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NEWTONIAN FRACTIONAL-DIMENSION GRAVITY AND DISK GALAXIES

Gabriele U. Varieschi∗

Loyola Marymount University, Los Angeles, CA 90045, USA
(Dated: October 2, 2020)

This paper continues previous work on a possible alternative model of gravity, based on the theory
of fractional-dimension spaces applied to Newton’s law of gravitation. In particular, our Newtonian
Fractional-Dimension Gravity (NFDG) is now applied to axially-symmetric stellar structures, such
as thin/thick disk galaxies described by exponential, Kuzmin, or other similar mass distributions.

As in the case of spherically-symmetric structures, which was studied in previous work on the sub-
ject, we examine a possible connection between NFDG and Modified Newtonian Dynamics (MOND),
a leading alternative gravity model, which accounts for the observed properties of galaxies and other
astrophysical structures without requiring the dark matter (DM) hypothesis.

By relating the MOND acceleration constant a0 ' 1.2×10−10m s−2 to a natural scale length l0 in
NFDG, namely a0 ≈ GM/l20 for a galaxy of mass M , and by using the empirical Radial Acceleration
Relation (RAR), we are able to explain the connection between the observed radial acceleration gobs
and the baryonic radial acceleration gbar in terms of a variable local dimension D. As an example
of this methodology, we provide a detailed rotation curve fitting for the case of the field dwarf spiral
galaxy NGC 6503.
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I. INTRODUCTION

This paper continues the discussion introduced in a previous publication ([1], paper I in the following) of a pos-
sible Newtonian Fractional-Dimension Gravity (NFDG), an extension of the standard laws of Newtonian gravity to
lower dimensional spaces, including those with fractional (i.e., non-integer) dimension (see also Ref. [2] for a gen-
eral introduction to NFDG). This model is broadly based on the methods of fractional mechanics and fractional
electromagnetism (see [3–5], and references therein) and on the general framework of fractional calculus (FC) [6–10].1

Fractional calculus is also usually related to fractal geometries, which might play a role at galactic or cosmological
scales in the universe [11–13]. In paper I, we developed the bases of this generalized NFDG, with focus on spherically-
symmetric stellar structures. In this work, we extend our analysis to axially-symmetric stellar structures, and in
particular to the case of thin/thick disk galaxies.

A possible connection of NFDG with Modified Newtonian Dynamics (MOND) ([14–16] and [17–20] for MOND
reviews) was also shown in our paper I. The strong empirical correlation between the radial gravitational acceleration
traced by galactic rotation curves and that predicted by using the observed distribution of baryons (Radial Acceleration
Relation - RAR [21, 22]) was explained in terms of a variable dimension D in galactic structures [1], thus connecting
MOND with NFDG.

In Sect. II, we review the basic ideas of NFDG from paper I, and the connections with MOND and the RAR. In
Sect. III, we extend NFDG to axially-symmetric cases, by considering models for thin/thick disk galactic structures.
In Sect. IV, we apply these methods to simple mass distributions, such as exponential and Kuzmin disks, and also
briefly revisit the case of spherical structures. In Sect. V, we examine the particular case of the field dwarf spiral
galaxy NGC 6503, as an example of our methods. Finally, in Sect. VI conclusions are drawn and possible future work
on the subject is outlined.

II. REVIEW OF NFDG AND ITS CONNECTIONS WITH MOND

Newtonian Fractional-Dimension Gravity [1] was introduced heuristically by considering extensions of Gauss’s
law for gravitation to a lower-dimensional space-time D + 1, where D can be a non-integer space dimension. The
gravitational field of a point-like mass was determined as:

|g| = 2π1−D/2Γ(D/2)
Gm̃(D)

l20

1

(r/l0)D−1
, (1)

where the scale length l0 is needed to ensure dimensional correctness of the expression for D 6= 3 and m̃(D) represents
a D-dimensional point mass (see paper I for details).

Since D can assume non-integer values, it is convenient to use dimensionless coordinates in all formulas, starting
with the radial distance wr ≡ r/l0 or, in general, introducing dimensionless coordinates w ≡ x/l0 for the field point
and w′ ≡ x′/l0 for the source point. We also introduce a rescaled mass “density” ρ̃ (w′) = ρ (w′l0) l30 = ρ (x′) l30,
where ρ(x′) is the standard mass density in kg m−3, so that dm̃(D) = ρ̃ (w′) dDw′ represents the infinitesimal source
mass and Eq. (1) can be generalized to a mass distribution over the D-dimensional source volume VD as follows:

g(w) = −2π1−D/2Γ(D/2)G

l20

∫
VD

ρ̃(w′)
w −w′

|w −w′ |D
dDw′. (2)

As in standard Newtonian gravity, a gravitational potential φ (w) was introduced as:

φ(w) = −2π1−D/2Γ(D/2)G

(D − 2) l20

∫
VD

ρ̃(w′)

|w −w′ |D−2
dDw′; D 6= 2 (3)

φ (w) =
2G

l20

∫
V2

ρ̃ (w′) ln |w −w′ |d2w′; D = 2

1 As already mentioned in our paper I, we note that our NFDG is not a “fractional” theory in the sense used by other models in the
literature [11]. The “fractional” equations for the gravitational potential and field which will be introduced in Sect. II are based on
operators constructed with ordinary derivatives, not fractional ones. Thus, our model has a fractal structure, due to the non-integer
dimension of the metric space, and would be better described as “Newtonian gravity in fractional dimensional spaces.” However, we
prefer to call it NFDG for simplicity’s sake, as it was done in paper I.
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with φ(w) and g(w) connected by g(w) = −∇Dφ(w), where the D-dimensional gradient ∇D is considered equivalent
to the standard one. It is easy to check that all the expressions in Eqs. (1)-(3) above, correctly reduce to the standard
Newtonian ones for D = 3.2

The gravitational potential in Eq. (3) was also suggested by the solutions to the D-dimensional Laplace equation in
spherical coordinates and the related multipole expansion [1]. All these expressions were derived for a fixed value of
the (fractional) dimension D, but we argued that they are approximately valid also in the case of a variable dimension
D (w), assuming a slow change of the dimension D with the field point coordinates.

The scale length l0 is needed to connect our expressions in Eq. (2), or Eq. (3), with the physical reality. In paper
I, we argued that this scale length might be related to the MOND acceleration constant a0, whose currently estimated
value is also denoted by g† [21, 22]:

a0 ≡ g† = 1.20± 0.02 (random)± 0.24 (syst)× 10−10 m s−2, (4)

and which represents the acceleration scale below which MOND corrections are applied.
MOND [14–16] modifies Newtonian dynamics in two possible ways [23]:

mµ(a/a0)a = F (5)

µ(g/a0)g = gN ,

where the former indicates modified inertia (MI), since the mass m is replaced by mµ (a/a0), while the latter indicates
modified gravity (MG), since the observed gravitational field g can differ from the Newtonian one, gN . The two
formulations are practically equivalent, but conceptually different: the former modifies Newton’s laws of motion,
while the latter modifies Newton’s law of universal gravitation.

There is now limited evidence [24, 25] that MG might be favored over MI, according to preliminary studies of
galactic rotation curves which might be able to differentiate between the two models. In view of Eqs. (2)-(3) above,
our NFDG should also be considered a modification of the law of gravity, since we assume that a test object, subject
to the fractional gravitational field described by Eq. (2), will still move in a (classical) 3 + 1 space-time, thus obeying
standard laws of dynamics.

However, in both MI and MG interpretations the modifications of the Newtonian laws follow from the interpolation
function µ(x) ≡ µ(a/a0) or µ(x) ≡ µ(g/a0), respectively. MOND assumes that:

µ (x) ≈
{

1 for x� 1 (Newtonian regime)
x for x� 1 (Deep-MOND limit)

}
(6)

and it has become customary [26] to substitute the interpolation function µ (x) with its inverse function ν (y), i.e.:
g = µ−1(x)gN ≡ ν(y)gN with y = gN/a0.

As it was done in paper I, we will consider two main families of ν(y) functions [26]:

νn(y) =

(
1

2
+

1

2

√
1 + 4y−n

)1/n

(7)

ν̂n(y) =
[
1− exp

(
−yn/2

)]−1/n

,

where the particular choice ν̂1(y) =
[
1− exp

(
−y1/2

)]−1
has recently become the favorite interpolation function

[21, 22]. This function is equivalent to the so-called Radial Acceleration Relation - RAR:

gobs =
gbar

1− e−
√
gbar/g†

, (8)

where g† is an empirical parameter corresponding to the MOND acceleration scale a0, as already reported in Eq. (4)
above, and we also identify y = gN/a0 ≡ gbar/g† , ν̂1 = g/gN ≡ gobs/gbar.

