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COHOMOLOGY OF CATEGORICAL SELF-DISTRIBUTIVITY

J. SCOTT CARTER, ALISSA S. CRANS, MOHAMED ELHAMDADI
and MASAHICO SAITO

(communicated by James Stasheff)

Abstract
We define self-distributive structures in the categories of

coalgebras and cocommutative coalgebras. We obtain exam-
ples from vector spaces whose bases are the elements of finite
quandles, the direct sum of a Lie algebra with its ground field,
and Hopf algebras. The self-distributive operations of these
structures provide solutions of the Yang–Baxter equation, and,
conversely, solutions of the Yang–Baxter equation can be used
to construct self-distributive operations in certain categories.

Moreover, we present a cohomology theory that encom-
passes both Lie algebra and quandle cohomologies, is analogous
to Hochschild cohomology, and can be used to study deforma-
tions of these self-distributive structures. All of the work here
is informed via diagrammatic computations.

1. Introduction

In the past several decades, operations satisfying self-distributivity:

(a / b) / c = (a / c) / (b / c)

have secured an important role in knot theory. Such operations not only provide
solutions of the Yang–Baxter equation and satisfy a law that is an algebraic distilla-
tion of the type (III) Reidemeister move, but they also capture one of the essential
properties of group conjugation. Sets possessing such a binary operation are called
shelves. Adding an axiom corresponding to the type (II) Reidemeister move amounts
to the property that the set acts on itself (on the right) bijectively and thus gives
the structure of a rack. Further introducing a condition corresponding to the type
(I) Reidemeister move has the effect of making each element idempotent and gives
the structure of a quandle. Keis, or involutory quandles, satisfy an extra involutory
condition. Such structures were discussed as early as the 1940s [25].
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The primordial example of a self-distributive operation comes from group conju-
gation:

x / y = y−1xy.

This operation satisfies the additional quandle axioms which are stated in the sequel.
Quandle cohomology has been studied extensively in connection with applications
to knots and knotted surfaces [10, 11]. Analogues of self-distributivity in a variety
of categorical settings have been discussed as adjoint maps in Lie algebras [12] and
quantum group theories (see for example [20, 19]). In particular, the adjoint map
of Hopf algebras

x⊗ y 7→ S(y(1))xy(2)

is a direct analogue of group conjugation. Thus, analogues of self-distributive oper-
ations are found in a variety of algebraic structures where cohomology theories are
also defined.

In this paper, we study how quandles and racks and their cohomology theories are
related to these other algebraic systems and their cohomology theories. Specifically,
we treat self-distributive maps in a unified manner via a categorical technique called
internalization [13]. Then we develop a cohomology theory and provide explicit
relations to rack and Lie algebra cohomology theories. Furthermore, this cohomology
theory can be seen as a theory of obstructions to deformations of self-distributive
structures.

The organization of this paper is as follows: Section 2 consists of a review of the
fundamentals of quandle theory, internalization in a category, and the definition of a
coalgebra. Section 3 contains a collection of examples that possess a self-distributive
binary operation. In particular, a motivating example built from a Lie algebra is
presented. In Section 4 we relate the ideas of self-distributivity to solutions of the
Yang-Baxter equation, and demonstrate connections of these ideas to Hopf alge-
bras. Section 5 contains a review of Hochschild cohomology from the diagrammatic
point of view and in relation to deformations of algebras. These ideas are imitated
in Section 6 where the most original and substantial ideas are presented. Herein
a cohomology theory for shelves in the category of coalgebras is defined in low
dimensions. The theory is informed by the diagrammatic representation of the self-
distributive operation, the comultiplication, their axioms, and their relationships.
Section 7 contains the main results of the paper. Theorems 7.4 through 7.9 state
that the cohomology theory is non-trivial, and that non-trivial quandle cocycles and
Lie algebra cocycles give non-trivial shelf cocycles and non-trivial deformations in
dimension 2 and 3.
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2. Internalized Shelves

2.1. Review of Quandles
A quandle, X, is a set with a binary operation (a, b) 7→ a / b such that
(I) For any a ∈ X, a / a = a.
(II) For any a, b ∈ X, there is a unique c ∈ X such that a = c / b.
(III) For any a, b, c ∈ X, we have (a / b) / c = (a / c) / (b / c).

A rack is a set with a binary operation that satisfies (II) and (III). Racks and
quandles have been studied extensively in, for example, [6, 14, 16, 23].

The following are typical examples of quandles: A group G with conjugation as
the quandle operation: a / b = b−1ab, denoted by X = Conj(G), is a quandle. Any
subset of G that is closed under such conjugation is also a quandle. More generally
if G is a group, H is a subgroup, and s is an automorphism that fixes the elements
of H (i.e. s(h) = h ∀h ∈ H), then G/H is a quandle with / defined by Ha / Hb =
Hs(ab−1)b. Any Λ(= Z[t, t−1])-module M is a quandle with a / b = ta + (1 − t)b,
for a, b ∈ M , and is called an Alexander quandle. Let n be a positive integer, and
for elements i, j ∈ {0, 1, . . . , n− 1}, define i / j ≡ 2j − i (mod n). Then / defines
a quandle structure called the dihedral quandle, Rn, that coincides with the set of
reflections in the dihedral group with composition given by conjugation.

The third quandle axiom (a / b) / c = (a / c) / (b / c), which corresponds to
the type (III) Reidemeister move, can be reformulated to make sense in a more
general setting. In fact, for our work here we do not need the full-fledged structure
of a quandle; we simply need a structure having a binary operation satisfying the
self-distributive law. We call a set together with a binary operation satisfying the
self-distributive axiom (III) a shelf.

We reformulate the self-distributive operation of a shelf as follows: Let X be a
shelf with the shelf operation denoted by a map q : X ×X → X. Define ∆ : X →
X×X by ∆(x) = (x, x) for any x ∈ X, and τ : X×X → X×X by a transposition
τ(x, y) = (y, x) for x, y ∈ X. Then axiom (III) above can be written as:

q(q × 1) = q(q × q)(1× τ × 1)(1× 1×∆) : X3 → X.

It is natural and useful to formulate this axiom for morphisms in certain cate-
gories. This approach was explored in [12] (see also [2]) and involves a technique
known as internalization.

2.2. Internalization
All familiar mathematical concepts were defined in the category of sets, but most

of these can live in other categories as well. This idea, known as internalization, is
actually very familiar. For example, the notion of a group can be enhanced by
looking at groups in categories other than Set, the category of sets and functions
between them. We have the notions of topological groups, which are groups in
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the category of topological spaces, Lie groups, groups in the category of smooth
manifolds, and so on. Internalizing a concept consists of first expressing it completely
in terms of commutative diagrams and then interpreting those diagrams in some
sufficiently nice ambient category, K. In this paper, we consider the notion of a shelf
in the categories of coalgebras and cocommutative coalgebras. Thus, we define the
notion of an internalized shelf, or shelf in K. This concept is also known as a shelf
object in K or internal shelf.

Given two objects X and Y in an arbitrary category, we define their product to be
any object X × Y equipped with morphisms π1 : X × Y → X and π2 : X × Y → Y
called projections, such that the following universal property is satisfied: for any
object Z and morphisms f : Z → X and g : Z → Y, there is a unique morphism
h : Z → X × Y such that f = π1h and g = π2h. Note that this product does not
necessarily exist, nor is it unique. However, it is unique up to canonical isomorphism,
which is why we refer to the product when it exists. We say a category has binary
products when every pair of objects has a product. Trinary products (X × Y ) × Z
and X × (Y ×Z) are defined similarly, are canonically isomorphic, and denoted by
X×Y ×Z if the isomorphism is the identity. Inductively, n-ary products are defined.
We say a category has finite products if it has n-ary products for all n > 0. Note
that whenever X is an object in some category for which the product X×X exists,
there is a unique morphism called the diagonal D : X → X×X such that π1D = 1X

and π2D = 1X . In the category of sets, this map is given by D(x) = (x, x) for all
x ∈ X. In a category with finite products, we also have a transposition morphism
given by τ : X ×X → X ×X by τ = (π2 × π1)DX×X .

Definition 2.1. Let X be an object in a category K with finite products. A map
q : X ×X → X is a self-distributive map if the following diagram commutes:

X ×X ×X

X ×X ×X ×X

X ×X ×X ×X

X ×X ×X X ×X

X

X ×X

q×1

**UUUUUUUUUUU
1×1×∆

uujjjjjjjjj

1×τ×1

²²

1×1×q $$JJJ
JJJ

q×1
//

q

::tttttt

q

²²

where ∆ : X → X ×X is the diagonal morphism in K and τ : X ×X → X ×X is
the transposition. We also say that a map q satisfies the self-distributive law.

Definition 2.2. Let K be a category with finite products. A shelf in K is a pair
(X, q) such that X is an object in K and q : X ×X → X is a morphism in K that
satisfies the self-distributive law of Definition 2.1.

Example 2.3. A quandle (X, q) is a shelf in the category of sets, with the cartesian
products and the diagonal map D : X → X × X defined by D(x) = (x, x) for
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X

XX

XX XX

XX X
XX X

∆q τ

XX

X

X

Self−distributive

law

X

Figure 1: Internal Shelf Axioms

all x ∈ X. Thus the language of shelves and self-distributive maps in categories
unifies all examples discussed in this paper, in particular those constructed from
Lie algebras.

Remark 2.4. Throughout this paper, all of the categories considered have finite
products:

• Set, the category whose objects are sets and whose morphisms are functions

• Vect, the category whose objects are vector spaces over a field k and whose
morphisms are linear functions

• Coalg, the category whose objects are coalgebras with counit over a field k and
whose morphisms are coalgebra homomorphisms and compatible with counit

• CoComCoalg, the category whose objects are cocommutative coalgebras with
counit over a field k and whose morphisms are cocommutative coalgebra ho-
momorphisms and compatible with counit

It is convenient for calculations to express the maps and axioms of a shelf in K
diagrammatically as we do in the left and right of Fig. 1, respectively. Note that
the self-distributive map q is not the multiplication map and therefore requires a
different diagrammatic representation, which can be found on the far left in Fig. 1.
The composition of the maps is read from right to left (gf)(x) = g(f(x)) in text
and from bottom to top in the diagrams. In this way, when reading from left to
right one can draw from top to bottom and when reading a diagram from top to
bottom, one can display the maps from left to right. The argument of a function
(or input object from a category) is found at the bottom of the diagram.

2.3. Coalgebras
A coalgebra is a vector space C over a field k together with a comultiplication

∆ : C → C ⊗C that is linear and coassociative: (∆⊗ 1)∆ = (1⊗∆)∆. A coalgebra
is cocommutative if the comultiplication satisfies τ∆ = ∆, where τ : C⊗C → C⊗C
is the transposition τ(x ⊗ y) = y ⊗ x. A coalgebra with counit is a coalgebra with
a linear map called the counit ε : C → k such that (ε ⊗ 1)∆ = 1 = (1 ⊗ ε)∆ via
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k ⊗ C ∼= C. Diagrammatically, this condition says that the following commutes:

k × C

$$JJJJJJJJJJ C ⊗ C
ε×1oo 1×ε // C × k

zztttttttttt

C

∆

OO

Note that if (C, ∆, ε) is a coalgebra with counit, then so is the tensor product
C ⊗ C.

Lemma 2.5. If C is a coalgebra with counit, the comultiplication ∆C : C → C⊗C
is the diagonal map in the category of coalgebras with counits.

Proof. Since C ⊗ C is the product in the category of coalgebras with counits,
there is a diagonal, that is a unique morphism φ : C → C ⊗ C which makes the
following diagram commute:

C

1

¢¢¤¤
¤¤

¤¤
¤¤

¤¤
¤¤

¤¤
¤

φ

²²

1

ÀÀ;
;;

;;
;;

;;
;;

;;
;;

C C ⊗ Cπ1
oo

π2
// C

where the π1 and π2 are projection maps defined by

π1 := A⊗B
1⊗εB // A⊗ k

∼ // A

π2 := A⊗B
εA⊗1 // k ⊗B

∼ // B

where εA and εB are the counit maps for coalgebras A and B. Since the comulti-
plication ∆C satisfies the same property as φ and φ is unique, they must coincide.
2

A linear map f between coalgebras is said to be compatible with comultiplication,
or preserves comultiplication, if it satisfies the condition ∆f = (f ⊗ f)∆. Diagram-
matically, the following commutes:

C
∆C //

f

²²

C ⊗ C

f⊗f

²²
D

∆D // D ⊗D

A linear map f between coalgebras is said to be compatible with counit, or pre-
serves counit, if it satisfies the condition εf = ε, which, diagrammatically says the
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following diagram commutes:

C
εC //

f ÃÃ@
@@

@@
@@

k

D

εD

OO

In particular, if (C, ∆, ε) is a coalgebra with counit, a linear map q : C ⊗C → C
between coalgebras is compatible with comultiplication if and only if it satisfies
∆q = (q ⊗ q)(1 ⊗ τ ⊗ 1)(∆ ⊗∆), and it is compatible with counit if and only if it
satisfies εq = ε⊗ ε.

