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Abstract

We generalize the notion of a crossed module of groups to that of a

crossed module of racks. We investigate the relation to categorified racks,

namely strict 2-racks, and trunk-like objects in the category of racks,

generalizing the relation between crossed modules of groups and strict

2-groups. Then we explore topological applications. We show that by

applying the rack-space functor, a crossed module of racks gives rise to a

covering. Our main result shows how the fundamental racks associated to

links upstairs and downstairs in a covering fit together to form a crossed

module of racks.

1 Introduction

Racks are generalizations of groups whose axioms capture essential properties of
group conjugation and algebraically encode two of the Reidemeister moves. Be-
cause of the latter, they have proven useful in defining link and knot invariants.
We remind the reader that a rack is a set X equipped with a binary operation
(x, y) 7→ x⊳ y that is invertible and self-distributive, i.e.

(x⊳ y)⊳ z = (x⊳ z)⊳ (y ⊳ z)
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for all x, y, z ∈ X . The most important example of a rack structure comes from
the conjugation in a group, i.e. defining g ⊳ h := h−1gh for all g, h ∈ G for a
group G satisfies both rack axioms.

A crossed module of groups is a quadruple (M,N, µ, ·) where M and N are
groups, µ : M → N is a group homomorphism, and · is an action of N on M by
automorphisms such that µ is equivariant (considering on N the adjoint action)
and µ satisfies the Peiffer identity, that is, the operation m · µ(m′) is just the
conjugation (m′)−1mm′ in M for all m,m′ ∈ M .

Crossed modules of groups were introduced by J.H.C. Whitehead [20, 21]
in 1949. Whitehead remarked that for a pointed pair of spaces (X,A), the
connecting homomorphism in the long exact sequence of the pair

∂ : π2(X,A) → π1(A)

is a crossed module of groups using the natural action of π1(A) on all higher ho-
motopy groups. Whitehead showed in particular that in the special case where
X is obtained from A by attaching 2-cells, the crossed module is free. Crossed
modules were also used to express 3-cohomology classes by (equivalence classes
of) algebraic objects, see [15], [11]. Crossed modules have been generalized to
higher dimensional crossed complexes in order to capture higher degree homo-
topy, see for example Brown’s work on the higher van Kampen Theorem [2], [3].
More recently, crossed modules of groups have attracted renewed interest in the
search for categorifications of algebraic notions, as they are equivalent to strict
2-groups, i.e. category objects in the category of groups, see [13] or [14].

In one of the foundational articles about racks Fenn and Rourke introduce
the notion of the fundamental rack of a link [7], which is at the heart of their
approach to link invariants. Given a codimension two embedding L : M ⊂
Q in a connected manifold Q which is framed and transversally oriented, the
fundamental rack of the link L is a set of homotopy classes of paths in Q0 :=
Q \N(M), where N(M) is a (closed) tubular neighborhood of the submanifold
M ⊂ Q. In fact, the fundamental rack is an example of an augmented rack,
which we will encounter later in this paper. Its associated crossed module of
groups is Whitehead’s crossed module of groups

∂ : π2(Q,Q0) → π1(Q0).

In this paper, we generalize the notion of a crossed module from groups
to racks. Motivation for this study comes from the relation of crossed module
of groups to strict 2-groups on the algebraic side and from the notion of the
fundamental rack of a link on the topological side.

On the algebraic side, we first develop three classes of examples of crossed
modules of racks, which are (in growing generality): crossed modules of groups,
augmented racks and generalized augmented racks. This last structure consists
simply of a rack R, a rack module X and an equivariant map p : X → R. We
begin in Section 2 by reminding the reader of relevant rack definitions and then
we introduce the notion of a crossed module of racks. We show that a generalized
augmented rack is equivalent to a crossed module of racks. In other words, we
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show that the rack structure on X is encoded in the module structure. We
provide examples of crossed modules of racks and demonstrate the relationship
between the examples.

We continue in Section 3, by investigating the relation of crossed modules
of racks to strict 2-racks, or categorical racks, i.e. to category objects in the
category of racks. The relation is, disappointingly, not as strong as in the group
setting. The main reason for this is that we lack the ability to construct a
category from a rack, a module and an equivariant map - a construction which
is well-known in the case of groups.

Our remedy is to consider trunk-like objects in the category of racks, which
we explore in Section 4. The correspondence between these objects and crossed
modules of racks is much better behaved, as demonstrated in Proposition 4.8.

Finally, we conclude in Section 5, by exploring applications of these rack
structures to knot theory. We note that Kauffman and Martins [12, 17, 16]
have obtained knot invariants from strict 2-groups considered as crossed mod-
ules. Given the relationship between strict 2-groups and strict 2-racks, we ex-
pect that Kauffman and Martins’ methods relate to the material presented here.
Moreover, it turns out that the notion of a crossed module of racks is related
to coverings in the setting of link invariants of [7]. On one hand, passing to the
associated rack spaces transforms a crossed module of racks into a covering, as
shown in Proposition 5.1. On the other hand, starting from links in a covering,
we can construct a crossed module of the corresponding fundamental racks as
proven in Theorem 5.4.