2 Since ∇D is defined in terms of dimensionless coordinates, the physical dimensions for the gravitational potential φ in Eq. (3) are
the same as those for the gravitational field g, i.e., both quantities will be measured in m s−2. Therefore, the Newtonian potential is
obtained as φNewt = l0φD=3 (w), from the NFDG potential in the first line of Eq. (3) for fixed D = 3.
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Currently, the RAR represents the best empirical fit [21, 22] relating the radial acceleration gobs traced by rotation
curves with the radial acceleration gbar predicted by the observed distribution of baryonic matter in galaxies and was
obtained by using data points from a sample of 175 galaxies in the Spitzer Photometry and Accurate Rotation Curves
(SPARC) database [27].

This empirical relation was confirmed in more recent work [22], by adding early-type-galaxies (elliptical and lentic-
ular) and dwarf spheroidal galaxies to the SPARC database, and also [28] by checking individually the 175 galaxies
in the original SPARC catalogue against the RAR, allowing for galaxy-to-galaxy variations of the acceleration scale
g†. The result of this analysis still favors a single value of g†, consistent with the action of a single effective force law.

Heuristically, in paper I we proposed a possible connection between the scale length l0 and the MOND acceleration
a0 as:

l0 ≈ C
√
GM

a0
, (9)

where C > 0 is a constant and M is the total mass (or a reference mass) of the system being studied.
Assuming, for simplicity’s sake, C = 1; therefore,

a0 ≈
GM

l20
, (10)

we were able to show in paper I that the main consequences of the MOND theory could be recovered from Eq. (1)
by considering the Deep-MOND Limit (DML) equivalent to reducing the space dimension to D ≈ 2. In particular,
the asymptotic or flat rotation velocity Vf ≈ 4

√
GMa0 shown by galactic rotation curves, the “baryonic” Tully-Fisher

relation-BTFR: Mbar ∼ V 4
f , and other fundamental MOND predictions were recovered with our NFDG for the case

D ≈ 2 [1].3

It should be noted that our NFDG, as well as other similar models recently introduced ([29, 30], see also related
discussion in paper I), is not a fractional or a fractal version of MOND, but rather a MOND-like model reproducing
the asymptotic behavior of MOND. In fact, MOND is a fully non-linear theory, while NFDG is inherently linear,
in view of its fundamental equations presented in this section. However, in this work as well as in paper I, we also
attempt to describe the transition between the two asymptotic regimes of MOND by assuming a continuous (slow)
change in the variable dimension of the associated metric space.

To conclude this review of the main findings of our paper I, for spherically-symmetric mass distributions ρ̃ (w′r) we
were able to prove that the gravitational field g(wr), in a fractal space of dimension D(wr), depending on the radial
distance wr = r/l0 from the center of the coordinate system, can be computed as:

gobs(wr) = − 4πG

l20w
D(wr)−1
r

∫ wr

0

ρ̃ (w′r)w
′D(wr)−1

r dw′rŵr, (11)

for 1 ≤ D ≤ 3. In the previous equation, we also denoted the gravitational field as the “observed” one, gobs, as
opposed to the “baryonic” gbar:

gbar(wr) = − 4πG

l20w
2
r

∫ wr

0

ρ̃ (w′r)w
′2
r dw

′
rŵr, (12)

for fixed dimension D = 3. Therefore, we identified the observed and baryonic accelerations gobs and gbar [21] with
those obtained in NFDG for variable dimension D (wr) and for fixed dimension D = 3, respectively.

With these NFDG assumptions, and for spherically symmetric structures, the ratio (gobs/gbar)NFDG was simply
obtained from Eqs. (11) and (12):

(
gobs
gbar

)
NFDG

(wr) = w3−D(wr)
r

∫ wr

0

ρ̃ (w′r)w
′D(wr)−1

r dw′r∫ wr

0

ρ̃ (w′r) w
′2
r dw

′
r

, (13)

3 Actually, MOND predictions were recovered for any positive value for the constant C in equation (9), showing that M can be considered
as an arbitrary reference mass of the galactic structure being studied in our model.



5

where the dimension function D(wr) was computed in paper I by comparing the expression in Eq. (13) with the
MOND-RAR equivalent expression from Eq. (8),

(
gobs
gbar

)
MOND

(wr) = 1

1−e
−
√
gbar(wr)/g†

, or with similar expressions

obtained by using the other interpolation functions in Eq. (7).
In fact, this procedure was successful for several different forms of the spherically-symmetric mass distributions

analyzed in paper I. For each case, the computed dimension functions D(wr) assumed values D ≈ 3 in regions where
Newtonian gravity was known to hold. The dimension was decreasing continuously toward D ≈ 2 in regions where
the Deep-MOND limit applied, following our general discussion of NFDG outlined above. In the next sections, we will
show how a similar analysis can be performed for axially-symmetric mass distributions, in particular for thin/thick
disk galactic structures.

III. NFDG AND AXIALLY-SYMMETRIC MASS DISTRIBUTIONS

Adapting NFDG to axially-symmetric mass distributions presents some mathematical challenges. Rather than
computing directly the gravitational field using Eq. (2), as it was done for the spherically-symmetric case [1], we
prefer to calculate the gravitational potential using Eq. (3) and then apply the fractional gradient ∇D, which is
equivalent to the standard one.

Before we follow this procedure, we recall that, in the standard D = 3 case, different methods [31] are used to
evaluate axisymmetric potentials and fields. One of the most popular options in alternative theories of gravity, such
as in Mannheim’s Conformal Gravity [32], is to make use of the cylindrical coordinate Green’s function expansion in
terms of Bessel functions of the first kind Jν ([33], problem 3.16):

1

|r− r′|
=

∞∑
m=−∞

∫ ∞
0

dkJm (kR) Jm (kR′) eim(ϕ−ϕ′)−k|z−z′|, (14)

and follow an approach originally developed by Casertano [34].
In the case of a thin-disk mass distribution with axial symmetry (using standard cylindrical coordinates R, ϕ, z)

and for exponential disks of total mass M and scale length Rd, i.e.,

ρ (R′, z′) = Σ (R′) δ (z′) (15)

Σ (R′) = Σ0e
−R′/Rd =

M

2πR2
d

e−R
′/Rd ,

the gravitational potential φ and the field g can be computed analytically in the z = 0 plane as [32]:

φ (R) = −GMR

2R2
d

[
I0

(
R

2Rd

)
K1

(
R

2Rd

)
− I1

(
R

2Rd

)
K0

(
R

2Rd

)]
(16)

g (R) = −GMR

2R3
d

[
I0

(
R

2Rd

)
K0

(
R

2Rd

)
− I1

(
R

2Rd

)
K1

(
R

2Rd

)]
r̂

where Iν and Kν are modified Bessel functions.
In particular, the second line of Eq. (16) can be also rewritten using our dimensionless cylindrical radial coordinate

wR = R/l0 and the rescaled disk length Wd = Rd/l0 as:

gbar (wR) = −GMwR
2l20W

3
d

[
I0

(
wR
2Wd

)
K0

(
wR
2Wd

)
− I1

(
wR
2Wd

)
K1

(
wR
2Wd

)]
ŵR. (17)

This equation represents the equivalent of the previous Eq. (12) for spherical symmetry, in the case of the baryonic
gravitational field (in the z = 0 plane) of an exponential thin disk and will be used later as the equation for the
standard D = 3 case.