A morphism f in the category of coalgebras with counit is a linear map that
preserves comultiplication and counit. As suggested by the categories listed in Re-
mark 2.4, we will focus our main attention on coalgebras with counits. Thus, we use
the word ‘coalgebra’ to refer to a coalgebra with counit and the phrase ‘coalgebra
morphism’ to refer to a linear map that preserves comultiplication and counit. On
the other hand, we wish to consider examples in which the self-distributive map
is not compatible with the counit (see the sequel). For categorical hygiene, we are
distinguishing a function that satisfies self-distributivity and is compatible with
comultiplication from a morphism in the category Coalg.

3. Self-Distributive Maps for Coalgebras

In this section we give concrete and broad examples of self-distributive maps
for cocommutative coalgebras. Specifically, we discuss examples constructed from
quandles/racks used as bases, Lie algebras, and Hopf algebras.

3.1. Self-Distributive Maps for Coalgebras Constructed From Racks
In this section we note that quandles and racks can be used to construct self-

distributive maps in CoComCoalg simply by using their elements as basis.
Let X be a rack. Let V = kX be the vector space over a field k with the

elements of X as basis. Then V is a cocommutative coalgebra with counit, with
comultiplication ∆ induced by the diagonal map ∆(x) = x ⊗ x, and the counit
induced by ε(x) = 1 for x ∈ X. This is a standard construction of a coalgebra with
counit from a set.

Set W = k ⊕ kX. We denote an element of W = k ⊕ kX by a +
∑

x∈X axx or
more briefly by a+

∑
x axx, and when context is understood by a+

∑
axx. Extend

∆ and ε on V = kX to W by linearly extending ∆(1) = 1 ⊗ 1 and ε(1) = 1 for
1 ∈ k. More explicitly,

∆(a +
∑

axx) = a(1⊗ 1) +
∑

ax(x⊗ x),

and ε(a +
∑

axx) = a +
∑

ax. With these definitions, one can check that (W,∆, ε)
is an object in CoComCoalg.

Define q : W ⊗ W → W by linearly extending q(x ⊗ y) = x / y, q(1 ⊗ x) = 1,



Journal of Homotopy and Related Structures, vol. 3(1), 2008 20

q(x⊗ 1) = 0, and q(1⊗ 1) = 0. More explicitly,

q( (a +
∑

axx)⊗ (b +
∑

byy) ) =
∑

y

aby +
∑
x,y

axby(x / y).

Proposition 3.1. The extended map q given above is a self-distributive linear map
compatible with comultiplication.

Proof. The proof is by calculations. For example, the LHS of the self-distributivity
is computed as

q(q ⊗ 1)( (a +
∑

axx)⊗ (b +
∑

byy)⊗ (c +
∑

czz) )

= q( (
∑

y

aby +
∑
x,y

axby(x / y))⊗ (c +
∑

czz) )

=
∑
y,z

abycz +
∑
x,y,z

axbycz((x / y) / z),

which is compared with the RHS. Similarly, the compatibility is proved by verifying
∆q = (q ⊗ q)(1⊗ τ ⊗ 1)(∆⊗∆). 2

The pair (W, q) falls short of being a shelf in CoComCoalg due to the following:

Proposition 3.2. The extended map q defined above is not compatible with the
counit, but satisfies εq = q(ε⊗ 1).

Proof. The counit ε has as its image k ⊂ W . Thus the image of ε⊗1 is in W ⊗W .
We compute the following three quantities:

εq( (a +
∑

axx)⊗ (b +
∑

byy) ) = ε(
∑

aby +
∑
x,y

axby(x / y))

= a
∑

by +
∑
x,y

axby,

ε⊗ ε( (a +
∑

axx)⊗ (b +
∑

byy) ) = (a +
∑

ax)(b +
∑

by)

= ab + a
∑

by + b
∑

ax +
∑

axby, and

q(ε⊗ 1)( (a +
∑

axx)⊗ (b +
∑

byy) ) = q( (a +
∑

ax)⊗ (b +
∑

byy) )

= (a +
∑

ax)
∑

by.

The first and third coincide. 2

3.2. Lie Algebras
A Lie algebra g is a vector space over a field k of characteristic other than 2, with

an antisymmetric bilinear form [·, ·] : g × g → g that satisfies the Jacobi identity
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for any x, y, z ∈ g. Given a Lie algebra g over
k we can construct a coalgebra N = k ⊕ g. We will denote elements of N as either
(a, x) or a + x, depending on clarity, where a ∈ k and x ∈ g.

In fact, N is a cocommutative coalgebra with comultiplication and counit given
by ∆(x) = x⊗ 1 + 1⊗ x for x ∈ g and ∆(1) = 1⊗ 1, ε(1) = 1, ε(x) = 0 for x ∈ g.
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In general we compute, for a ∈ k and x ∈ g,

∆((a, x)) = ∆(a + x) = ∆(a) + ∆(x)
= a(1⊗ 1) + x⊗ 1 + 1⊗ x = (a⊗ 1 + x⊗ 1) + 1⊗ x

= (a + x)⊗ 1 + 1⊗ x = (a, x)⊗ (1, 0) + (1, 0)⊗ (0, x).

The following map is found in quantum group theory (see for example, [19], and
studied in [12] in relation to Lie 2-algebras). Define q : N ⊗ N → N by linearly
extending q(1 ⊗ (b + y)) = ε(b + y), q((a + x) ⊗ 1) = a + x and q(x, y) = [x, y] for
a, b ∈ k and x, y ∈ g, i.e.,

q((a, x)⊗ (b, y)) = q((a + x)⊗ (b + y)) = ab + bx + [x, y] = (ab, bx + [x, y]).

Since the solution to the classical YBE follows from the Jacobi identity, and the
YBE is related to self-distributivity (see next section) via the third Reidemeister
move, it makes sense to expect that there is a relation between the Lie bracket and
the self-distributivity axiom.

Lemma 3.3. The above defined q satisfies the self-distributive law in Definition 2.1.

Proof. We compute

q(q ⊗ 1)((a, x)⊗ (b, y)⊗ (c, z))
= q((ab + bx + [x, y])⊗ (c, z)) = abc + bcx + c[x, y] + b[x, z] + [[x, y], z],
q(q ⊗ q)(1⊗ τ ⊗ 1)(1⊗ 1⊗∆)((a + x)⊗ (b + y)⊗ (c + z))
= q(q ⊗ q)(1⊗ τ ⊗ 1)((a + x)⊗ (b + y)⊗ {(c + z)⊗ 1 + 1⊗ z})
= q(q ⊗ q)((a + x)⊗ (c + z)⊗ (b + y)⊗ 1 + (a + x)⊗ 1⊗ (b + y)⊗ z

= q((ac + cx + [x, z])⊗ (b + y)) + q((a + x)⊗ [y, z])
= (abc + bcx + c[x, y] + b[x, z] + [[x, z], y]) + [x, [y, z]],

and the Jacobi identity in g verifies the condition. 2

Lemma 3.4. The map q constructed above is a coalgebra morphism.

Proof. We compute:

∆q((a + x)⊗ (b + y)) = (ab + bx + [x, y])⊗ 1 + 1⊗ (bx + [x, y]).

On the other hand, we have

(q ⊗ q)(1⊗ τ ⊗ 1)(∆⊗∆)((a + x)⊗ (b + y))
= (q ⊗ q)(1⊗ τ ⊗ 1)((a + x)⊗ 1 + 1⊗ x)⊗ ((b + y)⊗ 1 + 1⊗ y)
= q((a + x)⊗ (b + y))⊗ q(1⊗ 1) + q(1⊗ 1)⊗ q(x⊗ y) + ε(b + y)⊗ x

+(a + x)⊗ ε(y)
= ((a + bx + [x, y])⊗ 1) + 1⊗ [x, y] + b⊗ x + (a + x)⊗ 0
= ((a + bx + [x, y])⊗ 1) + 1⊗ (bx + [x, y])

For the counit, we compute:

εq( (a + x)⊗ (b + y) ) = ε(ab + bx + [x, y]) = ab = (ε⊗ ε)( (a + x)⊗ (b + y) ). 2
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Combining these two lemmas, we have:

Proposition 3.5. The coalgebra N together with map q given above defines a shelf
(N, q) in CoComCoalg.

Groups have quandle structures given by conjugation, and their subcategory of
Lie groups are related to Lie algebras through tangent spaces and exponential maps.
In the above proposition we constructed shelves in CoComCoalg from Lie algebras,
so we see this proposition as a step in completing the following square of relations.

Lie groups //

²²

Lie algebras

²²
Quandles // ???

3.3. Hopf Algebras

A bialgebra is an algebra A over a field k together with a linear map called the
unit η : k → A, satisfying η(a) = a1 where 1 ∈ A is the multiplicative identity
and with an associative multiplication µ : A ⊗ A → A that is also a coalgebra
such that the comultiplication ∆ is an algebra homomorphism. A Hopf algebra
is a bialgebra C together with a map called the antipode S : C → C such that
µ(S ⊗ 1)∆ = ηε = µ(1⊗ S)∆, where ε is the counit.

The reader can construct commutative diagrams similar to those found in Section
2.3 for the notions of bialgebra and Hopf algebra. Our diagrammatic conventions for
these maps are depicted in Fig. 2. Recall that the diagrams are read from bottom
to top. These diagrams have been used (see for example [18, 27]) for proving facts
about Hopf algebras and related invariants.

We review the diagrammatic representation of Hopf algebra axioms. For conve-
nience, assume that the underlying vector space of A is finite dimensional with or-
dered basis (e1, e2, . . . , en). Then the multiplication µ and comultiplication ∆ are de-
termined by the values, Λ`

ij , Y
ij
` ∈ k, of the structure constants: µ(ei⊗ej) = Λ`

ij(e`),
and ∆(e`) = Y ij

` ei ⊗ ej . Note that summation conventions are being applied, and
so, for example, Λ`

ij(e`) =
∑n

`=1 Λ`
ij(e`). Similarly, the unit can be written as

η(1) =
∑

i Aiei. The counit can be written as ε(ei) = Vi ∈ k, so that for a general
vector,

∑
i αiei, we have ε(

∑
αiei) = (

∑
i Ai)ε(ei) =

∑
i aiVi. Finally, the antipode

is a linear map so S(ei) = sj
iej for constants sj

i ∈ k.

Thus the axioms of a (finite dimensional) Hopf algebra can be formulated in terms
of the structure constants. The table below summarizes these formulations. Again
summation convention applies, and all super, and subscripted letters are constants
in the ground field.
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associativity Λq
irΛ

r
j` = Λq

p`Λ
p
ij

coassociativity Y ij
p Y p`

q = Y j`
r Y ir

q

unit Λ`
ijA

j = AjΛ`
ji = δ`

i

counit V iY ij
` = Y ji

` Vi = δj
`

Compatibility Λp
tvΛ

q
uwY tu

i Y vw
j = Y pq

r Λr
ij

Antipode Λi
rqs

r
pY

pq
j = Λi

rqs
q
pY

rp
j = ViA

j

In the table above, δ`
i denotes a Kronecker delta function. It is a small step

now to translate these. Specifically, the multiplication tensor Λ is diagrammatically
represented by the leftmost trivalent vertex read from bottom to top. The letter
choices Λ, Y , A and V are meant to suggest the graphical depictions of these
operators. A composition of maps corresponds to a contraction of the corresponding
indices of tensors which, in turn, corresponds to connecting end points of diagrams
together vertically. Figures 2 and 3 represent such diagrammatic conventions of
maps that appear in the definition of a Hopf algebra and their axioms. The gap in
the ‘Antipode condition’ diagram in Fig. 3 should be interpreted as follows: The
counit results in a constant which is then reimbedded in the algebra via the unit
map.

xy

x

∆

x x(1) (2)

ε

η
µ

xS(  )

x x y

τ

xy

ComultiplicationMultiplication Unit Counit Antipode Transposition

x y

S

Figure 2: Operations in Hopf algebras

Associativity

Unit Counit Counit is an algebra hom

CompatibilityCoassociativity

Antipode conditionUnit is a coalgebra hom 

S S

Figure 3: Axioms of Hopf algebras

Let H be a Hopf algebra. Define q : H ⊗ H → H by q = µ(1 ⊗ µ)(S ⊗ 1 ⊗
1)(τ ⊗ 1)(1 ⊗ ∆) where µ, ∆, and S denote the multiplication, comultiplication,
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and antipode, respectively. If we adopt the common notation ∆(x) = x(1) ⊗ x(2)

and µ(x ⊗ y) = xy, then q is written as q(x ⊗ y) = S(y(1))xy(2). This appears
as an adjoint map in [26, 20], and its diagram is depicted in Fig. 4. Notice the
analogy with the group conjugation as a quandle: in a group ring, ∆(y) = y ⊗ y
and S(y) = y−1, so that q(x⊗ y) = y−1xy, and therefore, is of a great interest from
point of view of quandles.

