVA,
P-value = 0.0021). The agar containing algal thalli grown
under ambient nutrients and those with no T. ornata thalli
were not significantly different from each other, and their
mean per cent change was near zero.

There was a significant effect of nutrient enrichment on
the toughness of T. ornata thalli (t-test, P-value = 0.0002;
Figure 3b). There was nearly a 30% increase in the weight

Fig. 1. Results of a two-factor nutrient addition, +/� nitrogen (N)
and +/� phosphorous (P), mesocosm experiment at Sailing School
reef (a) and Gump reef (b). Bars show mean per cent change
(� SEM) of algal biomass.

Table 1. Results from the permutational analysis (PERMANOVA) of
differences in T. ornata biomass change for the in situ two-factor
(Nutrients and Herbivory) experiments conducted at Gump and Sail-
ing School reefs.

PERMANOVA df SS MS Pseudo-F P(perm)

Sailing School
Nutrients (Nutr) 1 529.62 529.62 1.9731 0.179
Herbivory (Herb) 1 1752.4 1752.4 6.5285 0.018
Nutr 9 Herb 1 1508.4 1508.4 5.6193 0.027
Res 33 8858 268.42
Total 36 12947

Gump
Nutrients (Nutr) 1 1016.3 1016.3 2.2475 0.165
Herbivory (Herb) 1 1878.8 1878.8 4.1547 0.053
Nutr 9 Herb 1 1331.5 1331.5 2.9444 0.107
Res 35 15827 452.21
Total 38 19842

Bold numbers represent significant P-values (<0.05).

Fig. 2. Results of a two-factor in situ experiment manipulating nutri-
ents (+/� N) and herbivory (+/� H) repeated at two sites – Sailing
School (a) and Gump (b). Bars are mean per cent change (+/� SEM)
of algal biomass.

© 2016 The Authors. Journal of Ecology © 2016 British Ecological Society, Journal of Ecology, 104, 646–653
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needed to pierce the thalli of nutrient-enriched compared to
ambient T. ornata thalli.

Discussion

We found a unique interaction whereby enhanced physical
defences with nutrient enrichment released T. ornata from
herbivore control, which may allow expansion of T. ornata to
habitats where it is usually controlled by high herbivory. This
is a novel finding because, in this case, reduction in herbivory
is the indirect result of nutrient enrichment, not the direct
result of overfishing, as is commonly found in other reef sys-
tems (e.g. Hughes et al. 2010). The finding that nutrients
decrease herbivory contrasts to previous empirical work and
theoretical predictions that enrichment will, if anything, stimu-

late herbivory and trophic complexity (see Oksanen et al.
1981; Hillebrand et al. 2007; marine examples in Gruner
et al. 2008; He & Silliman 2015). Additionally, most other
studies examining interactions of nutrients and herbivory on
coral reef algae have found herbivory to be more important,
and that nutrients are only important in the absence of herbi-
vores (see Burkepile & Hay 2006 for a meta-analysis).
Our results suggest that human impacts that alleviate nutri-

ent limitation, and thereby reduce herbivory, may facilitate
T. ornata’s expansion of its range and habitat usage. This
expands upon previous evidence that biotic and abiotic inter-
actions have strong effects on communities supported by
foundation species (Ellison et al. 2005) by suggesting strong
interactions are also important for a secondary foundation
species that may be replacing a primary foundation species.
Human alterations of abiotic factors have been found to
change the outcome of interspecific interactions, specifically
competition, across ecosystem types (Briggs et al. 2005;
Veldman & Putz 2011; Saintilan et al. 2014). Mangroves, for
example, have expanded into saltmarshes in areas where cli-
mate change has resulted in warmer winter temperatures
(Saintilan et al. 2014). Competitive outcomes between man-
groves and saltmarsh graminoids are mediated by environ-
mental conditions, and mangroves are predicted to be
competitively dominant when winter temperatures are higher
and droughts more frequent (Osland et al. 2013; Saintilan
et al. 2014). Similarly, the reduction of the abiotic controlling
force of fire on grassland prairies allowed shrubs to recruit,
become competitively dominant, and replace previously domi-
nant C4 grasses (Briggs et al. 2005). Once large stands estab-
lished, more frequent fire regimes did not necessarily reverse
the shift because the large and persistent shrubs also protected
fire-sensitive recruits and species. Changes to nutrient avail-
ability have also resulted in shifts in species dominance in
each of these ecosystems (for a review see Smith, Tilman &
Nekola 1999). Although the drivers occur at different scales,
human-induced change of abiotic forces (winter temperature,
fire frequency and nutrient levels) has caused each of these
foundation species to be released from biotic controls (compe-
tition and herbivory) that previously restricted their distribu-
tion. This caused large community and ecosystem shifts for
saltmarsh, grassland and forest systems, and we predict this is
true for reef systems where T. ornata is expanding and poten-
tially competing with coral as well. Our study adds to a grow-
ing body of literature that suggests human alterations of key
abiotic forces, such as nutrient limitation, can cause shifts in
foundation species by changing the strength and even direc-
tion of interspecific interactions (e.g. Briggs et al. 2005;
Veldman & Putz 2011; Osland et al. 2013; Saintilan et al.
2014).
The bolstering of T. ornata’s physical defences in response

to increased nutrients is a unique finding, as previous work
on the effects of nutrients on defences has either considered
chemical defences or cases where physical defences decline.
Some studies have found enhanced phenols may serve as
chemical defences in T. ornata (Stiger, Deslandes & Payri
2004) and temperate brown macroalgae (Yates & Peckol

Fig. 3. (a) Palatability study of ground nutrient enriched (+N) and
ambient T. ornata placed in agar shows that enriched thalli are con-
sumed preferentially (ANOVA, P = 0.0021), and thus, there is not a
chemical deterrent associated with increased nutrient load. (b) Confir-
mation that T. ornata thalli are protected from herbivory by nutrients
through a strengthening of physical defences, or thalli toughness
(t-test, P = 0.0002).