The Green’s function expansion in Eq. (14) can also be used in the case of linear and quadratic potentials,
typical of fourth-order conformal gravity [32], but cannot be used in the case of a more general NFDG potential

φ ∼ 1/ |w −w′|D−2
, such as the one in the first line of Eq. (3). As an alternative option, we consider the simplest

expansion we found in the mathematical literature [35] for these potentials in spherical coordinates:
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1

|r− r′|D−2
=

∞∑
l=0

rl<
rl+D−2
>

C
(D2 −1)
l (cos γ) , (18)

where r< (r>) is the smaller (larger) of r and r′, γ is the angle between the unit vectors r̂ and r̂′, and C
(λ)
l (x) denotes

Gegenbauer polynomials (see paper I or Ref. [36] for general properties of these special functions).4

The expansion in Eq. (18) can be adapted immediately to the case of cylindrical coordinates (R, ϕ, z). In the case
of thin disks, in the z = z′ = 0 plane and in the ϕ = 0 direction, the angle γ is replaced by ϕ′ and the radial spherical
coordinate r with the cylindrical R:

1

|r− r′|D−2
=

∞∑
l=0

Rl<
Rl+D−2
>

C
(D2 −1)
l (cosϕ′) , (19)

while for thick disks, with z′ 6= 0 (but still in the z = 0 plane and ϕ = 0 direction) we can use the following coordinate
transformations:

r = R (20)

r′ =
√
R′2 + z′2

cos γ =
R′ cosϕ′√
R′2 + z′2

,

and modify the original expansion (18) accordingly. All these expansions can be easily written also in terms of rescaled

cylindrical coordinates (defined below) and thus used as expansions of the NFDG kernel 1/ |w −w′|D−2
.

Going back to the evaluation of the potential, in order to perform the integral in the first line of Eq. (3) we recall
the techniques outlined in paper I for multi-variable integration over a fractal metric space W ⊂ R3 [3, 4, 40, 41]. Let’s
assume thatW = W1×W2×W3, where each metric setWi (i = 1, 2, 3) has Hausdorff measure µi(Wi) and dimension αi.
The Hausdorff measure for the product set W can be defined as µH(W ) = (µ1×µ2×µ3)(W ) = µ1(W1)µ2(W2)µ3(W3)
and the overall fractal dimension is D = α1 + α2 + α3. Applying Fubini’s theorem we have:∫

W

f(x1, x2, x3)dµH =

∫
W1

∫
W2

∫
W3

f(x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3), (21)

dµi(xi) =
παi/2

Γ(αi/2)
|xi|αi−1

dxi, i = 1, 2, 3.

In standard cylindrical coordinates (R,ϕ, z), with x = R cosϕ, y = R sinϕ, and using the definitions for the differen-

tials in the second line of the previous equation, we have: dµ1dµ2dµ3 = παR/2

Γ(αR/2)
παϕ/2

Γ(αϕ/2)
παz/2

Γ(αz/2)R
αR+αϕ−1dR| sinϕ|αϕ−1

| cosϕ|αR−1
dϕ|z|αz−1dz. Using dimensionless cylindrical coordinates (w′R, ϕ′, w′z), with w′R = R′/l0 and w′z = z′/l0,

the volume integral of a function f (w′R, ϕ
′, w′z) is then computed as:

∫
W

fdµH =
π(αR+αϕ+αz)/2

Γ (αR/2) Γ (αϕ/2) Γ (αz/2)

∫
w′

αR+αϕ−1

R dw′R

∫
|sinϕ′|αϕ−1 |cosϕ′|αR−1

dϕ′
∫
f(w′R, ϕ

′, w′z) |w′z|
αz−1

dw′z,

(22)
where 0 < αi ≤ 1 for each dimension of the coordinate sub-spaces, and with the total dimension D = αR + αϕ + αz.

For thin-disk structures, the NFDG potential is computed by combining together Eqs. (3), (19) (with rescaled
coordinates), (22), and the rescaled version of Eq. (15), i.e.:

ρ̃ (w′R, w
′
z) = Σ̃ (w′R) δ (w′z) (23)

Σ̃ (w′R) = Σ̃0e
−w′R/Wd =

M

2πW 2
d

e−w
′
R/Wd .

4 For other possible expansions of the NFDG potential φ ∼ 1/ |w −w′|D−2 see also [37–39]. In particular, Ref. [38] illustrates additional
expansions of the Euler kernel (z − x)−ν , in terms of Jacobi, Gegenbauer, and Chebyshev polynomials. However, these alternative
expressions have proven difficult to be used in the current work. Therefore, we opted to base our analysis on the expansion in Eq. (18).
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When performing the w′z integration in Eq. (22), by using the Dirac delta function in Eq. (23), we note that a
finite result is obtained only for αz = 1, i.e., no fractional dimension is needed in the z′ direction. There is instead
some arbitrariness in the choice of the relation between αR and αϕ and the overall space dimension D. We will simply

assume αR = αϕ = α = D−1
2 , so that the radial and angular coordinates will have the same (variable) fractional

dimension.5 In this case we also have: D = 2α+ 1 ≤ 3, and the results will depend only on the overall dimension D
of the space.

With these assumptions, we then obtain the potential in the wz = 0 plane as:

φ (wR) = − 2
√
πΓ (D/2)G

(D − 2)
[
Γ
(
D−1

4

)]2
l20

∞∑
l=0

∫ ∞
0

Σ̃ (w′R)
wlR<

wl+D−2
R>

w′D−2
R dw′R

∫ 2π

0

|sinϕ′|
D−3

2 |cosϕ′|
D−3

2 C
(D2 −1)
l (cosϕ′) dϕ′

(24)

= − Γ (D/2)GM
√
π (D − 2)

[
Γ
(
D−1

4

)]4
l20W

2
d

∞∑
l=0

cl,D

(∫ wR

0

e−w
′
R/Wd

w′lR
wl+D−2
R

w′D−2
R dw′R +

∫ ∞
wR

e−w
′
R/Wd

wlR
w′ l+D−2
R

w′D−2
R dw′R

)

= − Γ (D/2)GM
√
π (D − 2)

[
Γ
(
D−1

4

)]2
l20W

2
d

∞∑
l=0

cl,D

{
wR

(
Wd

wR

)D+l−1 [
Γ (D + l − 1)− Γ

(
D + l − 1,

wR
Wd

)]
+ wREl

(
wR
Wd

)}
.

In the previous equation, Γ (a, z) =
∫∞
z
ta−1e−tdt is the incomplete gamma function, El (z) =

∫∞
1
e−ztt−ldt is the

exponential integral function of order l, and we have denoted with constants cl,D the results of the angular integrations
for D > 1, i.e.:

cl,D =

∫ 2π

0

|sinϕ′|
D−3

2 |cosϕ′|
D−3

2 C
(D2 −1)
l (cosϕ′) dϕ′ (25)

c0,D = −
2

5−D
2 π3/2 sec

[π(1+D)
4

]
Γ
(

5−D
4

)
Γ
(

1+D
4

) ; c2,D =
2

1−D
2 π1/2 (D − 2)

2
Γ
(
D−1

4

)
Γ
(

1+D
4

) ; ...

c1,D = c3,D = ... = 0

where these constants are identically zero for odd values of l, while they can be computed analytically for all even
values of l.

The observed radial acceleration gobs, in the wz = 0 plane, can be obtained directly from Eq. (24):

gobs (wR) = − dφ

dwR
ŵR =

Γ (D/2)GM
√
π (D − 2)

[
Γ
(
D−1

4

)]2
l20W

3
d

∞∑
l=0,2,4,...

cl,D

{
− wREl−1

(
wR
Wd

)
+WdEl

(
wR
Wd

)
+

(
Wd

wR

)D+l

e−wR/Wd

(26)

×

[
Wd

(
wR
Wd

)D+l

− (D + l − 2)wRe
−wR/Wd

(
Γ (D + l − 1)− Γ

(
D + l − 1,

wR
Wd

))]}
ŵR

where only the terms for even values of l need to be summed, while the terms for odd values of l are identically zero,
in view of Eq. (25). We will use Eq. (26) for gobs, as well as Eq. (17) for gbar, in Sect. IV A for the analysis of
exponential thin-disk galaxies.

Another standard mass density distribution for thin-disk structures is the Kuzmin model, whose gravitational
potential and surface mass density are, respectively [31]:

φK (R, z) = − GM√
R2 + (Rd + |z|)2

(27)

ΣK (R′) = Σ0

(
1 +

R′2

R2
d

)−3/2

=
M

2πR2
d

(
1 +

R′2

R2
d

)−3/2

,

5 We have also considered other possible choices for the αR, αz values, such as having fractional dimension only in the radial direction
(αR = D − 2, αϕ = 1), or only in the angular direction (αR = 1, αϕ = D − 2), for the thin-disk case (αz = 1). The results do not

differ much from those obtained with our preferred choice (αR = αϕ = D−1
2

), so we will not report them in this work. Also, results
obtained with our preferred choice are somewhat in between those obtained with the other two extreme choices; thus, our choice for the
αi parameters can be considered a good average between all possible alternatives.
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where the disk scale length is still denoted by Rd > 0. Using rescaled coordinates, wR = R/l0 and Wd = Rd/l0,
we can rewrite the surface mass density and also obtain the gravitational field in the z = 0 plane, directly from the
potential in the first line of Eq. (27):

Σ̃K (w′R) = Σ̃0

(
1 +

w′2R
W 2
d

)−3/2

=
M

2πW 2
d

(
1 +

w′2R
W 2
d

)−3/2

(28)

gbar (wR) = − GM
l20w

2
R

(
1 +

W 2
d

w2
R

)−3/2

ŵR.