S

Figure 4: Self-distributive map in Hopf algebras

Figure 5: Proof of self-distributivity in Hopf algebras

Proposition 3.6. The above defined linear map q : H ⊗ H → H satisfies the
self-distributive law in Definition 2.1.

Proof. In Fig. 5, it is indicated that this follows from two properties of the adjoint
map: q(q ⊗ 1) = q(1⊗ µ) (which is used in the first and the third equalities in the
figure), and µ = µ(1⊗ q)(τ ⊗ 1)(1⊗∆) (which is used in the second equality).

It is known that these properties are satisfied, and proofs are found in [26, 15].
Here we include diagrammatic proofs for the reader’s convenience in Fig. 6 and
Fig. 7, respectively. The dotted loops in Fig. 6, and all those that follow, indicate
where changes are made to the diagram. 2

Remark 3.7. The definition of q above contains an antipode, which is a coalgebra
anti-homomorphism and not necessarily a coalgebra morphism. Thus, (H, q) is not
a shelf in Coalg in general.

3.4. Other Examples
In this section we observe that there are plenty of examples of self-distributive lin-

ear maps for 2-dimensional cocommutative coalgebras and shelves in CoComCoalg.
Let V be the two dimensional vector space over k with basis {x, y}. Define a

coalgebra structure on V using the diagonal map ∆(z) = z ⊗ z for z ∈ {x, y} and
extending it linearly.
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Assoc.

Anti−
hom.

Associativity Assoc.

NaturalityCompatibility

Cancel

S

S S

S

S

S

S

S

S

S

Figure 6: q(q ⊗ 1) = q(1⊗ µ)

SS

Figure 7: µ = µ(1⊗ q)(τ ⊗ 1)(1⊗∆)

Lemma 3.8. A linear map q : V ⊗ V → V is self-distributive and compatible with
comultiplication if and only if q is one of the functions indicated via any column
in the table below. The values are determined on the basis elements x⊗ x, through
y ⊗ y as indicated.

q(x⊗ x) = 0 0 0 0 0 0 x x x x x x x x x y y y y y 0
q(x⊗ y) = 0 0 0 0 x y 0 0 0 x x x x y y 0 x y y y 0
q(y ⊗ x) = 0 0 x x 0 0 0 0 y x x y y x y 0 y 0 x y 0
q(y ⊗ y) = x y 0 x y 0 0 y 0 x y x y y y 0 y 0 x y 0

Among these, (V, q) is a shelf in CoComCoalg if and only if q(a, b) 6= 0 for any
a, b ∈ {x, y}.

Proof. Let q(x⊗x) = γ1x+γ2y for some constants γ1, γ2 ∈ k. The compatibility
condition

∆q(x⊗ x) = (q ⊗ q)(1⊗ τ ⊗ 1)(∆⊗∆)(x⊗ x)

implies that γ1γ2 = 0 and γ2
1 = γ1, γ2

2 = γ2, i.e., q(x ⊗ x) = 0, x, or y. The same
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holds for x⊗ y, y ⊗ x and y ⊗ y, so that the value of q for a pair of basis elements
is either a basis element (x or y), or 0.

A case by case analysis (facilitated by Mathematica and/or Maple) provides
self-distributivity. When ε(x) = ε(y) = 1, the only cases for which εq = ε ⊗ ε are
those for which q(a, b) 6= 0 for all four choices of a, b. 2

Another famous example of a cocommutative coalgebra is the trigonometric coal-
gebra, T , generated by a and b with comultiplication given by:

∆(a) = a⊗ a− b⊗ b

∆(b) = a⊗ b + b⊗ a

with counit ε(a) = 1, ε(b) = 0, in analogy with formulas for cos(x+y) and sin(x+y)
and cos(0) = 1, sin(0) = 0.

Lemma 3.9. Let T denote the trigonometric coalgebra over C. Let q : T ⊗ T → T
be a linear map defined by:

q(a⊗ a) = α1a + β1b,q(a⊗ b) = α2a + β2b,

q(b⊗ a) = α3a + β3b,q(b⊗ b) = α4a + β4b.

Then such a linear map q is self-distributive and compatible with comultiplication if
and only if the coefficients are found in Table 1, where i =

√−1.
Among these, (V, q) is a shelf in CoComCoalg if and only if (α1, α2, α3, α4) =

(1, 0, 0, 0).

Proof. This result is a matter of verifying the conditions for self-distributivity
and compatibility over all possible choices of inputs. We generated solutions by
both Maple and Mathematica. For the compatibility condition we established a
system of 12 quadratic equations in eight unknowns. Originally there were 16 such
equations, but 4 of these are duplicates. In the Mathematica program we used the
command “Solve” to generate a set of necessary conditions. The self-distributive
condition gave a system of cubic equations in the unknowns. We checked these
subject to the necessary conditions, and found the 21 solutions above.

Expressing ε as a (1×2) matrix and q as the 2×4 matrix
(

α1 α2 α3 α4

β1 β2 β3 β4

)
.

We compute εq = (α1, α2, α3, α4) and ε⊗ ε = (1, 0, 0, 0). The result follows. 2

4. Yang–Baxter Equation and Self-Distributive Maps for Co-
algebras

In this section, we discuss relationships between solutions to the Yang-Baxter
equations and self-distributive maps.

4.1. A Brief Review of YBE
The Yang–Baxter equation makes sense in any monoidal category. Originally

mathematical physicists concentrated on solutions in the category of vector spaces
with the tensor product, obtaining solutions from quantum groups.
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α1 α2 α3 α4 β1 β2 β3 β4

1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
1
2 − i

2 0 0 0 0 1
2 − i

2
1
2

i
2 0 0 0 0 1

2
i
2

1 0 0 0 0 0 1 0
1
2 0 0 − 1

2 0 1
2

1
2 0

1 0 0 0 0 1 0 0
1
4 − i

4 − i
4 − 1

4 − i
4 − 1

4 − 1
4

i
4

1
4

i
4 − i

4
1
4 − i

4
1
4 − 1

4 − i
4

1
4

i
4

i
4 − 1

4 − i
4

1
4

1
4

i
4

1
4

i
4

i
4 − 1

4
i
4 − 1

4 − 1
4 − i

4
1
4 − i

4
i
4

1
4

i
4

1
4 − 1

4
i
4

1
4 − i

4 − i
4 − 1

4
i
4

1
4

1
4 − i

4

1 0 0 0 − i
2 − 1

2
1
2

i
2

1
2 0 − i

2 0 − i
2 0 − 1

2 0
1 0 0 0 − i

2
1
2

1
2 − i

2

1 0 0 0 i
2 − 1

2
1
2 − i

2
1
2 0 i

2 0 i
2 0 − 1

2 0
1 0 0 0 i

2
1
2

1
2

i
2

1 0 0 0 −i 0 0 0
1 0 0 0 i 0 0 0

Table 1: List of self-distributive maps in the trigonometric coalgebra

Let V be a vector space and R : V ⊗ V → V ⊗ V an invertible linear map. We
say R is a Yang–Baxter operator if it satisfies the Yang–Baxter equation, (YBE),
which says that: (R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1 ⊗ R)(R ⊗ 1)(1 ⊗ R). In other words,
the YBE says that the following diagram commutes:

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

R⊗1

**UUUUUUUUUU
1⊗R

uujjjjjjjjj

R⊗1

²²

1⊗R ))TTTTTTTTT

R⊗1ttiiiiiiiiii

1⊗R

²²

A solution to the YBE is also called a braiding.
In general, a braiding operation provides a diagrammatic description of the pro-
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cess of switching the order of two things. This idea is formalized in the concept of
a braided monoidal category, where the braiding is an isomorphism

RX,Y : X ⊗ Y → Y ⊗X.

If we represent R : V ⊗ V → V ⊗ V by the diagram:

V         V

V         V

R

then the Yang–Baxter equation is represented by:

This diagram represents the third Reidemeister move in classical knot theory [7],
and it gives the most important relations in Artin’s presentation of the braid group
[4]. As a result, any invertible solution of the Yang–Baxter equation gives an invari-
ant of braids.

4.2. Shelves in Coalg and Solutions of the YBE
We now demonstrate the relationship between self-distributive maps in Coalg

and solutions to the Yang–Baxter equation.

R
qR q q R

Figure 8: Solutions to YBE and shelves in Coalg

Definition 4.1. Let X be a coalgebra and q : X ⊗X → X a linear map. Then the
linear map Rq : X ⊗X → X ⊗X defined by

Rq = (1X ⊗ q)(τ ⊗ 1X)(1X ⊗∆)

is said to be induced from q.
Conversely, let R : X ⊗ X → X ⊗ X be a linear map. Then the linear map

qR : X ⊗X → X defined by qR = (ε⊗ 1X)R is said to be induced from R.
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RRR

Figure 9: Hypotheses of Theorem 4.2

R

R R

R

R

R

R

R

R

R

R

Figure 10: Proof of Theorem 4.2

Diagrammatically, constructions of one of these maps from the other are depicted
in Fig. 8. Our goal is to relate solutions of the YBE and self-distributive maps in
certain categories via these induced maps.

Theorem 4.2. Let R : X ⊗X → X ⊗X be a solution to the YBE on a coalgebra
X with counit. Suppose R satisfies (ε ⊗ ε)R = (ε ⊗ ε) and RqR

= R. Then (X, qR)
is a shelf in Coalg.

Proof. The conditions in the assumption are presented in Fig. 9. A proof is
presented in Fig. 10. 2

Theorem 4.3. Let X be an object in CoComCoalg. Suppose a self-distributive
linear map q : X ⊗ X → X is compatible with comultiplication. Then Rq is a
solution to the YBE.

Proof. The cocommutativity of ∆ is depicted in Fig. 11. A proof, then, is depicted
in Fig. 12. Note here the condition that q is compatible with comultiplication is:

Co-commut.

Figure 11: Cocommutativity
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Compati−
bility

Self−distributivityCocommutativityNaturality

Naturality Cocommutativity Coassociativity
Naturality

Naturality
Assoc. Naturality Naturality

Coassociativity

Figure 12: Proof of Theorem 4.3

∆(q(a⊗b)) = q(a(1)⊗b(1))⊗q(a(2)⊗b(2)) or, equivalently, ∆q = q(1⊗τ⊗1)(∆⊗∆).
This is applied in Fig. 12 on the bottom row with the equal sign indicated to follow
from compatibility. 2

Propositions 3.1 and 3.5 and Theorem 4.3 imply the following:

Corollary 4.4. Let q be a map defined from a quandle/rack as in Proposition 3.1
or from a Lie algebra as in Proposition 3.5. Then the induced map Rq is a solution
to the YBE.

In the Lie algebra case, the map is given as follows:

Rq((a, x)⊗ (b, y)) = (b, y)⊗ (a, x) + (1, 0)⊗ (0, [x, y]).

This appears, for example, in [12, 19].

Remark 4.5. Next we focus on the case of the adjoint map in Hopf algebras.
Remark 3.7 states that the self-distributive map q(x ⊗ y) = S(y(1))xy(2) is not
compatible with comultiplication, and therefore, Theorem 4.3 cannot be applied.
However, the induced map Rq does, indeed, satisfy the YBE. This is of course for
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Figure 13: Conclusion of Prop. 4.6/ Hypothesis of Prop. 4.7
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UnitDef.
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Figure 14: Proof of Proposition 4.6, second equation

different reasons, and proved in [26], which was interpreted in [15] as a restriction of
a regular representation of the universal R-matrix of a quantum double. Since it is
of a great interest why the same construction gives rise to solutions to the YBE for
different reasons, we include their proofs in diagrams for the reader’s convenience,
and we specify two conditions from [26] in our point of view, to construct Rq from
q, and make a restatement of a theorem in [26] as follows:

Proposition 4.6. In a Hopf algebra, let q = µ(1 ⊗ µ)(S ⊗ 1 ⊗ 1)(τ ⊗ 1)(1 ⊗ ∆).
Then q(q⊗ 1) = q(1⊗µ) and (q⊗µ)(1⊗ τ ⊗ 1)(∆⊗∆) = (1⊗µ)(τ ⊗ 1)(1⊗∆)(1⊗
q)(τ ⊗ 1)(1⊗∆).