© 2016 The Authors. Journal of Ecology © 2016 British Ecological Society, Journal of Ecology, 104, 646–653
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1993; Koivikko et al. 2005) in response to nutrients, but
increased phenols in brown algae may not always result in
decreased herbivory pressure (for a review, see Targett &
Arnold 1998). A physical anti-herbivore response to nutrients
appears to be novel except in calcifying forms of algae. Cal-
cium carbonate (CaCO3) mineralization has been shown to
decrease in response to elevated levels of phosphates in sev-
eral species of calcifying algae presumably making them
more susceptible to herbivory (e.g. Halimeda in Demes, Bell
& Dawes 2009). However, the direction of the nutrient effect
is opposite; nutrients stimulated defences in T. ornata, but
reduced them in calcifying algae. In terrestrial systems,
resource allocation and carbon nutrient balance theories pre-
dict that nutrient-rich environments will yield plants with
decreased physical defences, such as sclerophylly or leaf
hardening, although a meta-analysis of 50 studies did not find
conclusive results (Endara & Coley 2011). Previous studies of
physical toughness as a defence in non-calcifying macroalgae
have usually focused on herbivory by amphipods and found
differences based on algal species (e.g. Duffy & Hay 1991)
and tissue type (e.g. Taylor, Sotka & Hay 2002), but have
not been linked to nutrient regimes. Rather, nutrients have
been found to increase the palatability of T. turbinata, a Carib-
bean congener (Chan et al. 2012). However, it is unknown
whether this has any relation to a change in defences, though
when physical defences were removed, we found enriched
T. ornata became more palatable as well. It is likely that
increased toughness has additional population-level effects
other than deterrence of herbivores, such as increased breaking
strength that may reduce dispersal via thalli detachment and
rafting. Clearly, more research is needed to explore the full
implications of this finding. However, our results demonstrated
T. ornata’s distribution and abundance may be controlled, at
least in part, by a unique interaction between top-down and
bottom-up processes that facilitate T. ornata populations by
increasing physical defences in contrast to the potential
decreases in calcifying algae and in terrestrial systems.
Turbinaria ornata does not have an opportunistic life-his-

tory strategy like other algae that typically dominate in
response to nutrient enrichment in marine and estuarine
ecosystems in general (for a review, see Fong 2008) and coral
reefs in particular (e.g. Folke et al. 2004). Rather, our results
support T. ornata’s designation as a species with a ‘persistor’
life-history strategy (Littler & Littler 1980), as it did not
respond directly to nutrient input by increasing growth. In
comparison, some species of opportunistic macroalgae can
increase growth by 20% or more in just 3 days when sub-
jected to nutrient enrichment (Fong et al. 2003). Overall,
T. ornata grows relatively slowly, like many other foundation
species (e.g. Ellison et al. 2005). In contrast to our results,
where nutrients facilitated a secondary foundational species,
in systems dominated by slower growing foundation species,
nutrient enrichment often causes replacement by rapidly
growing opportunists. In seagrass beds, for example, nutrient
run-off causes increased micro- and macroalgal growth and
subsequent seagrass loss (Orth et al. 2006). Similarly, higher
nutrients on coral reefs can cause phytoplankton blooms or

corals can be overgrown by opportunistic macroalgae
(Hughes et al. 2010; Fong & Paul 2011). However, there are
several terrestrial examples where slow growing, long-lived
foundation species such as hardwood forest trees (Rohr,
Mahan & Kim 2009), grassland shrubs (Briggs et al. 2005)
and mangroves (Saintilan et al. 2014) are the replacement
species. Our study adds a novel aquatic example to these ter-
restrial cases and replacement by a persistent secondary foun-
dation species may be of greater concern than by more
temporary, ephemeral algal species.
Although the global decline of foundation species is well

documented (Ellison et al. 2005), much work is still needed
to understand the potentially complex drivers of change. In
many systems, a suite of human impacts has changed the
range and habitat boundaries of foundation species by releas-
ing them from limiting ecological forces (Briggs et al. 2005;
Rohr, Mahan & Kim 2009; Veldman & Putz 2011; Saintilan
et al. 2014). In some cases, expansions into new geographic
regions and local habitats have occurred at the expense of an
original foundation species. While it is unknown whether
T. ornata directly replaces other foundation species in the
system (such as corals), as with mangroves and saltmarsh
plants, recruits of both occupy the same substrate. Further, as
a secondary foundation species dependent on the hard sub-
strate afforded by calcium carbonate deposition by corals, we
expect a shift from a coral to T. ornata dominated reef to
result in an overall decline in reef resilience. Further, a recent
study suggested that T. ornata recruits may negatively affect
coral recruits (Brandl, Hoey & Bellwood 2014). As human
impacts are becoming more pervasive, it is essential not only
to understand the numerous systems in which foundation spe-
cies are degraded but also to evaluate drivers in cases where
secondary foundation species are expanding at the expense of
the original foundation community.
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