The radial acceleration gobs can be obtained with a procedure similar to the one outlined in Eqs. (18)-(26) for the
exponential disk. In particular, we obtain the potential in the wz = 0 plane as:

φ (wR) = − 2
√
πΓ (D/2)G

(D − 2)
[
Γ
(
D−1

4

)]2
l20

∞∑
l=0

∫ ∞
0

Σ̃K (w′R)
wlR<

wl+D−2
R>

w′D−2
R dw′R

∫ 2π

0

|sinϕ′|
D−3

2 |cosϕ′|
D−3

2 C
(D2 −1)
l (cosϕ′) dϕ′

(29)

= − Γ (D/2)GM
√
π (D − 2)

[
Γ
(
D−1

4

)]4
l20W

2
d

∞∑
l=0

cl,D

(∫ wR

0

(
1 +

w′2R
W 2
d

)−3/2
w′lR

wl+D−2
R

w′D−2
R dw′R +

∫ ∞
wR

(
1 +

w′2R
W 2
d

)−3/2
wlR

w′ l+D−2
R

w′D−2
R dw′R

)

= − Γ (D/2)GM
√
π (D − 2)

[
Γ
(
D−1

4

)]4
l20W

2
d

∞∑
l=0

cl,D

{
wR

2(D + l − 1) (w2
R +W 2

d )

[
2 (D + l)W 2

dF

(
−1

2
,

1

2
(D + l − 1) ;

1

2
(D + l + 1) ;−w

2
R

W 2
d

)
−2
(
(D + l − 2)w2

R + (D + l − 1)W 2
d

)
F

(
1

2
,

1

2
(D + l − 1) ;

1

2
(D + l + 1) ;−w

2
R

W 2
d

)]
+

W 3
d

(l + 2)w2
R (w2

R +W 2
d )

[
(l + 3)w2

RF

(
−1

2
,
l + 2

2
;
l + 4

2
;−W

2
d

w2
R

)
−
(
(l + 2)w2

R + (l + 1)W 2
d

)
F

(
1

2
,
l + 2

2
;
l + 4

2
;−W

2
d

w2
R

)]}
.

In the previous equation we used the hypergeometric function defined by the Gauss series: F (a, b; c; z) =
∞∑
s=0

(a)s(b)s
(c)ss!

zs,6 with the angular coefficients cl,D computed as in Eq. (25).

In the wz = 0 plane, the observed radial acceleration gobs can then be obtained directly from Eq. (29):

gobs (wR) = − dφ

dwR
ŵR =

Γ (D/2)GM

2
√
π (D − 2)

[
Γ
(
D−1

4

)]2
l20W

2
d (w2

R +W 2
d )

2

∞∑
l=0,2,4,...

cl,D

{√
1 +

W 2
d

w2
R

(
−4

W 5
d

wR
− 2W 3

dwR

)
(30)

+

√
1 +

w2
R

W 2
d

(
2W 4

d + 4W 2
dw

2
R

)
+

2(l + 3)W 3
d

(l + 2)wR

[
(l + 2)W 2

d + lw2
R

]
F

(
−1

2
,
l + 2

2
;
l + 4

2
;−W

2
d

w2
R

)
−2(D + l)W 2

d

(D + l − 1)

[
(D + l − 2)W 2

d + (D + l)w2
R

]
F

(
−1

2
,
D + l − 1

2
;
D + l + 1

2
;−w

2
R

W 2
d

)
− 2W 3

d

(l + 2)w3
R

[
(l + 1)W 2

d + lw2
R

] [
lW 2

d + (l + 2)w2
R

]
F

(
1

2
,
l + 2

2
;
l + 4

2
;−W

2
d

w2
R

)
+

2

(D + l − 1)
[(D + l − 2) (D + l − 1)W 4

d +
(
8 +D (2D − 7) + l (4D − 7) + 2l2

)
W 2
dw

2
R

+ (D + l − 2)
2
w4
R

]
F

(
1

2
,
D + l − 1

2
;
D + l + 1

2
;−w

2
R

W 2
d

)}
,

6 The Pochhammer’s symbol (a)l is defined as (a)0 = 1, (a)l = a (a+ 1) (a+ 2) ... (a+ l − 1) = Γ (a+ l) /Γ (a).
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where, again, only the terms for even values of l need to be summed (terms for odd values of l are identically zero, in
view of Eq. (25)). We will use Eq. (30) for gobs, as well as Eq. (28) for gbar, in Sect. IV B for the analysis of Kuzmin
thin-disk models.

For thick-disk galaxies, it is customary [31, 32] to introduce a (rescaled) mass density:

ρ̃ (w′R, w
′
z) = Σ̃ (w′R) ζ̃ (w′z) , (31)

where Σ̃ can be the exponential function in Eq. (23), the Kuzmin function in Eq. (28), or others. The “vertical”

density function ζ̃(w′z) is usually chosen as one of the following [32, 42]:

ζ̃1 (w′z) =
1

2Hz
e−w

′
z/Hz (32)

ζ̃2 (w′z) =
1

4Hz
[sech (w′z/2Hz)]

2

ζ̃3 (w′z) =
1√

2πHz

sech
(
w′z/
√

2Hz

)
,

where we used rescaled versions of these structure functions [42], with the rescaled parameter Hz = hz/l0 connected
with the original vertical scale height hz.

All these functions are symmetric, i.e., ζ̃ (−w′z) = ζ̃ (w′z) and normalized (
∫∞
−∞ ζ̃ (w′z) dw

′
z = 1), thus recover-

ing the thin-disk δ (w′z) in Eq. (23) for Hz → 0. We will also adopt the standard relation [27, 42], (hz/ kpc) =

0.196 (Rd/ kpc)
0.633

, between the vertical scale height hz and the radial scale length Rd in Eq. (15), properly rescaled
by using our dimensionless variables.

Therefore, for thick-disk structures we obtain the potential φ (wR) in the wz = 0 plane by following similar steps

used for the thin-disk case above. For simplicity, we will just choose the exponential vertical function ζ̃1 in Eq. (32),

together with the exponential radial mass density Σ̃ from Eq. (23), and the connection between their respective scale
lengths described in the previous paragraph. We will enter these functions into the general integral for φ in Eqs. (3)
and (22), using the expansion for the Euler kernel in Eq. (18) supplemented with the coordinate transformations in
Eq. (20).

We will also keep the same choice, for the αR, αϕ, αz parameters, which was used in the thin-disk case: αR =

αϕ = D−1
2 and αz = 1, with D = D (wR) . The choice for αR and αϕ follows the idea of sharing equally the fractional

dimension in both radial and angular directions. The choice of simply assuming αz = 1 is due to the fact that in our
model the dimension is a function of the field point. Since our observations are done in the z = 0 plane, the value
of αz (z = 0) = 1 follows by assuming Newtonian behaviour at z = 0 (or simply by continuity with respect to the
thin-disk case, where we also assumed αz = 1).

In this way, the gravitational potential φ (wR), for 1 < D ≤ 3, can be determined through a triple numerical
integration of the different terms in the general series obtained from the kernel expansion. The observed radial
acceleration gobs, in the wz = 0 plane, can then be obtained by a simple radial derivative of the potential. Since for
the thick-disk case we use the Euler kernel in Eq. (18) together with the coordinate transformations in Eq. (20), the
angular integrals cannot be separated from the radial and vertical integrals and the computation has to be carried
out entirely in a numerical way.7

The resulting radial acceleration gobs can be compared with the standard baryonic gbar, obtained with the same
procedure, but with a fixed D = 3 value, or with equivalent methods for thick-disks in the literature [32]. In Sect.
IV C, we will show results of these computations using the techniques outlined above.

Finally, we want to remark that the general procedure outlined in this section can also be adapted to spherically
symmetric structures, such as galactic spherical bulges, globular clusters, or others. In fact, the NFDG potential
expansion in Eq. (18) is better suited to spherical coordinates, rather than cylindrical. Aligning the field vector r
in the direction of the z′ axis and using standard spherical coordinates (r′, θ′, ϕ′) for the source vector r′, we can
immediately use expansion (18) with the angle γ replaced by θ′.