Proof. The proofs are indicated in Figs. 6 and 14, respectively. 2

Recall from Section 3.3 that in a Hopf algebra, the map q = µ(1 ⊗ µ)(S ⊗ 1 ⊗
1)(τ ⊗ 1)(1⊗∆) satisfies self-distributivity.

Proposition 4.7. Suppose X is a Hopf algebra and q is any linear map that satisfies
q(q ⊗ 1) = q(1 ⊗ µ) and (q ⊗ µ)(1 ⊗ τ ⊗ 1)(∆ ⊗ ∆) = (1 ⊗ µ)(τ ⊗ 1)(1 ⊗ ∆)(1 ⊗
q)(τ ⊗ 1)(1⊗∆). Then Rq is a solution to the YBE.

Proof. The required conditions are depicted in Fig. 13. And the proof is given in
Fig. 15. 2

In particular, the above proposition applies when q(x⊗ y) = S(y(1))xy(2).
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Naturality Coassociativity

Naturality

HypothesisNaturality
Coassociativity

µ

µq(q      1)=q(1           )

q(q      1)=q(1           )

Figure 15: Proof of Proposition 4.7

5. Graph Diagrams for Bialgebra Hochschild Cohomology

The analogue of group cohomology for associative algebras is Hochschild coho-
mology. Then a natural question is, “What is an analogue of quandle cohomology
for shelves in Coalg?” Since we have developed diagrammatic methods to study
self-distributivity in Coalg, we apply these methods to seek such a cohomology the-
ory, in combination with the interpretations of cocycles in bialgebra cohomology
in terms of deformation theory of bialgebras. The first step toward this goal is to
establish diagrammatic methods for Hochschild cohomology in terms of graph dia-
grams. Such approaches are found for homotopy Lie algebras and operads [21]. On
the other hand, a diagrammatic method using polyhedra for bialgebra cohomology
was given in [22]. In this section we follow the exposition in [22] of cocycles that
appear in bialgebra deformation theory, and establish tree diagrams that can be
used to prove cocycle conditions.

First we recall the Hochschild cohomology for bialgebras from [22]. Let A =
(V, µ, ∆) be a bialgebra over a field k, where µ, ∆ are multiplication and comul-
tiplication, respectively, and dH : Hom(V ⊗p, V ⊗q) → Hom(V ⊗(p+1), V ⊗q) is the
Hochschild differential

dH(f) = µ(1⊗ f) +
p−1∑

i=0

(−1)i+1f(1i ⊗ µ⊗ 1n−i−1) + (−1)p+1µ(f ⊗ 1)

where the left and right module structures are given by multiplication. Du-
ally dC : Hom(V ⊗p, V ⊗q) → Hom(V ⊗p, V ⊗(q+1)) denotes the coHochschild
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differential. These define the total complex (C∗b (A;A), D), where Cn
b (A; A) =

⊕n
i=1Hom(V ⊗(n−i+1), V ⊗i). For example, for a 1-cochain f ∈ Hom(V, V ), dH(f)(x⊗

y) = xf(y) − f(xy) + f(x)y and dC(f)(x) = x(1) ⊗ f(x(2)) − f(x)(1) ⊗ f(x)(2) +
f(x(1))⊗ x(2).

For the rest of this section, we establish graph diagrams for Hochschild cohomol-
ogy and review their aspects in deformation theory of bialgebras.

5.1. Graph Diagrams for Hochschild Differentials
A 1-cochain f ∈ Hom(V, V ) is represented by a circle on a vertical segment as

shown in Fig. 16, where the images of f under the first differentials dH(f) and
dC(f), as computed above, are also depicted. In general, a (m + n − 1)-cochain in
Hom(V ⊗m, V ⊗n) is represented by a diagram in Fig. 17.

(       ) =H + dC
+

,
(       ) =d

Figure 16: Hochschild 1-differentials

n

m

Figure 17: Hochschild (m + n)-cochains

Let τ be the transposition. In general, τi indicates the transposition of the ith
and (i + 1)st factors; the notation is used when type-setting gets complicated. For
(φ1, φ2), where φ1 ∈ Hom(V ⊗2, V ) and φ2 ∈ Hom(V, V ⊗2), the differentials are

dH(φ1) = µ(1⊗ φ1)− φ1(µ⊗ 1) + φ1(1⊗ µ)− µ(φ1 ⊗ 1), (1)
dC(φ1) = (µ⊗ φ1)τ2(∆⊗∆)−∆(φ1) + (φ1 ⊗ µ)τ2(∆⊗∆), (2)
dH(φ2) = (µ⊗ µ)τ2(∆⊗ φ2)− φ2µ + (µ⊗ µ)τ2(φ2 ⊗∆), (3)
dC(φ2) = (1⊗ φ2)∆− (∆⊗ 1)(φ2) + (1⊗∆)(φ2)− (φ2 ⊗ 1)∆. (4)

The 2-cocycle conditions are dH(φ1) = 0, dC(φ1) = dH(φ2), and dC(φ2) = 0. The
differential D of the total complex is D = dH−dC , D(φ1, φ2) = dH(φ1)+[dH(φ2)−
dC(φ1)]− dC(φ2).

We demonstrate a proof that (φ1, φ2) = (dH(f), dC(f)) satisfies dC(φ1) = dH(φ2)
using graph diagrams. First, we use encircled vertices as depicted in Fig. 17 to rep-
resent an element of Hom(V ⊗m, V ⊗n). Then dC(φ1) and dH(φ2) are represented on
the top line of Fig. 18. Substituting (φ1, φ2) = (dH(f), dC(f)), that are represented
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=

d ( ) =

=

H
d

C
( ) =

Figure 18: Hochschild 2-differentials

diagrammatically as in Fig. 16, we perform diagrammatic computations as in the
rest of Fig. 18, and the equality follows because multiplication and comultiplication
are compatible. In particular each diagram in the left of the figure for which the
vertex is external to the operations corresponds to a similar diagram on the right,
but the correspondence is given after considering the compatible structures.

0

Figure 19: Hochschild 3-cocycle conditions

For 3-cochains ψi ∈ Hom(V ⊗3, V ), ψ2 ∈ Hom(V ⊗2, V ⊗2) and ψ3 ∈ Hom(V, V ⊗3),
the 3-cocycle condition is explicitly written as dH(ψ1) = 0, dC(ψ1) = dH(ψ2),
dC(ψ2) = dH(ψ3), and dC(ψ3) = 0, see [22]

dH(ψ1) = µ(1⊗ ψ1)− ψ1(µ⊗ 12) + ψ1(1⊗ µ⊗ 1)− ψ1(12 ⊗ µ) + µ(ψ1 ⊗ 1),
dC(ψ1) = (µ(1⊗ µ)⊗ ψ1)τ(∆⊗∆⊗∆)−∆(ψ1) + (ψ1 ⊗ µ(µ⊗ 1))τ(∆⊗∆⊗∆),
dH(ψ2) = (µ⊗ µ)τ2(∆⊗ ψ2)− ψ2(µ⊗ 1) + ψ2(1⊗ µ)− (µ⊗ µ)τ2(ψ2 ⊗∆),
dC(ψ2) = (µ⊗ ψ2)τ2(∆⊗∆)− (∆⊗ 1)(ψ2) + (1⊗∆)(ψ2)− (ψ2 ⊗ µ)τ2(∆⊗∆),
dH(ψ3) = (µ⊗ µ⊗ µ)τ ′((1⊗∆)∆⊗ ψ3)− ψ3(µ) + (µ⊗ µ⊗ µ)τ ′(ψ3 ⊗ (∆⊗ 1)∆),
dC(ψ3) = (1⊗ ψ3)∆− (∆⊗ 12)(ψ3) + (1⊗∆⊗ 1)(ψ3)− (12 ⊗∆)(ψ3) + (ψ3 ⊗ 1)∆,
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where τ = τ4τ3τ2 and τ ′ = τ5τ2τ3.
The first two 3-cocycle conditions, dH(ψ1) = 0 and dC(ψ1) = dH(ψ2), are de-

picted in Fig. 19. Note that the first is the pentagon identity for associativity. In
particular, ψ1 can be regarded as an obstruction to associativity. The morphism
ψ1 is assigned the difference between the two diagrams that represent the two ex-
pressions (ab)c and a(bc). Thus ψ1 and its diagram are assigned to the change of
diagrams corresponding to associativity, and can be seen to form an actual pen-
tagon, as depicted in Fig. 20.

In Fig. 20 the usual pentagon relation is depicted and adorned. Consider, for
example, the graph at the top of the pentagon (which corresponds to the associ-
ated string ((ab)c)d) and its descendent on the far left (which corresponds to the
associated string (a(bc))d). The top left arrow that represents the parenthetical
regrouping is decorated by a graph (encircled by a dotted arc) with a Neptune’s
trident on the lower left. The solid circle at the trident’s junction represents a 3-
cocycle. The trident, then, corresponds to the unassociated string abc. The dotted
encircling of graphs with tridents is given to indicate that these correspond to the
arrows of the pentagon relation. The 3-cocycle condition is written so that the sum
of the three cochains on the left of the figure is equal to the sum of the two on the
right.

In general, when graph transformations are given the arrows are denoted by
graphs encircled by dotted arcs and with distinguished (singular) vertices indicated
by solid colors or solid circles at the vertex.

Figure 20: Hochschild 3-cocycles as movies, part I

Similarly, the second condition dC(ψ1) = dH(ψ2) can be represented as a se-
quence of applications of the associativity and compatibility conditions as depicted
in Fig. 21. Furthermore, the relations dC(ψ2) = dH(ψ3) and dC(ψ3) = 0 can be
obtained by turning the equations in Fig. 19 upside-down. Similarly, the “movie-
moves” in Figs. 20 and 21 can be turned upside-down. Thus, dC(ψ3) = 0 when the
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pentagon identity for coassociativity holds, and dC(ψ2) = dH(ψ3) when compati-
bility and coassociativity are compared.

Figure 21: Hochschild 3-cocycles as movies, part Il

5.2. Review of Cocycles in Deformation Theory
Next we follow [22] for deformation of bialgebras. A deformation of A = (V, µ, ∆)

is a k[[t]]-bialgebra At = (Vt, µt,∆t), where Vt = V ⊗ k[[t]] and At/(tAt) ∼= A.
Deformations of µ and ∆ are given by µt = µ+ tµ1 + · · ·+ tnµn + · · · : Vt⊗Vt → Vt

and ∆t = ∆ + t∆1 + · · · + tn∆n + · · · : Vt → Vt ⊗ Vt where µi : V ⊗ V → V ,
∆i : V → V ⊗ V , i = 1, 2, · · ·, are sequences of maps. Suppose µ̄ = µ + · · · + tnµn

and ∆̄ = ∆+· · ·+tn∆n satisfy the bialgebra conditions (associativity, compatibility,
and coassociativity) mod tn+1, and suppose that there exist µn+1 : V ⊗ V → V
and ∆n+1 : V → V ⊗ V such that µ̄ + tn+1µn+1 and ∆̄ + tn+1∆n+1 satisfy the
bialgebra conditions mod tn+2. Define ψ1 ∈ Hom(V ⊗3, V ), ψ2 ∈ Hom(V ⊗2, V ⊗2),
and ψ3 ∈ Hom(V, V ⊗3) by

µ̄(µ̄⊗ 1)− µ̄(1⊗ µ̄) = tn+1ψ1 mod tn+2, (5)
∆̄µ̄− (µ̄⊗ µ̄)τ2(∆̄⊗ ∆̄) = tn+1ψ2 mod tn+2, (6)

(∆̄⊗ 1)∆̄− (1⊗ ∆̄)∆̄ = tn+1ψ3 mod tn+2. (7)

For the associativity of µ̄ + tn+1µn+1 mod tn+2 we obtain:

(µ̄+tn+1µn+1)((µ̄+tn+1µn+1)⊗1)−(µ̄+tn+1µn+1)(1⊗(µ̄+tn+1µn+1)) = 0 mod tn+2
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which is equivalent by degree calculations to:

dH(µn+1) = µ(1⊗ µn+1)− µn+1(µ⊗ 1) + µn+1(1⊗ µn+1)− µ(µn+1 ⊗ 1) = ψ1.

Similarly, we obtain: (ψ1, ψ2, ψ3) = D(µn+1,∆n+1). The cochains (ψ1, ψ2, ψ3), de-
fined by deformations (5,6,7) then, satisfy the 3-cocycle condition D(ψ1, ψ2, ψ3) = 0.
This concludes the review of deformation for the 2-cocycle conditions cited from
[22].