In order to compute the gravitational potental φ (wr) for a spherically symmetric mass distribution (wr = r/l0),
described by a mass density ρ̃ (w′r), we can still use our main Eq. (3), but the volume integration must be performed

7 All the numerical computations (and some of the analytical ones) in this work, were performed with Mathematica, Version 12.1.1.0,
Wolfram Research Inc.
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in spherical coordinates. As described in our paper I, using dimensionless spherical coordinates (w′r, θ
′, ϕ′) with

w′r = r′/l0, the volume integral of a function f (w′r, θ
′, ϕ′) can be computed as:

∫
W

fdµH =
π(αr+αθ+αϕ)/2

Γ (αr/2) Γ (αθ/2) Γ (αϕ/2)

∫
w′ αr+αθ+αϕ−1
r dw′r (33)

×
∫
|sin θ′|αr+αθ−1 |cos θ′|αϕ−1

dθ′
∫
f(w′r, θ

′, ϕ′) |sinϕ′|αθ−1 |cosϕ′|αr−1
dϕ′,

where 0 < αi ≤ 1 for each dimension of the coordinate sub-spaces, and with the total dimension D = αr + αθ + αϕ.
Combining Eqs. (3), (33) with f (w′r, θ

′, ϕ′) = ρ̃ (w′r), and expansion (18) with the angle γ replaced by θ′, the
volume integral is completely separable with the following angular integrals:

cl,αr,αθ,αϕ =

∫ π

0

|sin θ′|αr+αθ−1 |cos θ′|αϕ−1
C

(D2 −1)
l (cos θ′) dθ′ (34)

c0,αr,αθ,αϕ =
π csc

(παϕ
2

)
Γ
(
αr+αθ

2

)
Γ
(
1− αϕ

2

)
Γ
(
D
2

) ; c2,αr,αθ,αϕ =
π (αϕ − 1) csc

(παϕ
2

)
Γ
(
αr+αθ

2

)
Γ
(
1− αϕ

2

)
Γ
(
D
2 − 1

) ; ...∫ 2π

0

|sinϕ′|αθ−1 |cosϕ′|αr−1
dϕ′ =

2π csc
(
παr

2

)
Γ
(
αθ
2

)
Γ
(
1− αr

2

)
Γ
(
αr+αθ

2

) ,
where we have denoted the results of the angular integrals in the first line of the last equation with constants cl,αr,αθ,αϕ .
These θ′ integrals can be computed analytically for all values of l = 0, 1, 2, ... They are all identically zero for odd
values of l, as was the case of the similar constants in Eq. (25).

As in the previous cases, we will assume that the fractional dimension applies to all coordinates equally, i.e.,
αr = αθ = αϕ = D/3, so that the angular integrals in Eq. (34) simplify as:

cl,D =

∫ π

0

|sin θ′|
2D
3 −1 |cos θ′|

D
3 −1

C
(D2 −1)
l (cos θ′) dθ′ (35)

c0,D =
π csc

(
πD
6

)
Γ
(
D
3

)
Γ
(
1− D

6

)
Γ
(
D
2

) ; c2,D =
π
(
D
3 − 1

)
csc
(
πD
6

)
Γ
(
D
3

)
Γ
(
1− D

6

)
Γ
(
D
2 − 1

) ; ...∫ 2π

0

|sinϕ′|
D
3 −1 |cosϕ′|

D
3 −1

dϕ′ =
2π csc

(
πD
6

)
Γ
(
D
6

)
Γ
(
1− D

6

)
Γ
(
D
3

) .
Using the previous equations and after further simplifications, the general potential for spherically symmetric mass

distributions can be written as:

φ (wr) = −
2πΓ

(
D
2 − 1

)
G

Γ
(
D
3

)
Γ
(
D
6

)
l20

∞∑
l=0,2,4,...

cl,D

∫ ∞
0

ρ̃ (w′r)
wlr<

wl+D−2
r>

w′D−1
r dw′r (36)

= −
2πΓ

(
D
2 − 1

)
G

Γ
(
D
3

)
Γ
(
D
6

)
l20

∞∑
l=0,2,4,...

cl,D

(∫ wr

0

ρ̃ (w′r)
w′lr

wl+D−2
r

w′D−1
r dw′r +

∫ ∞
wr

ρ̃ (w′r)
wlr

w′ l+D−2
r

w′D−1
r dw′r

)
and the related observed radial acceleration gobs (wr) can be obtained directly by derivation of the last equation. The
standard (D = 3) radial acceleration gbar can be simply obtained from Eq. (12). In Sect. IV D we will apply this
method to a simple Plummer spherical model and compare the results with those obtained in paper I.

As a final consideration, we note that all our formulas for the gravitational potential φ and for the NFDG grav-
itational field gobs, such as those in Eqs. (24), (26), (29), (30), and (36), require summing all non-zero terms for
l = 0, 2, 4, ... (terms for odd values of l being identically zero). Practically, we found that these series of functions
converge rather quickly over the whole range of wR > 0 (or wr > 0), with just the exception of the thick-disk formulas
for very low values of wR.

All the results presented in the following sections were computed by summing the first few terms (typically the first
six non-zero terms, for l = 0, 2, 4, 6, 8, 10) of our NFDG expansions. For each case, we also tested numerically that
our NFDG expansions correctly reduce, for fixed D = 3, to the standard gbar expressions in the literature, again by
summing only the first few non-zero terms of our (D = 3) NFDG expansions. Therefore, we are confident that our
formulas are mathematically sound and can describe accurately the physical reality of galactic structures in spaces of
dimension D ≤ 3.
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IV. GALACTIC MODELS

From the analysis presented in the previous sections and in paper I, our NFDG has been introduced as a modification
of the law of gravity and not of the law of inertia and Newtonian dynamics. As in our previous work [1], we will
assume that Newtonian dynamics is not affected in any way by our fractional generalizations. A test object, subject
to a fractional gravitational field, such as those described by Eqs. (26) and (30), will still move in a (classical) 3 + 1
space-time, thus obeying standard laws of dynamics.

In the following sub-sections, we will apply NFDG to some fundamental galactic structures, particularly to axially-
symmetric cases, and connect our results with the empirical MOND predictions outlined in Sect. II.

A. Exponential thin disks

We will start with the case of a thin-disk galaxy, with an exponential surface mass density described in Eq. (23).
Following our NFDG assumptions, we define (gobs/gbar)NFDG as the ratio of the magnitude of gobs from Eq. (26)
and the magnitude of gbar from Eq. (17):(

gobs
gbar

)
NFDG

(wR) =
|gobs (wR, D (wR))|
|gbar (wR)|

, (37)

where the gravitational field from Eq. (26) is now denoted as gobs (wR, D (wR)) to signify that the dimension D in
the same equation (26) should now be considered a function of the field point radial coordinate, i.e., D = D(wR),
but not a function of the angular coordinate ϕ, due to the axial symmetry. This function needs to be determined
either from experimental data or from theoretical considerations. In this sub-section and in the following ones, we
will consider just the first option, while a possible theoretical determination of the dimension function will discussed
in Sect. V B, for the case of the NGC 6503 galaxy.

To obtain D(wR) from experimental data, without fitting any particular set of galactic data, we will follow the
same procedure used in paper I: compare the expression in Eq. (37) with the MOND equivalent expression in Eq. (8),(
gobs
gbar

)
MOND

(wR) = 1

1−e−
√
gbar(wR)/g†

, or with similar expressions obtained by using the other interpolation functions

in Eq. (7), and solve numerically the resulting equation for the dimension D at each field point wR.
If the two expressions for

(
gobs
gbar

)
are compatible, we expect to obtain D(wR) as a continuous function with values

D ≈ 3 in regions where Newtonian gravity holds. The dimension should then decrease toward D ≈ 2 in regions where
the deep-MOND limit applies, following our general discussion in Sect. II.

Figure 1 shows all the results for this particular case. The top-left panel illustrates the variable dimension D (wR)
obtained using functions ν̂1 and ν̂2 in Eq. (7). The dimension functions are uniquely defined and continuous over
the whole range: at low-wR, D ≈ 3 in the Newtonian regime,8 then the dimension decreases toward a minimum, and
eventually approaches the value D ≈ 2 in the deep-MOND regime, as expected.

The top-right panel in the figure shows the ratio
(
gobs
gbar

)
computed in two different ways:

(
gobs
gbar

)
NFDG

(wR) from

Eq. (37) with the dimension functions D (wR) obtained before, and
(
gobs
gbar

)
MOND

(wR) = ν̂1 (wR) (or ν̂2 (wR)), simply

using the two MOND functions in Eq. (7). In both cases, the NFDG plots (solid lines) match the MOND ones
(dotted lines). At low wR, within the Newtonian regime, we don’t simply have gobs

gbar
' 1, because the RAR ratio(

gobs
gbar

)
MOND

(wR) diverges for wR → 0 (as gbar → 0) and the NFDG ratio also follows this divergence for wR → 0. In

the deep-MOND high-wR range we have instead gobs
gbar
∼ wR + 1

2 , or gobs
gbar
∼ wR, for the two cases related to ν̂1 and ν̂2

respectively, as expected in the MOND model.
The results shown in these two top panels of figure 1 are independent of the total mass M of the thin-disk object,

and were obtained by using only the n = 1, 2 values for the general MOND function ν̂n in Eq. (7). Using n > 2 values
for the same function ν̂n does not yield results which are much different from the n = 2 ones.9

The bottom-left panel shows circular velocity plots corresponding to the previously analyzed cases, and compared
with the purely Newtonian case. For this panel, as well as for the bottom-right one, we have assumed a total mass

M = 1.72× 1040 kg , with l0 ≈
√

GM
a0
' 9.79× 1019m, and disk scale length Rd = 2.16 kpc = 6.67× 1019 m, (rescaled

length Wd = Rd/l0 = 0.681). These values refer to the field dwarf spiral galaxy NGC 6503 [27], which will be studied

8 In this figure, as well as in the other similar figures of this section, we assumed D = 3 at the origin wR = 0.
9 Using MOND functions νn, instead of ν̂n, yields very similar results for all values of n. Therefore, we have considered only the ν̂n

family of MOND interpolation functions as was also done in our previous paper I.
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FIG. 1. Thin-disk exponential galaxy results. Top-left panel: NFDG variable dimension D (wR) for MOND interpolation
functions ν̂1 and ν̂2. Other panels: comparison of NFDG results (solid lines) with equivalent MOND predictions (dotted lines)
for the two different interpolation functions. Also shown: Newtonian behavior-Line of Unity (black-dashed lines).

in detail in Sect. V. We will use these reference values for most of the cases studied in this paper, but the results
presented are largely independent of the choice of mass M , or other physical parameters.

In this bottom-left panel the NFDG circular speeds are computed as vcirc =
√
gobs (wR)wR l0/103

[
km s−1

]
, while

the MOND circular speeds are computed as vcirc =
√
gbar (wR) ν̂1 (wR)wR l0/103

[
km s−1

]
(or using ν̂2 instead of ν̂1),

and the purely Newtonian speed is vcirc =
√
gbar (wR)wR l0/103

[
km s−1

]
. As seen from the panel, there is perfect

agreement between the respective (ν̂1 or ν̂2) NFDG and MOND cases, showing the expected flattening of the circular
speed plots at high-wR, as opposed to the standard Newtonian decrease of circular speed with radial distance. In
the same panel, we also show the NGC 6503 flat rotation velocity Vf = 116.3± 2.4

[
km s−1

]
[27], represented by the
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horizontal gray lines and gray band in the figure. Both NFDG and MOND (ν̂1) velocity curves are in agreement with
this Vf value at high-wR as expected, while the NFDG and MOND (ν̂2) curves are a bit less consistent with the Vf
value.

In these first three panels of Fig. 1, we plotted all our results in terms of the rescaled cylindrical radial coordinate
wR, rather than the physical radial coordinate R, since the general behavior of the NFDG analysis is independent
of the actual physical parameters of the thin-disk galaxy being considered. We also plotted all our results up to a
maximum value of wR given by wR,max ≈ 10 Wd since about 99.9% of the galaxy mass is contained within this limiting
value, following the exponential distribution in Eq. (23).

Finally, the bottom-right panel is similar to the log (gobs) vs. log (gbar) plots widely used in the literature (see Fig.
3 in Ref. [21] or the figures in Ref. [22]) to illustrate the validity of the general MOND-RAR relation from Eq. (8).
Compared to the Line of Unity, representing the purely Newtonian case, there is agreement between plots obtained
with our NFDG model, using gobs (wR) and gbar (wR) from Eq. (26) and (17) respectively, and MOND plots where
gobs (wR) = ν̂1 (wR) gbar (wR) (or gobs (wR) = ν̂2 (wR) gbar (wR)).

This study of the thin-disk galaxy case already shows that the variable-dimension effect of NFDG can be equivalent
to the MOND-RAR model. In the next three sub-sections we will confirm this result using other axially/spherically
symmetric cases.

B. Kuzmin thin disks

As our second case for a thin-disk galaxy, we consider a Kuzmin model with surface density descibed by Eq. (27),
or by the rescaled Eq. (28) which also includes the simple expression for gbar (wR). The NFDG potential φ (wR) in
the z = 0 plane and the related field gobs (wR) are described by Eqs.(29)-(30), so that the ratio of the field magnitudes(
gobs
gbar

)
NFDG

(wR) = |gobs(wR,D(wR))|
|gbar(wR)| can be easily computed analytically.

As in the previous exponential case, the dimension D (wR) is obtained by solving numerically the equation(
gobs
gbar

)
NFDG

(wR) = ν̂1 (wR) (or ν̂2 (wR)). The total mass M , the length scale Rd, and the other parameters are

chosen to be the same as those used in Sect. IV A.
Figure 2 shows the results for this case, in the same way of Fig. 1, previously. The top left panel illustrates the

dimension functions D (wR) for the two cases being considered. Again, the dimension functions are uniquely defined
and continuous over the whole range: at low-wR values, D ≈ 3 in the Newtonian regime, then the dimension eventually
approaches the value D ≈ 2 in the deep-MOND limit, as expected.

The top-right panel shows the same two regimes, Newtonian and deep-MOND, in terms of the
(
gobs
gbar

)
ratio: closer

to unity at low-wR (Newtonian), but still diverging for wR → 0, and approaching asymptotically wR + 1/2 (or wR)
at high-wR (deep-MOND). Finally, the two bottom panels show the equivalent circular speeds and log-log plots, with
perfect correspondence between the NFDG and MOND computations (obtained with the same procedure outlined
above for figure 1). This time, the Kuzmin model is less successful in recovering the NGC 6503 flat rotation velocity
Vf ' 116.3 km s−1, shown in the bottom-left panel of the figure. Exponential models are usually more effective in the
case of thin-disk galaxies, but we wanted to include also the Kuzmin model in our analysis as a second example of a
fully analytical computation in NFDG.

C. Exponential thick disks

In our third case, we consider a thick-disk galaxy following the discussion in Sect. III. We use here the procedure
based on Eqs. (31)-(32) and described in the paragraphs after these two equations. The results shown in Fig. 3 were
obtained by performing a triple numerical integration and a summation over the first few non-zero terms of the kernel
expansion, with the same physical parameters of NGC 6503 used before.

Due to the numerical integration procedure being used, the computation of gobs has some convergence issues at low
wR values; therefore, we only show show results for wR & 0.45 in most panels of Fig. 3.10 However, for the range of
wR values shown in this figure, our model produces results that are very similar to those of the thin-disk case analyzed
previously: we can only notice slight differences between the corresponding panels, comparing Fig. 3 with Fig. 1.

Therefore, we conclude that both thin/thick disk procedures can be used to analyze effectively disk galaxies:
the thin-disk method is more efficient due to the fully analytical treatment, while the thick-disk procedure is more
cumbersome, due to the numerical computations. In the section V, we will use these methods for a complete fitting
of the rotation curves of NGC 6503.

10 In the top-left panel of Fig. 3, we extrapolate the dimension functions below wR ≈ 0.45 by assuming D = 3 at the origin.
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FIG. 2. Thin-disk Kuzmin galaxy results. Top-left panel: NFDG variable dimension D (wR) for MOND interpolation functions
ν̂1 and ν̂2. Other panels: comparison of NFDG results (solid lines) with equivalent MOND predictions (dotted lines) for the
two different interpolation functions. Also shown: Newtonian behavior-Line of Unity (black-dashed lines).

D. Spherical bulges

Although this paper is mostly devoted to the analysis of axially-symmetric structures, at the end of Sect. III we
discussed how our approach, using a NFDG gravitational potential and the general expansion in Eq. (18), can be
adapted also to spherically-symmetric structures.