6. Towards a Cohomology Theory for Shelves in Coalg

Let (X, q) be a coalgebra with a self-distributive linear map. In this section
we present low-dimensional cocycle conditions for q. We justify our cocycle condi-
tions through the use of analogy with Hochschild bialgebra cohomology using dia-
grammatics and the deformation theories reviewed in the preceding section. Both
analogies are used interchangeably throughout this section, both in definitions and
computations.

6.1. Chain Groups
Following the diagrammatics of the preceding section, we define shelf chain

groups, for positive integers n and i = 1, . . . , n by:

Cn,i
sh (X;X) = Hom(X⊗(n+1−i), X⊗i),

Cn
sh(X;X) = ⊕n

i=1C
n,i
sh (X; X),

where the subscript ‘sh’ denotes shelf. Specifically, the chain groups in low dimen-
sions of our concern are:

C1
sh(X; X) = Hom(X, X),

C2
sh(X; X) = Hom(X⊗2, X)⊕Hom(X,X⊗2),

C3
sh(X; X) = Hom(X⊗3, X)⊕Hom(X⊗2, X⊗2)⊕Hom(X,X⊗3).

To help keep track of the chain groups and their indices, we include the diagram
in Fig. 22 and the following explanation. The reader should be warned that this is
not the standard indexing of double complexes. Instead, the chain groups Cn,i are
located at position (n + 2− i, i) in the positive quadrant of the integer lattice. The
chain groups Cj are the direct sum of the groups along lines of slope (−1). Unlike
spectral sequences, the differential dn,i is defined on multiple factors (instead of a
single factor Cn,i) of Cn and has its image in the factor Cn+1,i. Hence dn,i raises
the first subscript of the cochain groups by 1, and the second subscript indicates
the image factor.

In the remaining sections we will define differentials that are homomorphisms
between the chain groups:

dn,i : Cn
sh(X;X) → Cn+1,i

sh (X; X)(= Hom(X⊗(n+2−i), X⊗i))

and will be defined individually for n = 1, 2, 3 and i = 1, . . . , n + 1, and

D1 = d1,1 − d1,2 : C1
sh(X;X) → C2

sh(X; X),
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i

C 1 C 2 C 3 C 4

1

2,11,1 3,1 4,1

2,2

3,3

3,2 4,2

4,3

1

2

3

2 3 4
n+2−i

Figure 22: The lattice of chain groups and differentials

D2 = d2,1 + d2,2 + d2,3 : C2
sh(X; X) → C3

sh(X; X),
D3 = d3,1 + d3,2 + d3,3 + d3,4 : C3

sh(X; X) → C3
sh(X; X).

6.2. First Differentials
We take

d1,2 : Hom(X; X)(= C1,1
sh (X; X)) → Hom(X,X⊗2)(= C2,2

sh (X;X))

to be the coHochschild differential for the comultiplication d1,2(f) = (1 ⊗ f)∆ −
∆f + (f ⊗ 1)∆. Again by analogy with the differential for multiplication, we take:

d1,1 : Hom(X, X)(= C1,1
sh (X;X)) → Hom(X⊗2, X)(= C2,1

sh (X;X))

to be d1,1(f) = q(1⊗ f)− fq + q(f ⊗ 1). Then define D1 : C1
sh(X; X) → C2

sh(X;X)
by D1 = d1,1 − d1,2.

6.3. Second Differentials
We derive second differentials by analogy with deformation theory, and then show

that our definitions carry through in diagrammatics.
Recall that the self-distributivity, compatibility, and coassociativity are written

as:

q(q ⊗ 1) = q(q ⊗ q)τ2(1⊗ 1⊗∆),
∆q = (q ⊗ q)τ2(∆⊗∆),

(∆⊗ 1)∆ = (1⊗∆)∆.

where τ2 is the transposition acting on the second and third tensor factors. As before
let Xt = X ⊗ k[[t]] and suppose we have partial deformations q̄ = q + · · · + tnqn

and ∆̄ = ∆ + · · · + tn∆n satisfying the above three conditions mod tn+1, and
suppose there are qn+1 and ∆n+1 such that q̄+qn+1 and ∆̄+∆n+1 satisfy the three
conditions mod tn+2.

Setting

q̄(q̄ ⊗ 1)− q̄(q̄ ⊗ q̄)τ2(1⊗ 1⊗ ∆̄) = tn+1ξ1 mod tn+2,
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∆̄q̄ − (q̄ ⊗ q̄)τ2(∆̄⊗ ∆̄) = tn+1ξ2 mod tn+2,

(∆̄⊗ 1)∆̄− (1⊗ ∆̄)∆̄ = tn+1ξ3 mod tn+2,

we obtain:

[q(qn+1 ⊗ 1) + qn+1(q ⊗ 1)]− [qn+1(q ⊗ q)τ2(1⊗ 1⊗∆)+
q(qn+1 ⊗ q)τ2(1⊗ 1⊗∆) +

q(q ⊗ qn+1)τ2(1⊗ 1⊗∆) + q(q ⊗ q)τ2(1⊗ 1⊗∆n+1)] = ξ1,

[∆qn+1 + ∆n+1q]− [(qn+1 ⊗ q)τ2(∆⊗∆) + (q ⊗ qn+1)τ2(∆⊗∆)+
(q ⊗ q)τ2(∆n+1 ⊗∆) + (q ⊗ q)τ2(∆⊗∆n+1)] = ξ2,

[(∆n+1 ⊗ 1)∆ + (∆⊗ 1)∆n+1]− [(1⊗∆n+1)∆ + (1⊗∆)∆n+1] = ξ3.

A natural requirement is D2(qn+1, ∆n+1) = (ξ1, ξ2, ξ3), so we will define D2 :
C2

sh(X;X) → C3
sh(X; X) by D2 = d2,1 + d2,2 + d2,3. Let η1 ∈ C2,1

sh (X;X)(=
Hom(X⊗2, X)) and η2 ∈ C2,2

sh (X; X)(= Hom(X,X⊗2)) be cochains. Then,

d2,1(η1, η2) = [q(η1 ⊗ 1) + η1(q ⊗ 1)]
− [η1(q ⊗ q)τ2(1⊗ 1⊗∆) + q(η1 ⊗ q)τ2(1⊗ 1⊗∆)

+q(q ⊗ η1)τ2(1⊗ 1⊗∆) + q(q ⊗ q)τ2(1⊗ 1⊗ η2)]
d2,2(η1, η2) = [∆η1 + η2q]− [(η1 ⊗ q)τ2(∆⊗∆) + (q ⊗ η1)τ2(∆⊗∆)

+(q ⊗ q)τ2(η2 ⊗∆) + (q ⊗ q)τ2(∆⊗ η2)]
d2,3(η1, η2) = [(η2 ⊗ 1)∆ + (∆⊗ 1)η2]− [(1⊗ η2)∆ + (1⊗∆)η2] .

In fact, d2,3 = dC , the same as the coHochschild 2-differential for the comultiplica-
tion.

η
1

η
2

q ∆

Figure 23: Diagrams for 2-cochains

Figure 24: The first 2-differential d2,1

The diagrammatic conventions for q, a 2-cochain η1 ∈ Hom(X⊗2, X), and ∆, a
2-cochain η2 ∈ Hom(X, X⊗2) are depicted from left to right, respectively, in Fig. 23.

The first and second differentials d2,1(η1, η2), d2,2(η1, η2) are depicted in Fig. 24
and Fig. 25, respectively. Here we note that these diagrams agree with those for
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Figure 25: The second 2-differential d2,2

Figure 26: d2,1(D1(f)) = 0

Hochschild bialgebra cohomology in the sense that they are obtained by the follow-
ing process: (1) Consider the diagrams of the equality in question (in this case the
self-distributivity condition and the compatibility), (2) Mark exactly one vertex of
such a diagram, (3) Take a formal sum of such diagrams over all possible markings.
In Fig. 24, the first two terms correspond to the LHS of q(q⊗1) = q(q⊗q)τ2(12⊗∆),
and one of the two white triangular vertices is marked by a black vertex, representing
the 2-cochain η1, while the remaining white vertex represents q. The negative four
terms correspond to the RHS, and the last term has a circle, representing η2 while
unmarked ones in the rest represent ∆. The same procedure for the compatibility
gives rise to Fig. 25.

Lemma 6.1. For any f ∈ C1
sh(X; X), we have D2D1(f) = 0.

Proof. A proof is depicted in Fig. 26 and Fig. 27. By assumption, η1 = d1,1(f)
and η2 = d1,2(f). Therefore, as in the case of Hochschild homology, marked vertices
representing η1 and η2 are replaced by formal sum of three diagrams representing
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Figure 27: d2,2(D1(f)) = 0

d1,1(f) and d1,2(f), see Fig. 16. The situation in which the first two terms are
replaced by three terms each is depicted in the top two lines of Fig. 26.

A white circle on an edge represents f . The bottom three lines show replacements
for the remaining four negative terms. Then the terms represented by identical
graphs cancel directly. If a white circle representing f appears near the boundary,
then we use the self-distributive axiom to relate this to another term. For example,
the first term on the top left cancels with the third term on the bottom row since
f is on the second tensor factor at the bottom of each.

To facilitate the reader’s understanding of the computation we present the fol-
lowing sequences: 1,−2, 3, 4,−5, 2 and −6, 5,−7,−8, 7,−3,−9, 6,−1, 9,−4, 8. Label
the diagrams below the arrows in Fig. 26 in order with these numbers. The mi-
nus sign indicates the sign of the given term on the given side of the equation,
and the number indicates which diagrams cancel which. A similar labelling can be
accomplished in Fig. 27. 2

We also note the following restricted version:

Lemma 6.2. Let f ∈ C1
sh(X;X) = Hom(X; X). If d1,2(f) = 0 ∈ C2,2

sh (X; X) =
Hom(X;X⊗2), then D2(d1,1(f), 0) = 0.

Proof. The conclusion is restated by the following condition: d2,i(d1,1(f), 0) =
0 for i = 1, 2, since d1,1(f) is not in the domain of the differential d2,3. Then
one computes d2,i(η1, 0) for η1 = d1,1(f) either directly, or diagrammatically using
Figs. 26, and 27, without trivalent vertices that are encircled. 2
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6.4. Third Differentials
Throughout this section, we consider only self-distributive linear maps for co-

commutative coalgebras with counits. The map q needs not be compatible with
the counit (cf. Proposition 3.2), but there must be such a counit present because
sometimes the diagonal has to be defined in a categorical context. In any case,
3-differentials

d3,i : C3
sh(X;X)(= ⊕3

j=1Hom(X⊗(4−j), X⊗j)) →

C4,i
sh (X; X)(= Hom(X⊗(n+2−i), X⊗i))

are defined in Appendix AppendixA, for i = 1, 2, 3. For i = 4, it is defined by
the same map as the differential for ∆ for co-Hochschild cohomology (the pentagon
identity for the comultiplication). These differentials are defined by direct analogues
with Hochschild differentials in diagrammatics, and we will justify our definition in
two more ways: (1) 2-cochains vanish under these maps, (2) 3-cocycles of quandle
and Lie algebra cohomology are realized in these formulas as discussed in the next
section. The defining formulas and diagrammatic methods to derive them are de-
ferred to Appendix AppendixA, and we proceed with statements of lemmas we need
to continue with this cohomology theory.

Lemma 6.3. Let (η1, 0) ∈ Hom(X⊗2, X) ⊂ C2
sh(X; X) (so that η2 = 0). Then

d3,iD2(η1, 0) = 0 for i = 1, 2, 3.

Proof and diagrams are included in Appendix AppendixB.

6.5. Cohomology Groups
Now we use these differentials to define cohomology groups for self-distributive

linear maps for objects in Coalg. Let (X, ∆) be an object in Coalg, and q : X⊗X →
X be a self-distributive linear map. Then Lemmas 6.1 implies

Corollary 6.4. 0 → C1
sh(X; X) D1→ C2

sh(X; X) D2→ C3
sh(X;X) is a chain complex.

This enables us to define the following cohomology related groups:

Definition 6.5. The 1-cocycle and cohomology groups are defined by:

H1,i
sh (X;X) = Z1,i

sh (X;X) = {f ∈ C1,i
sh (X; X) | d1,i(f) = 0}

for i = 1, 2, and
H1

sh(X; X) = Z1,1
sh (X; X)⊕ Z1,2

sh (X; X).

For dimension 2, we define Z2
sh(X; X) = Ker(D2), B2

sh(X;X) = Im(D1), and
H2

sh(X;X) = Z2
sh(X;X)/B2

sh(X; X).