In paper I, we already studied the case of spherical symmetry in NFDG, but in that work our approach was based
on Eq. (11), i.e., a direct determination of the gravitational field gobs (wr) without computing the related potential
φ (wr). In this section, we will check that these two NFDG approaches to spherical structures are indeed equivalent,
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FIG. 3. Thick-disk exponential galaxy results. Top-left panel: NFDG variable dimension D (wR) for MOND interpolation
functions ν̂1 and ν̂2. Other panels: comparison of NFDG results (solid lines) with equivalent MOND predictions (dotted lines)
for the two different interpolation functions. Also shown: Newtonian behavior-Line of Unity (black-dashed lines).

thus confirming that our methods are mathematically sound.

We will reconsider here one of the examples presented in our paper I: a simple Plummer model for a spherically
symmetric structure as discussed in Sect. IV-D of paper I. We recall that a Plummer gravitational potential is related
to a rescaled mass density [1]:

ρ̃ (w′r) =
3M

4πW 3

(
1 +

w′2r
W 2

)−5/2

, (38)
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FIG. 4. Spherical Plummer model results. Top-left panel: NFDG variable dimension D (wr) for MOND interpolation functions
ν̂1 and ν̂2. Other panels: comparison of NFDG results (solid lines) with equivalent MOND predictions (dotted lines) for the
two different interpolation functions. Also shown: Newtonian behavior-Line of Unity (black-dashed lines).

where M is the total mass and W = b/l0 is the rescaled length of the Plummer original potential φ (r) =

−GM/
√
r2 + b2 [31]. We will also use the same choice for the physical parameters as in paper I: M ≈ 2× 105M� ≈

4 × 1035 kg and W ≈ 0.1, which followed from typical data of globular clusters in our Galaxy (see again paper I for
details).

Figure 4, modeled after the first three figures, summarizes all results for this case. Once again, the top-left panel
shows dimension functionsD (wr) consistent with our NFDG model based on fractional gravity: the effective dimension
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decreases from the standard Newtonian D ≈ 3 value toward the deep-MOND D ≈ 2 value asymptotically.11 This
is also reflected in the top-right panel, by using the

(
gobs
gbar

)
ratios instead.12 The two bottom panels in Fig. 4, also

confirm that our NFDG model can yield the same results of the standard MOND theory, but with circular speed
plots and log-log plots now explained by our variable-dimension effect, as opposed to just an empirical MOND-RAR
relation.

Comparing this Fig. 4 with figure 3 in our previous paper I, we can immediately see that the results are practically
identical. However, figure 3 in paper I was obtained by using directly the NFDG field from Eq. (11), while our current
Fig. 4 was obtained using the NFDG potential model, combining together Eqs. (35), (36), and (38). This confirms
that the NFDG methods developed in both paper I and the current work are mathematically consistent. In future
studies, we will be able to use the methods described in this section for more general spherical structures, such as
galactic spherical bulges, dwarf spheroidal galaxies, or others.

V. SPIRAL GALAXY NGC 6503

Although we already used the astrophysical data of the field dwarf spiral galaxy NGC 6503 in Sect. IV, in this
section we want to show how NFDG methods can be applied directly to fitting rotation curves of a particular galaxy.
The choice of NGC 6503 simply follows from the fact that this galaxy was used as one of the three main examples of
the RAR in the seminal paper by McGaugh et al. [21].

A. NGC 6503 data fitting

In the following, we will consider the full astrophysical data for NGC 6503 as available in the SPARC database
[27, 43], and not just the two main parameters: mass M = 1.72 × 1040 kg and disk scale length Rd = 2.16 kpc =
6.67 × 1019 m, used in the previous sections as our main reference data. As the main input, we will use the disk
and gas surface mass distributions, Σdisk (R) and Σgas (R), respectively, which can be obtained from the SPARC

surface luminosities Σ
(L)
disk (R) and Σ

(L)
gas (R), by using appropriate mass-to-light ratios [43]: Υdisk ' 0.50 M�/L�,

Υgas ' 1.33 M�/L� (this value for Υgas includes also the helium gas contribution).
No spherical bulge is present for NGC 6503, so we will treat this galaxy as a thick-disk structure of total surface

mass density Σ (R) = Σdisk (R) + Σgas (R) (obtained by interpolating the SPARC data), plus a vertical exponential

density function ζ̃1 from Eq. (32), supplemented with the standard relation [27, 42], (hz/ kpc) = 0.196 (Rd/ kpc)
0.633

,
between the vertical/radial exponential scale lengths.

After rescaling all variables as usual, our NFDG ratio
(
gobs
gbar

)
NFDG

(wR) = |gobs(wR,D(wR))|
|gbar(wR)| can be compared with

the MOND-RAR ratio
(
gobs
gbar

)
MOND

(wR) = ν̂1 (wR) = 1

1−e−
√
gbar(wR)/g†

, or directly with the ratio of the experimental

SPARC data for NGC 6503:
(
gobs
gbar

)
SPARC

(wR). This ratio is easily obtained from the published [27, 43] rotation

velocity data for NGC 6503 and allows for a more direct validation of our methods.
In Fig. 5 we summarize our results, following the same format used in the previous figures. In the top-left panel,

we show the variable dimension D (wR) obtained by setting
(
gobs
gbar

)
NFDG

(wR) = ν̂1 (wR) and
(
gobs
gbar

)
NFDG

(wR) =(
gobs
gbar

)
SPARC

(wR), respectively. This time we did not assume D = 3 at the origin, and we note that our procedure

converges well only for wR & 0.60, while it has trouble converging at lower values as already described in Sect.
IV C, due to the triple numerical integration procedure. Therefore, in the first three panels of the figure, results for
wR . 0.60 were simply extrapolated and this particular value of wR ' 0.60 is shown with vertical thin-gray lines in
these panels. The upper limiting value of wR ' 7.41 follows instead from the largest radial distance in the SPARC
data for this galaxy.

In the top-left panel, we see that over the range wR & 1, where our numerical routines converge rapidly, the
dimension D (wR) in both cases remains very close to the value D ' 2. This is different from all the cases analyzed
in Sect. IV, where we were not modeling real astrophysical data, but we were just using standard mass distributions.
This might be an indication that, for a thin/thick galaxy with no spherical bulge, the system of stars behaves as a
fractal medium with an almost constant fractional dimension value of D ' 2. This is also in line with our original

11 In this figure, we limited the range of wr between 0 and 10. Plotting the top-left panel for wr � 10 would show that D → 2 for large
values of wr.

12 In this case, we set
(gobs
gbar

)
→ 1 for wr → 0 (Newtonian behavior at the origin) as was done in paper I. Thus the ratio

(gobs
gbar

)
does not

diverge for wr → 0, as in the previous cases analyzed in this paper.
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FIG. 5. NGC 6503 dwarf spiral galaxy results. Top-left panel: NFDG variable dimension D (wR) for MOND interpolation
function ν̂1 and using SPARC data. Other panels: comparison of NFDG results (solid lines) with equivalent MOND predictions
(dotted lines), for the two different cases being considered. Also shown: Newtonian behavior-Line of Unity (black-dashed lines)
and thin-gray vertical lines at wR ' 0.60, indicating radial distance below which our results have been extrapolated.

heuristic analysis presented in paper I, showing that the fundamental MOND results are recovered in NFDG by simply
assuming D ' 2.

As usual, the top-right panel considers the
(
gobs
gbar

)
ratios and shows that NFDG methods can reproduce MOND

results consistently, except for the lowest values of wR where our numerical procedures become unreliable. In this
panel, as well as in the following ones, it should be noted that the comparison between NFDG and MOND results
using SPARC data is more relevant than the similar comparison with the interpolation function ν̂1. In the former
case we compare directly our results with the astrophysical data of NGC 6503, while in the latter we use the RAR,
which is an approximated interpolation between the asymptotic MOND behaviors, based on all possible SPARC data.
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Thus, in all panels of this figure the NFDG (SPARC) curves (green-solid), should be considered the direct fit to the
galactic data being analyzed.

The bottom-left panel shows circular velocity plots corresponding to the previously analyzed cases, and com-
pared with the purely Newtonian case. In this panel, as well as in the bottom-right one, we used the NGC 6503
total mass M = 1.72 × 1040 kg, obtained by integrating the total SPARC mass distribution (disk plus gas), with

l0 ≈
√

GM
a0
' 9.79 × 1019m, and disk scale length Rd = 2.16 kpc = 6.67 × 1019 m (rescaled length Wd = Rd/l0 =

0.681). The NFDG circular speeds are computed as vcirc =
√

(gobs)NFDG (wR, D (wR))wR l0/103
[
km s−1

]
, with

the dimension functions D (wR) as obtained in the top-left panel. The MOND circular speeds are computed as

vcirc =
√

(gbar)SPARC (wR) ν̂1 (wR)wR l0/103
[
km s−1

]
and vcirc =

√
(gobs)SPARC (wR)wR l0/103

[
km s−1

]
, respec-

tively, while the purely Newtonian speed is vcirc =
√

(gbar)SPARC (wR)wR l0/103
[
km s−1

]
.

As seen in this panel, there is perfect agreement between the respective - ν̂1 or SPARC - NFDG and MOND cases,
showing the expected flattening of the circular speed plots over most of the wR range, as opposed to the standard
Newtonian decrease of circular speed with radial distance. Again, the more direct fit to NGC 6503 data is represented
by the NGC (SPARC) curve in green-solid. We also show the NGC 6503 flat rotation velocity Vf = 116.3±2.4

[
km s−1

]
[27], represented by the horizontal gray lines and band, as in the previous figures. Both NFDG (SPARC) and NFDG
(ν̂1) curves are well in agreement with these Vf values for wR & 1.5, thus showing that NFDG methods can fully
explain the main feature of the rotation velocity curves.

The final panel (bottom-right) summarizes as usual the results in terms of the customary log-log plots, compared
with the line of unity, illustrating again that the non-linearities of the MOND model can be well explained by our
approach based on a linear model with a variable local effective dimension. All the results in Fig. 5 were plotted as
functions of the rescaled radial coordinate wR, as was done in the previous examples. In the following section V B,
we will plot again the rotation velocity curve for NGC 6503 in terms of the standard radial coordinate R together
with the complete SPARC data for this galaxy, and we will attempt to outline some general considerations about the
possible meaning of the variable dimension D.

B. Discussion

In figure 6, we produce our most detailed fitting to the NGC 6503 rotation velocity data, by expanding results
already plotted in the bottom-left panel of Fig. 5 and by adding the related SPARC data-points. We use here the
physical radial distance R in kiloparsec, while rotation circular velocities vcirc are measured in km s−1.

In particular, in this figure we show the same NFDG (SPARC) and NFDG (ν̂1) curves (green-solid and blue-solid,
respectively) as in the bottom-left panel of the previous Fig. 5, which have been extrapolated below Rmin ' 1.90 kpc,
due to the convergence issues already mentioned. These curves are also limited by Rmax ' 23.5 kpc, which is the
radial distance of the last SPARC data-point. These limits are shown as vertical thin-gray lines in the figure. In
addition, a third NFDG curve (red-dashed) is shown for a fixed value (D = 2) of the space dimension. This curve can
be computed even at very low radial distances, because it is based on the logarithmic potential in the second line of
Eq. (3), so it does not suffer from the numerical limitations at low-R of the other NFDG curves.

These three NFDG curves can be compared directly with the SPARC data-points and related error bars (black
circles), obtained from the published data [27, 43], and also with the flat rotation velocity Vf = 116.3± 2.4

[
km s−1

]
[27], represented by the horizontal gray lines/band. For completeness, we also show the SPARC data for the Newtonian
cases (disk contribution, gas contribution, and total Newtonian - gray circles) together with the computed Newtonian
curves (in gray) from the extrapolated mass distributions (derived from the original luminosity distributions [43]).

For this disk-dominated spiral galaxy, the flattening effect of the observed rotation curve is evident over most of the
radial range. Our NFDG (SPARC) curve (green-solid line) can perfectly model the published data over the applicable
range (Rmin, Rmax) and even at the lower radial values, where the NFDG results have been extrapolated. Again, this
green-solid curve is obtained by assuming the variable dimension D (wR) as described by the corresponding green-solid
curve in the top-left panel of Fig. 5, i.e., assuming that NGC 6503 behaves as a fractal medium whose fractional
dimension is described by this function D (wR).

The NFDG (ν̂1) curve (blue-solid line) is less effective than the previous one in modeling the SPARC data, but
still well within the gray band of the flat rotation velocities over most of the radial range. As already remarked, this
curve corresponds to the general RAR, which is an empirical fit to all SPARC data-points and, therefore, less accurate
in the analysis of an individual galaxy. We also plot the third NFDG curve (red-dashed) for a fixed value (D = 2)
because this can be easily computed even at low values of R. This D = 2 curve is less effective over most of the radial
range (although remarkably flat), but it shows a good fit to the first few SPARC data-points at low radial distances,
where our general methods are not completely reliable.

We interpret the above results as a possible indication that, for a disk-dominated galaxy like NGC 6503 or similar,
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FIG. 6. NGC 6503 disk-dominated spiral galaxy rotation curves. NFDG fitting curves (ν̂1, SPARC, D = 2) are compared
directly with SPARC data-points (black circles) and with the flat rotation velocity Vf (gray band). Also shown: Newtonian
(total, disk, gas) rotation curves compared with original SPARC data (gray circles). Thin-gray vertical lines indicate the radial
limits of our main NFDG fits.

the fractal dimension over the whole radial range is approximately D ' 2, with just small variations from this almost
constant value. This is in line with all our heuristic arguments, presented in this paper as well as in paper I, that the
MOND behavior is essentially related to an effective Newtonian gravity in a space of reduced dimension D ' 2. This
could simply be the consequence of the shape, or other geometrical characteristics, of highly flattened structures such
as thin/thich disk galaxies, as opposed to more spherical structures, such as globular clusters, galaxy clusters, etc.,
where MOND is much less effective.

Further work will be needed to check this interpretation of the results presented in this paper. This future work
will include detailed fitting of structures where the MOND model is highly efffective (spiral, elliptical, and irregular
galaxies), possibly showing a similar 2 . D . 3 reduced dimension for these cases, as well as structures where MOND
is not very effective (globular clusters, and similar spherical structures). In these latter cases, NFDG might still
be able to describe the astrophysical data without using DM, but considering instead minor changes of the space
dimension around D ' 3, which might account for the observed non-Newtonian behavior.

VI. CONCLUSION

In this work, we continued our study of a possible explanation of the MOND theory and related RAR in terms
of a novel fractional-dimension gravity model. As in our paper I, we considered the possibility that Newtonian
gravity might act on a metric space of variable dimension D ≤ 3, when applied to galactic scales, and developed the
mathematical bases of NFDG for axially-symmetric galaxies.

The MOND acceleration scale a0, or the equivalent RAR acceleration parameter g† = 1.20×10−10m s−2, were related

to a length scale l0 ≈
√

GM
a0

which is naturally required for dimensional reasons and the NFDG gravitational potential
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was used as the key element of our model, together with the appropriate expansion in Gegenbauer polynomials of the
Euler-NFDG kernel.

Using these assumptions, we have shown that, even in the case of axially-symmetric structures, our NFDG can
reproduce the same results of the MOND-RAR models and that the deep-MOND limit can be achieved by continuously
decreasing the space dimension D toward a limiting value of D ≈ 2. These methods were successfully applied to several
different general cases (thin/thick exponential disks, Kuzmin disks, spherical bulges), and also to the detailed fitting
of rotation data for the spiral disk galaxy NGC 6503. We have also considered a possible origin of the continuous
variation of the space dimension D for the case of NGC 6503, simply noting that over the whole deep-MOND regime
the dimensional value might naturally approach D ≈ 2, as this might be a common feature of all thin/thick disk
galaxies.

Future work on the subject will still be needed to test all these NFDG hypotheses. At this point, we have developed
most of the mathematical tools to be used for detailed fitting of galactic rotation curves for any type of structure
(thin/thick disks, spherical bulges, etc.). More detailed galactic fits will need to be performed, for several other
galaxies in the SPARC database, before NFDG can be considered a viable alternative model. In particular, more
individual disk galaxies need to be analyzed in order to confirm our assumption that a natural value of D ≈ 2 applies
to these galaxies. Conversely, other structures such as globular clusters or similar need to be studied, including objects
for which MOND does not seem to fully apply, but whose dynamical behavior might still be explained by NFDG
without any use of DM.

Lastly, a relativistic version of Newtonian Fractional-Dimension Gravity also needs to be established, possibly
leading to an extension of General Relativity to metric spaces with fractional dimension. We will leave these and
other topics to future work on the subject.
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