Since the 2-cocycle conditions were formulated directly from a deformation theory
formulation, we have the following:

Proposition 6.6. Let Xt = X ⊗ k[[t]] and suppose we have partial deformations
q̄ = q + · · · + tnqn and ∆̄ = ∆ + · · · + tn∆n satisfying the above three conditions
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mod tn+1, so that they define a self-distributive map in Coalg mod tn+1. Then there
exist qn+1 : X ⊗ X → X and ∆n+1 : X → X ⊗ X such that q̄ + tn+1qn+1 and
∆̄ + tn+1∆n+1 satisfy the three conditions mod tn+2, so that they define a self-
distributive linear map mod tn+2, if and only if (qn+1, ∆n+1) satisfy the 2-cocycle
condition: D2(qn+1,∆n+1) = 0.

To extend the chain complex to dimension 3, we need to make some restrictions.
The reason the following restriction are made (on the chain groups Cn,1 and the
differential maps) is that in the definition of the 3-differential, we assumed that the
comultiplication is cocommutative and is not deformed (η2 = 0). We do not know
if a general 3-differential is defined in the case of a deformed comultiplication.

Thus, for 3-cocycles, we assume that (X, ∆, q) consists of an object (X, ∆) in
CoComCoalg, with a self-distributive linear map q. Let dn,i

1 = dn,i|(Cn,1
sh (X; X))

be the restriction of dn,i to Cn,1
sh (X;X) = Hom(X⊗n, X), and D′

1 = d1,1, D′
n =∑n+1

i=1 dn,i
1 for n = 2, 3 and i = 1, 2, 3. Then consider the sequence

C : 0 → Z1,2
sh (X; X)

D′
1→ C2,1

sh (X;X)
D′2→ C3,1

sh (X; X)
D′

3→ C4,1
sh (X; X).

The prime in the following notation D′
i is just a convention to indicate that they

are restricted maps.

Theorem 6.7. Let (X, ∆) be an object in CoComCoalg and q : X ⊗X → X be a
self-distributive linear map. Then C is a chain complex.

Proof. The condition D′
2D

′
1 = 0 follows from Lemma 6.2, as the domain restric-

tion of D′
1 to Z1,2

sh (X;X) is the same as the assumption of the lemma.
Now we prove D′

3D
′
2 = 0. First note that the domain restriction of D′

2 means
that D′

2(η10) = D2(η1, 0), when we set η2 = 0. Note also that the image of d2,1 does
not land in the domain of d3,4. Hence it is sufficient to prove that d3,iD2(η1, 0) = 0
for i = 1, 2, 3. This is Lemma 6.3. 2

This enables us to define:

Definition 6.8. The 1-cocycle and cohomology group are defined as:

H ′1,1
sh (X; X) = Z ′1,1

sh (X; X) = {f ∈ Z1,2
sh (X; X) | d1,1(f) = 0},

and the 2- and 3-coboundary, cocycle, and cohomology groups are defined as:

Bj,1(X;X) = Image(D′
j−1),

Zj,1(X;X) = Ker(D′
j),

Hj,1(X;X) = Zj,1(X; X)/Bj,1(X;X)

for j = 2, 3.

The cocycles in these theories are called shelf cocycles. The name is a bit of a
notational compromise. They should be called “cocycles for self-distributive linear
maps for objects in the category of cocommutative coalgebras with counit,” which
would inevitably get shortened to cocococo-cycles. There are two points here. First,
the analogy “quandle is to rack as rack is to shelf” does not extend to the terminology
for shelf-cohomology. More importantly, we do not require q to be compatible with
counit in defining cohomology theories, yet we call them shelf cocycles for short.
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7. Relations to Other Cohomology Theories

In this section we examine relations of these cocycles to those in other cohomology
theories, specifically the original quandle cohomology theories [10] and Lie algebra
cohomology.

7.1. Quandle Cohomology
In this section we present procedures that produce shelf 2- and 3-cocycles from

quandle 2- and 3-cocycles, respectively, and show that non-triviality is inherited by
these processes.

First we briefly review the definition of quandle 2- and 3-cocycles. A quandle
2-cocycle is a linear function φ defined on the free abelian group generated by pairs
of elements (x, y) taken from a quandle X such that

φ(x, y)− φ(x, z) + φ(x / y, z)− φ(x / z, y / z) = 0, ∀x, y, z ∈ X

and φ(x, x) = 0 for all x ∈ X. The function φ takes values in some fixed abelian
group A. Similarly a 3-cocycle is a function θ with the properties that

θ(x, y, z)+θ(x/z, y/z, w)+θ(x, z, w) = θ(x/y, z, w)+θ(x, y, w)+θ(x/w, y/w, z/w),

and
θ(x, x, y) = θ(x, y, y) = 0

for all x, y, z, w ∈ X. Quandle cohomology groups Hn
Q(X; A) were defined based on

these conditions, see [10, 11] for details.
These cocycles were used to develop invariants of classical knots and knotted

surfaces. We summarize the construction as follows. Given a quandle homomor-
phism from the fundamental quandle of a codimension 2 embedding to the finite
quandle X, and given a cocycle (φ or θ), we evaluate the cocycle at the incom-
ing quandle elements near each 0-dimensional multiple point (crossing and triple
point, respectively), in the projection of the knot or knotted surface. These values
are added together in the abelian group A, and the collection of the results are
formally collected together as a multiset over all homomorphisms. The cocycle in-
variants are fairly powerful in determining properties of knots and knotted surfaces.
Generalizations have been discovered [1, 8, 9].

Recall that W = k⊕kX (V = kX) is the direct sum of the field k and the vector
space whose basis is comprised of the elements in X, and the self-distributive map
q defined on V was extended to W .

Theorem 7.1. For a quandle 2-cocycle φ with the coefficient group A = k, define
φ̂ : W ⊗ W → W by linearly extending φ̂(x ⊗ y) = φ(x, y), φ̂(1 ⊗ x) = 1, and
φ̂(x⊗ 1) = φ̂(1⊗ 1) = 0 for x, y ∈ X. Then φ̂ satisfies d2,1(φ̂, 0) = 0.

Proof. We write expressions such as (a +
∑

x axx) in the more compact form
(a + Ax). Then

(a +
∑

x

axx)⊗ (b +
∑

y

ayy)⊗ (c +
∑

z

azz)
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= abc(1⊗ 1⊗ 1) + Abc(x⊗ 1⊗ 1) + aBc(1⊗ y ⊗ 1) + ABc(x⊗ y ⊗ 1)
+ abC(1⊗ 1⊗ z) + AbC(x⊗ 1⊗ z) + aBC(1⊗ y ⊗ z) + ABC(x⊗ y ⊗ z)

In order to compute d2,1(φ̂, 0) on expressions such as the one above, we must
compute it on the eight tensor products (1 ⊗ 1 ⊗ 1) through (x ⊗ y ⊗ z). These
calculations are summarized in the table below (juxtaposition or commas are used
in place of ⊗ for typesetting purposes).

0 0 0 0 0 0 1 φ(x, y)

0 ⊗ 1 0 ⊗ 1 1 ⊗ 1 φ(x, y) ⊗ 1 0 ⊗ z 0 ⊗ z 1 ⊗ z φ(x, y) ⊗ z

0 0 0 0 0 0 1 φ(x / y, z)

0 ⊗ 1 0 ⊗ 1 1 ⊗ 1 (x / y) ⊗ 1 0 ⊗ z 0 ⊗ z 1 ⊗ z (x / y) ⊗ z

0 0 0 0 0 0 1 φ(x, z)

0, 0 0, 0 0, 0 0, 0 1, 1 φ(x, z), 1 1, y / z φ(x, z), y / z

0 0 0 0 0 0 1 φ(x / z, y / z)

0, 0 0, 0 0, 0 0, 0 1, 1 x / z, 1 1, y / z x / z, y / z

0 0 0 0 0 0 0 0

0, 0 0, 0 0, 0 0, 0 1, 1 x / z, 1 1, φ(y, z) x / z, φ(y, z)

1111 x111 11y1 x1y1 1z1z xz1z 1zyz xzyz

1⊗1⊗1 x⊗1⊗1 1⊗y⊗ 1 x⊗y ⊗1 1⊗ 1⊗z x⊗1 ⊗z 1⊗y⊗z x⊗y⊗z

Thus the calculation becomes:

d2,1(φ̂, 0)

(
(a +

∑
x

axx)⊗ (b +
∑

y

ayy)⊗ (c +
∑

z

azz)

)

= d2,1(φ̂, 0) (abc(1⊗ 1⊗ 1) + Abc(x⊗ 1⊗ 1) + aBc(1⊗ y ⊗ 1) + ABc(x⊗ y ⊗ 1)
+ (abC(1⊗ 1⊗ z) + AbC(x⊗ 1⊗ z) + aBC(1⊗ y ⊗ z) + ABC(x⊗ y ⊗ z))

= [ 2aBC + ABC φ(x, y) + ABC φ(x / y, z) ]
− [ 2aBC + ABCφ(x / z, y / z) + ABCφ(x, z) ] 2

Remark 7.2. On the other hand, without the factor k in W , the original 2-cocycles
do not give rise to shelf cocycles. Consider V to have as its basis the trivial quandle
X and let q : V ⊗ V → V be induced from / so that q(x⊗ y) = x for all x, y ∈ X.
If η2 = 0 and η1 is any linear function, then d2,1(η1, 0)(x ⊗ y ⊗ z) = −x 6= 0 ∈ V .
But in quandle cohomology any function is a cocycle.

Theorem 7.3. For the cocycles in Theorem 7.1, the following holds: If φ is not
a coboundary, then φ̂ is not a coboundary. In particular, if H2

Q(X; k) 6= 0, then
H2,1

sh (W ;W ) 6= 0.

Proof. A function φ is a coboundary if and only if there is a 1-cochain such that
δg = φ, which is written as φ(x, y) = g(x)− g(x / y) for any x, y ∈ X (see [10]).

Suppose φ̂ is a coboundary, then there is a 1-cochain f such that D1(f) = φ̂.
A 1-cochain f , in this case, is a map f : W → W (= k ⊕ kX), which is written as
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f(a+
∑

axx) = f0(a+
∑

axx)+f1(a+
∑

axx), where a ∈ k, x ∈ X, f0(a+
∑

axx) ∈
k, and f1(a +

∑
axx) ∈ kX. The condition D1(f) = φ̂, then, is written as:

φ̂( (a +
∑

axx)⊗ (b +
∑

byy) ) = a
∑

by +
∑
x,y

axby φ(x, y)

= D1(f)( (a +
∑

axx)⊗ (b +
∑

ayy) )

= {q(1⊗ f)− fq + q(f ⊗ 1)}( (a +
∑

axx)⊗ (b +
∑

ayy) )

In particular, for (a +
∑

axx, b +
∑

byy) = (x, y), we obtain:

φ(x, y) = (x / f1(y))− (f0(x / y) + f1(x / y)) + (f0(x) + f1(x) / y),

and by comparing the k and kX factors, this reduces to φ(x, y) = f0(x)− f0(x / y)
and f1(x / y) = x / f1(y) + f1(x) / y. In particular, the first equation implies that φ
is a coboundary and causes a contradiction. 2

Next we consider 3-cocycles.

Theorem 7.4. For a quandle 3-cocycle θ with the coefficient group A = k, define
θ̂ : W ⊗W ⊗W → W by linearly extending θ̂(x⊗y⊗z) = θ(x, y, z), θ̂(1⊗y⊗z) = 1,
and
θ̂(x⊗y⊗1) = θ̂(x⊗1⊗z) = θ̂(x⊗1⊗1) = θ̂(1⊗y⊗1) = θ̂(1⊗1⊗z) = θ̂(1⊗1⊗1) = 0
for x, y, z ∈ X. Then θ̂ is a shelf 3-cocycle: d3,1(θ̂, 0, 0) = 0.

The proof is found in Appendix AppendixD.

Theorem 7.5. For the cocycles in Theorem 7.4, the following holds: If θ is not
a coboundary, then θ̂ is not a coboundary. In particular, if H3

Q(X; k) 6= 0, then
H3,1

sh (W ;W ) 6= 0.

Proof. The proof is similar to that of Theorem 7.3. The cochain θ is a coboundary
if and only if there is a 2-cochain φ such that δφ = θ, which is written as θ(x, y, z) =
φ(x, y) + φ(x / y, z)− φ(x, z)− φ(x / z, y / z) for any x, y, z ∈ X (see [10]).

Suppose θ̂ is a coboundary. Then there is a 2-cochain f such that D2(f) = θ̂. A
2-cochain f , in this case, is a map f : W ⊗W → W (= k ⊕ kX), that is written as:

f( (a +
∑

axx)⊗ (b +
∑

byy) ) = f0( (a +
∑

axx)⊗ (b +
∑

byy) )+

f1( (a +
∑

axx)⊗ (b +
∑

byy) ),

where a ∈ k, x, y ∈ X, f0(a+
∑

axx) ∈ k, and f1(a+
∑

axx) ∈ kX. We take specific
values and compute θ̂ = D2(f) evaluated at x⊗y⊗z. We have θ̂(x⊗y⊗z) = θ(x, y, z),
and

D2(f)(x⊗ y ⊗ z) = [ f0(x⊗ y) + f1(x⊗ y) / z + f0((x / y)⊗ z) + f1((x / y)⊗ z) ]
− [ f0((x / z)⊗ (y / z)) + f1((x / z)⊗ (y / z)) + f0(x⊗ z)

+f1(x⊗ z) / (y / z) + (x / z) / f1(y ⊗ z) ],
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and comparing the elements on k, we obtain

θ(x, y, z) = f0(x⊗ y) + f0((x / y)⊗ z)− f0((x / z)⊗ (y / z))− f0(x⊗ z),

so that by defining φ(x, y) = f0(x⊗ y) for any x, y ∈ X, we obtain a contradiction
θ = δφ. 2

7.2. Lie Algebra Cohomology
Let q : N ⊗ N → N be the map defined in Lemma 3.2, where N = k ⊕ g for a

Lie algebra g over a ground field k. Let ψ : g × g → g be a Lie algebra 2-cocycle,
with adjoint action. Then ψ is bilinear and satisfies

ψ(y, x) = −ψ(x, y),

[ψ(x, y), z] + [ψ(y, z), x] + [ψ(z, x), y] + ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y) = 0.

It defines a linear map ψ : g ⊗ g → g. The following result says that a Lie algebra
2-cocycle gives rise to a shelf 2-cocycle, when the comultiplication is fixed and
undeformed (η2 = 0).

Theorem 7.6. Let ψ : g × g → g be a Lie algebra 2-cocycle with adjoint action.
Define ψ̂ : N ⊗N → N by ψ̂((a+x)⊗ (b+ y)) = ψ(x⊗ y) for a, b, c ∈ k, x, y, z ∈ g.
Then ψ̂ is a shelf 2-cocycle: d2,1(ψ̂, 0) = d2,2(ψ̂, 0) = 0.

Proof. One computes:

d2,1(ψ̂, 0)( (a + x)⊗ (b + y)⊗ (c + z) )

= { q( ψ(x, y)⊗ (c + z) ) + ψ̂( (ab + bx + [x, y])⊗ (c + z) )}
− { { ψ̂(q ⊗ q) + q(ψ̂ ⊗ q) + q(q ⊗ ψ̂) }τ2( (a + x)⊗ (b + y)
⊗( (c + z)⊗ 1 + 1⊗ z ) ) }

= { (cψ(x, y) + [ψ(x, y), z] ) + ( bψ(x, z) + ψ([x, y], z) ) }
− { ( cψ(x, y) + ψ([x, z], y) + ψ(x, [y, z]) )

+( bψ(x, z) + [ψ(x, z), y] ) + ( [x, ψ(y, z)] ) } = 0.

The other equality d2,2(ψ̂, 0) = 0 is checked similarly. 2

Next we consider Lie algebra 2-cocycles ψ : g × g → k with the trivial rep-
resentation on the ground field k. In this case the 2-cocycle condition is being
skew-symmetric and satisfying the Jacobi identity:

ψ(y, x) = −ψ(x, y),
ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y) = 0.

Let g′ = kγ + g where γ ∈ g and [γ, z] = 0 for all z ∈ g. Then g′ is a Lie algebra
with Lie bracket given by [aγ + x, bγ + y]′ = [x, y] ∈ g ⊂ g′. For a given 2-cocycle
ψ : g× g → k, define ψ′ : g′ × g′ → g′ by ψ′(aγ + x, bγ + y) = ψ(x, y)γ ∈ g′. Then
we claim that ψ′ satisfies the 2-cocycle condition with adjoint action. We compute:

[ψ′(aγ + x, bγ + y), cγ + z]′ = [ψ(x, y)γ, cγ + z]′ = [ψ(x, y)γ, z] = 0.



Journal of Homotopy and Related Structures, vol. 3(1), 2008 48

Therefore the first three terms involving the adjoint action, in fact, vanish by con-
struction. The last three terms reduce to the 2-cocycle condition of ψ, since

ψ′([aγ + x, bγ + y]′, cγ + z) = ψ′([x, y], cγ + z) = ψ([x, y], z).

Hence this reduces to the previous case. We summarize this situation as:

Theorem 7.7. A Lie algebra 2-cocycle valued in the ground field with trivial rep-
resentation gives rise to a shelf 2-cocycle.

Next we investigate relations for 3-cocycles. A Lie algebra 3-cocycle with adjoint
action is a totally skew-symmetric trilinear map ζ : g× g× g → g for a Lie algebra
g that satisfies

[ζ(x, y, z), w]− [ζ(x, y, w), z] + [ζ(x, z, w), y]− [ζ(y, z, w), x]
− ζ([x, y], z, w) + ζ([x, z], y, w)− ζ([x,w], y, z)
+ ζ([y, z], x, w)− ζ([y, w], x, z) + ζ([z, w], x, y) = 0.

This defines a linear map ζ : g⊗ g⊗ g → g. Recall that we defined N = k ⊕ g.

Theorem 7.8. Let ζ : g× g× g → g be a Lie algebra 3-cocycle with adjoint action.
Define ζ̂ : N ⊗N ⊗N → N by ζ̂((a + x)⊗ (b + y)⊗ (c + z)) = ζ(x⊗ y ⊗ z). Then
ζ̂ satisfies d3,1(ζ̂, 0, 0) = 0.

Proof. There are four positive (L1, L2, L3, L4) and three negative (R1, R2, R3)
terms in d3,1(ζ̂, 0, 0) (the last negative term vanishes because ξ2 = 0 in (ξ1, ξ2, ξ3) =
(ζ̂, 0, 0)). We evaluate each term for a general element

(a + x)⊗ (b + y)⊗ (c + z)⊗ (d + w)

as before. The first term L1 is

q( ζ(x, y, z)⊗ (d + w) ) = d ζ(x, y, z) + [ζ(x, y, z), w].

The second term L2 is

ζ̂(q ⊗ q ⊗ 1)( (a + x)⊗ {(c + z)⊗ (b + y)⊗ 1 + 1⊗ (b + y)⊗ z} ⊗ w )

= ζ̂( (ac + cx + [x, z])⊗ (b + y)⊗ w + (a + x)⊗ [y, z]⊗ w )
= c ζ(x, y, w) + ζ([x, z], y, w) + ζ(x, [y, z], w)

By similar calculations the remaining terms give

L3 : b ζ(x, z, w) + [ζ(x, z, w), y]
L4 : [x, ζ(y, z, w)]
R1 : b ζ(x, z, w) + ζ([x, y], z, w)
R2 : c ζ(x, y, w) + [ζ(x, y, w), z]
R3 : d ζ(x, y, z) + ζ([x,w], y, z) + ζ(x, [y, w], z) + ζ(x, y, [z, w])

and the result (L1 + L2 + L3 + L4)− (R1 + R2 + R3) = 0 follows. 2
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Theorem 7.9. For the cocycles in Theorem 7.7, the following holds: If ψ is not
a coboundary, then ψ̂ is not a coboundary. In particular, if the second cohomology
group of the Lie algebra cohomology with adjoint action is non-trivial (H2

Lie(g; g) 6=
0), then H2

sh(N ;N) 6= 0.

Proof. The proof is similar to that of Theorem 7.3. If ψ is a coboundary, then
there is a 1-cochain g such that δg = ψ, which is written as ψ(x, y) = [x, g(y)] +
[g(x), y]− g([x, y]) for any x, y ∈ g.

Suppose φ̂ is a coboundary, then there is a 1-cochain f such that D1(f) = ψ̂. A
1-cochain f , in this case, is a linear map f : N → N(= k ⊕ g), that is written as
f(a+x) = f0(a+x)+f1(a+x), where a ∈ k, x ∈ g, f0(a+x) ∈ k, and f1(a+x) ∈ g.
The condition D1(f) = φ̂, then, is written as

ψ̂( (a + x)⊗ (b + y) ) = ψ(x, y)
= D1(f)( (a + x)⊗ (b + y) )
= {q(1⊗ f)− fq + q(f ⊗ 1)}( (a + x)⊗ (b + y) )

In particular, for (a + x, b + y) = (x, y), we obtain

ψ(x, y) = q(x⊗ f1(y))− (f0(q(x⊗ y)) + f1(q(x⊗ y))) + (f0(x) + q(f1(x)⊗ y))
= [x, f1(y)]− f0([x, y])− f1([x, y]) + f0(x) + [f1(x), y].

Comparing the elements in k and g in the image, we obtain

0 = −f0([x, y]) + f0(x),
ψ(x, y) = [x, f1(y)]− f1([x, y]) + [f1(x), y],

and the second implies that ψ is a coboundary. 2

Let Wp be the Witt algebra, a Lie algebra over the field Fp with p elements for
a prime p > 3. Specifically, Wp has basis ea, a ∈ Fp and has bracket defined by
[ea, eb] = (b− a)ea+b. Then it is known [5] (we thank J. Feldvoss for informing us)
that the Lie algebra cohomology with trivial action H2

Lie(Wp;Fp) is one-dimensional
and generated by the Virasoro cocycle c(ea, e−a) = a(a2 − 1) (otherwise zero). Let
W ′

p = kγ ⊕ Wp, N(W ′
p) = k ⊕ W ′

p be the object in CoComCoalg with a self-
distributive linear map q constructed in Section 3.1. Then we have:

Corollary 7.10. H2
sh(N(W ′

p); N(W ′
p)) 6= 0.

8. A Compendium of Questions

What are more precise relationships among the Lie bracket, self-distributivity,
solutions to the Yang-Baxter equations, Hopf algebras, and quantum groups? Can
the cocycles constructed herein be used to construct invariants of knots and knotted
surfaces? Can the coboundary maps be expressed skein theoretically? Is there a
spectral sequence that is associated to a filtration of the chain groups? If so, what are
the differentials? What does it compute? Are there non-trivial cocycles among any
of the trigonometric shelves? The proofs of the main theorems come from grinding
through computation. Are there more conceptual proofs? As the referee asked, are
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there maps among homology groups, such as H2
Q → H2

sh or H2
Lie → H2

sh? How
can the theory be extended to higher dimensions, such as to higher dimensional
Lie algebras, or Lie 2-algebras? How, if at all, do the Zamolodchikov tetrahedron
equation and the Jacobiator identity of a Lie 2-algebra, relate to shelf cohomology?
Can it be shown to be a cohomology theory in the case when ξ2 and ξ3 are non-zero?
Is there a spin-foam interpretation of the 3-cocycle conditions?
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A. Definition and diagrammatics of the third differentials

First we explain the diagrammatics. Recall that 3-cocycle conditions in Hochschild
cohomology correspond to two different sequences of relations applied to graphs
that change one graph to another. At the top of Fig. 28, a graph representing
q(q ⊗ 1)(q ⊗ 12) is depicted. There are two ways to apply sequences of
self-distributivity to this map to get the map represented by the bottom graphs.
Let ξj ∈ Hom(X⊗(4−j), X⊗j) ⊂ C3

sh(X; X), j = 1, 2, 3. A 3-cochain ξ1 represented
by a black triangular vertex with three bottom edges and a single top edge corre-
sponds to applying the self-distributivity relation to change a graph to another, and
corresponds to where the self-distributivity relation was applied. The two different
sequences are shown at the left and right of the figure. These sequences give rise
to the LHS and RHS of d3,1(ξ1, ξ2, ξ3). Similar graphs are obtained as shown in
Figs. 29 and 30. The third differential is defined as D3 = d3,1 + d3,2 + d3,3 + d3,4.
The differentials thus obtained are:

d3,1(ξ1, ξ2, ξ3) = [q(ξ1 ⊗ 1) + ξ1(q ⊗ q ⊗ 1)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)
+ q(ξ1 ⊗ q)(12 ⊗ τ ⊗ 1)(13 ⊗∆)(12 ⊗ q ⊗ 1)
(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)
+ q(q ⊗ ξ1)(q ⊗ q ⊗ 13)(1⊗ τ ⊗ 14)
(12 ⊗∆⊗ 13)(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 1)(12 ⊗∆⊗∆)
+ q(q ⊗ q)(q ⊗ q ⊗ q ⊗ q)(1⊗ τ ⊗ 12 ⊗ τ ⊗ 1)(12 ⊗∆⊗ 13)
(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 12)(12 ⊗∆⊗ ξ3)]
− [ξ1(q ⊗ 12) + q(ξ1 ⊗ q)(12 ⊗ τ ⊗ 1)(13 ⊗∆)
+ ξ1(q ⊗ q ⊗ q)(1⊗ τ ⊗ 13)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)(13 ⊗∆)
+ q(q ⊗ q)(1⊗ τ ⊗ 1)(q ⊗ q ⊗ 12)(12 ⊗∆⊗ 12)(13 ⊗ ξ2)
(12 ⊗ τ ⊗ 1)(13 ⊗∆)
+ q(q ⊗ q)(q ⊗ q ⊗ q ⊗ q)(1⊗ τ ⊗ τ ⊗ 13)(14 ⊗ τ ⊗ τ ⊗ 12)
(1⊗ τ ⊗∆⊗ τ ⊗ 1)(12 ⊗∆⊗ ξ3)]

d3,2(ξ1, ξ2, ξ3) = [∆ξ1 + ξ2(q ⊗ q)(1⊗ τ ⊗ 1)(12 ⊗∆)
+ (q ⊗ q)(1⊗ τ ⊗ 1)(ξ2 ⊗∆)(12 ⊗ q)(1⊗ τ ⊗ 1)(12 ⊗∆)
+ (q ⊗ q)(1⊗ τ ⊗ 1)(∆⊗ 12))(q ⊗ ξ2)(1⊗ τ ⊗ 1)(12 ⊗∆)
+ (q ⊗ q)(q ⊗ τ ⊗ q)(12 ⊗ q ⊗ q ⊗ 12)(1⊗ τ ⊗ τ ⊗ τ ⊗ 1)
(∆⊗ 12 ⊗ τ ⊗∆)(1⊗ τ ⊗ 13)(1⊗∆⊗ ξ3)]

− [ξ2(q ⊗ 1) + (q ⊗ q)(1⊗ τ ⊗ 1)(ξ2 ⊗∆)
+ (ξ1 ⊗ q)(13 ⊗ q ⊗ 1)(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 1)(∆⊗∆⊗∆)
+ (q ⊗ ξ1)(q ⊗ 14)(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 1)(∆⊗∆⊗∆)
+ (q ⊗ q)(q ⊗ q ⊗ q ⊗ q)(1⊗ τ ⊗ τ ⊗ τ ⊗ 1)(12 ⊗ τ ⊗ τ ⊗∆)
(1⊗ τ ⊗ τ ⊗ 12)(∆⊗∆⊗ ξ3)]

d3,3(ξ1, ξ2, ξ3) = [(∆⊗ 1)ξ2 + (ξ2 ⊗ q)(1⊗ τ ⊗ 1)(∆⊗∆)
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+ (q ⊗ q ⊗ q)(1⊗ τ ⊗ 13)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)(ξ3 ⊗∆)]
− [ξ3q + (1⊗∆)ξ2 + (q ⊗ ξ2)(1⊗ τ ⊗ 1)(∆⊗∆)

+ (q ⊗ q ⊗ q)(1⊗ τ ⊗ τ ⊗ 1)(12 ⊗ τ ⊗ 12)(1⊗∆⊗ 13)(∆⊗ ξ3)]

12

11 1 12((xw  )(z  w  ))((yz  )w  )2 2
((xw  )(zw  )  )((yw  )(zw  )  )11 2 1 12 2 2

((xw  )(z  w  ))((yw  )(z  w  ))11 1 12 21 2 22

((xw  )(z  w  ))((yw  )(z  w  ))11 211 12 2 22

((xy)z)w

((xz  )(yz  ))w1 2

1 1((xz  )w  )((yz  )w  )2 2

((xy)w  )(zw  )1 2

((xw  )(yw  ))(zw  )211

Figure 28: First 3-differential, d3,1
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Figure 29: Second 3-differential, d3,2

Figure 30: Third 3-differential, d3,3
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B. Proving D′
3D

′
2 = 0

Proof of Lemma 6.3. This is proved by calculations that seem complicated with-
out diagrammatics. We sketch our computational method. For ξ1 ∈ Hom(X⊗3, X) ⊂
C3

sh(X;X), the first two terms of d3,1(ξ1) are q(ξ1 ⊗ 1) and ξ1(q ⊗ q ⊗ 1)(1 ⊗ τ ⊗
12)(12 ⊗∆ ⊗ 1), that are diagrammatically represented by left of Fig. 31, (1) and
(2), respectively. The black triangular four-valent vertex represents ξ1. On the other
hand, the first term q(ξ1⊗1) corresponds to the change of the diagrams represented
in (A) and (B). Such a change of diagrams corresponds to d

(2)
1 (η1) as depicted in

Fig. 24. Therefore the first terms of d3,1d2,1(η1, 0) are q(ξ1 ⊗ 1) = q(d2,1(η1, 0)⊗ 1)
consisting of five terms represented by the diagrams on the right top two rows
in Fig. 31. The third row consists of the positive terms of the second term (2),
d2,1(η1, 0)(q ⊗ q ⊗ 1)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1). Thus to prove this lemma, we write
out all terms and check that they cancel. For example, the terms on the right of
Fig. 31 labelled with (a) and (b) cancel.

(b)

(1)

(2)

(A)

(B)

(C)

(a)

Figure 31: A strategy for a proof

The essential steps in the proofs are found in Figs. 32 and 33 below. The first rows
of Fig. 32 coincide with those of Fig. 31. The remaining left columns indicate the
different diagrams that are obtained by replacing the four-valent black vertices by
the two sides of the self-distributive law. The right-hand entries are the expansions
of the terms in the next differential. The terms are numbered and those in Fig. 32
and Fig. 33 cancel.

It is somewhat difficult to see the cancellation of the terms labelled 7, 10, 11, 12, 13,
and 14. The terms labelled 15 coincide by applications of coassociativity and co-
commutativity. The identity between these terms becomes obvious after one works
through the preceding terms. The proofs that the diagrams represent the same linear
maps are provided below in Appendix AppendixC. 2

The next illustrations represent the proof of Lemma 6.3.
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15

1

3 4 5

2

3 6

87 9

84

1110 12

5 9

13 14

Figure 32: d3,1D2(η1, 0), LHS

15

1

6

16 17 18

2

17

19 11 14

19 16

18

7 10 13

12

Figure 33: d3,1D2(η1, 0), RHS
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1 2

3 4 5

3

6 7

4 5

8 9 10

Figure 34: d3,2D2(η1, 0), LHS

11

2

12 13

1

14 15

14 12 15 13

6 8 10

7 9

Figure 35: d3,2D2(η1, 0), RHS
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6

4 5

2

2 3

1 1

35

6

4

Figure 36: d3,3D2(η1, 0) = 0

C. Proving identities between terms in Fig. 32 and 33

The next illustrations give the outlines of the proofs that the terms labelled 7,
10, 11, 12, 13, and 14 represent the same functions in Figs. 32 and 33.

Self−
distributive

Distant
operators
commute

Self−
distributive

Distant
operators
commute

Distant
operators
commute

LHS

RHS

Coassociative

CocommutativeCoassociative

Compatible

Figure 37: The term 7
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commute

Self-
distributive Distant

operators
commute

Distant
operators
commute

Distant
operators
commute

LHS

RHS

Coassociative

Cocommutative

Compatible Coassociative

Figure 38: The term 10

Distant
operators
commute

Distant
operators
commute

Self−
distributive

Distant
operators
commute

LHS RHS

Compatible

Coassociative
Cocommutative

Figure 39: The term 11

Distant
operators
commute

Self−
distributive

Distant
operators
commute

LHS RHS

CoassociativeCoassociative

Figure 40: The term 12
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Figure 41: The term 13

Coassociative

Distant
operators
commute

Distant
operators
commute

Self−
distributive

LHS RHS

Coassociative Cocommutative Compatible

Figure 42: The term 14

D. Proof of Theorem 7.4

Proof of Theorem 7.4. In a manner similar to the proof of Theorem 7.1, we begin
by expanding:

(a +
∑

axx)⊗ (b +
∑

byy)⊗ (c +
∑

czz)⊗ (d +
∑

dww)

= (a + Ax)⊗ (b + By)⊗ (c + Cz)⊗ (d + Dw)
= abcd(1⊗ 1⊗ 1⊗ 1) + Abcd(x⊗ 1⊗ 1⊗ 1)
+ aBcd(1⊗ y ⊗ 1⊗ 1) + ABcd(x⊗ y ⊗ 1⊗ 1)
+ abCd(1⊗ 1⊗ z ⊗ 1) + AbCd(x⊗ 1⊗ z ⊗ 1)
+ aBCd(1⊗ y ⊗ z ⊗ 1) + ABCd(x⊗ y ⊗ z ⊗ 1)
+ abcD(1⊗ 1⊗ 1⊗ w) + AbcD(x⊗ 1⊗ 1⊗ w)
+ aBcD(1⊗ y ⊗ 1⊗ w) + ABcD(x⊗ y ⊗ 1⊗ w)
+ abCD(1⊗ 1⊗ z ⊗ w) + AbCD(x⊗ 1⊗ z ⊗ w)
+ aBCD(1⊗ y ⊗ z ⊗ w) + ABCD(x⊗ y ⊗ z ⊗ w)
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In a table similar to the one above, the values of the various operators q(θ̂ ⊗ 1)
and so forth can be evaluated on each of the sixteen tensors (1⊗ 1⊗ 1⊗ 1) through
(x⊗ y ⊗ z ⊗ w). Most of these evaluations give 0 (a result we leave to the reader).
The exceptions are the values on (1⊗ y ⊗ z ⊗ w) and (x⊗ y ⊗ z ⊗ w). We remind
the reader that ξ2 = 0 and ξ3 = 0, so those terms do not appear below.

We compute:
q(θ̂ ⊗ 1)(1⊗ y ⊗ z ⊗ w)

= θ̂(q ⊗ q)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)(1⊗ y ⊗ z ⊗ w)

= q(θ̂ ⊗ q)(12 ⊗ τ ⊗ 1)(12 ⊗ q ⊗∆)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)(1⊗ y ⊗ z ⊗ w)

= (θ̂)(q ⊗ 12)(1⊗ y ⊗ z ⊗ w)

= q(θ̂ ⊗ q)(12 ⊗ τ ⊗ 1)(13 ⊗∆)(1⊗ y ⊗ z ⊗ w)

= θ̂(q ⊗ q ⊗ 1)(1⊗ τ ⊗ 1⊗ q)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)(13 ⊗∆)(1⊗ y ⊗ z ⊗ w)

= 1,

and

q(q ⊗ θ̂)(q ⊗ q ⊗ 13)(1⊗ τ ⊗ 14)(12 ⊗∆⊗ 13)(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 1)

(12 ⊗∆⊗∆)(1⊗ y ⊗ z ⊗ w)

= q(q ⊗ q)(1⊗ τ ⊗ 1)(q ⊗ q ⊗ ξ2)(1⊗ τ ⊗ 13)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)

(13 ⊗∆)(1⊗ y ⊗ z ⊗ w) = 0.

The last equality follows trivially since ξ2 = 0. A scheme for making these compu-
tations is illustrated in Fig 43. Meanwhile,

q(θ̂ ⊗ 1)(x⊗ y ⊗ z ⊗ w) = θ(x, y, z)

θ̂(q ⊗ q)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)(x⊗ y ⊗ z ⊗ w) = θ(x / z, y / z, w)

q(θ̂⊗ q)(12 ⊗ τ ⊗ 1)(12 ⊗ q⊗∆)(1⊗ τ ⊗ 12)(12 ⊗∆⊗ 1)(x⊗ y⊗ z⊗w) = θ(x, z, w)

(θ̂)(q ⊗ 12)(x⊗ y ⊗ z ⊗ w) = θ(x / y, z, w)

q(θ̂ ⊗ q)(12 ⊗ τ ⊗ 1)(13 ⊗∆)(x⊗ y ⊗ z ⊗ w) = θ(x, y, w)

θ̂(q ⊗ q ⊗ 1)(1⊗ τ ⊗ 1⊗ q)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)(13 ⊗∆)(x⊗ y ⊗ z ⊗ w) =

θ(x / w, y / w, z / w),

and

q(q ⊗ θ̂)(q ⊗ q ⊗ 13)(1⊗ τ ⊗ 14)(12 ⊗∆⊗ 13)(12 ⊗ τ ⊗ 12)(1⊗ τ ⊗ τ ⊗ 1)

(12 ⊗∆⊗∆)(x⊗ y ⊗ z ⊗ w)
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= q(q ⊗ q)(1⊗ τ ⊗ 1)(q ⊗ q ⊗ ξ2)(1⊗ τ ⊗ 13)(12 ⊗∆⊗ 12)(12 ⊗ τ ⊗ 1)

(13 ⊗∆)(x⊗ y ⊗ z ⊗ w) = 0.

The result follows. 2

y z

y z z

w

w w

yz w z w

w y zz wwzz y

w w y wzz

zw w wzy

z     w

1

1

1

1

1

1

1 θ (y, z,w)

θ (y, z,w)1

0

Figure 43: A sample computation with a 3-cocycle
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