Acknowledgements: FW heartily thanks Alan Weinstein for the invitation
to UC Berkeley during Spring 2013. FW furthermore thanks Simon Covez for
discussion about the associated group of a rack.

2 Crossed modules of racks

2.1 Basic definitions

We begin by recalling the notion of a rack, which, as mentioned, results from
axiomatizing the notion of group conjugation.

Definition 2.1. A right rack consists of a set X equipped with a binary
operation denoted (x, y) 7→ x ⊳ y such that for all x, y, and z ∈ X , the map
x 7→ x⊳ y is bijective and

(x⊳ y)⊳ z = (x ⊳ z)⊳ (y ⊳ z).

There is also the notion of a left rack where the operation is written (x, y) 7→
x⊲ y. The left rack operation, then, satisfies

x⊲ (y ⊲ z) = (x⊲ y)⊲ (x⊲ z)

for all x, y, and z ∈ X . One can always transform a left rack into a right rack
(and vice-versa) by sending the bijective map y 7→ x⊲ y to its inverse (which is
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then denoted z 7→ z ⊳ x). In this paper, we will work with right racks as in [7],
[8].

The conjugation in a group G gives rise to a (left) rack operation given by
(g, h) 7→ ghg−1 and a right rack operation by (g, h) 7→ g ⊳ h := h−1gh. For a
point of view on racks where the two operations are treated on an equal basis,
see e.g. [18] p.17.

The notion of a unit leads to pointed racks.

Definition 2.2. A pointed rack (X,⊳, 1) consists of a set X equipped with
a binary operation ⊳ and an element 1 ∈ X satisfying:

1. (x⊳ y)⊳ z = (x⊳ z)⊳ (y ⊳ z) for all x, y, z ∈ X ,

2. For each a, b ∈ X , there exists a unique x ∈ X such that x⊳ a = b,

3. 1⊳ x = 1 and x⊳ 1 = x for all x ∈ X .

Once again, the conjugation rack of a group is an example of a pointed rack.
For formal reasons, we will denote the conjugation rack underlying the group
G by Conj(G). Denote by Racks the category of racks, i.e. the category whose
objects are racks and whose morphisms are rack homomorphisms as defined
below. Then, Conj is a functor from the category of groups Grp to Racks.

Definition 2.3. Let R and S be two racks. A morphism of racks is a map
µ : R → S such that

µ(r ⊳ r′) = µ(r) ⊳ µ(r′)

for all r ∈ R. In the usual way, we will speak about iso- and automorphisms of
racks.

Definition 2.4. Let R be a rack. The associated group to R, denoted
As(R), is the quotient of the free group F (R) on the set R by the normal
subgroup generated by the elements y−1x−1y(x ⊳ y) for all x, y ∈ R. Denote
the canonical morphism of racks by i : R → As(R).

Example 2.5. Consider the set R := {x, y} consisting of two elements x and
y with an operation given by

x⊲ x = y, x⊲ y = x, y ⊲ y = x, y ⊲ x = y.

It is easy to verify that R is indeed a rack. The relation x⊲y = xyx−1 in As(R)
implies that x = y in As(R). It turns out that As(R) is isomorphic to Z, thus
the canonical map i : R → As(R) is not necessarily injective.

The importance of the associated group As(R) of a rack R comes from the
following universality property:

Lemma 2.6. Let R be a rack and G be a group. For any morphism of racks
f : R → Conj(G), there exists a unique group morphism g : As(R) → G such
that g ◦ i = f .
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From this, one can deduce that the functor As : Racks → Grp from the
category of racks to the category of groups is left adjoint to the functor Conj :
Grp → Racks which associates to a group its underlying conjugation rack.

Remark 2.7. In fact, the unit of the adjunction is just the map i. By standard
arguments, the unit of the adjunction is injective, but only as a map

i : Conj(G) → Conj(As(Conj(G)))

for a group G.

We observe that the compositions Conj(As(R)) for a racksR and As(Conj(G))
for a group G are, in general, far from being equal to R or G respectively. For
example, for an abelian group A, the conjugation rack Conj(A) is the set A with
the trivial rack product, while As(Conj(A)) is the free abelian group on the set
A.

Definition 2.8. Let R be a rack and X be a set. We say that R acts on X

(or that X is an R-set) when there are bijections (·r) : X → X for all r ∈ R

such that
(x · r) · r′ = (x · r′) · (r ⊳ r′)

for all x ∈ X and all r, r′ ∈ R.

Lemma 2.9. An action of R on X is equivalent to a morphism of racks µ : R →
Bij(X) with values in the conjugation rack underlying the group of bijections
on X.

Definition 2.10. Let R be a rack and X be an R-set. The hemi-semi-direct

product rack consists of the set X ×R equipped with the rack product

(x, r) ⊳ (x′, r′) := (x · r′, r ⊳ r′)

for all x, x′ ∈ X and all r, r′ ∈ R.

Definition 2.11. Let R and S be racks. We say that S acts on R by auto-

morphisms when there is an action of S on R and

(r ⊳ r′) · s = (r · s)⊳ (r′ · s)

for all s ∈ S and all r, r′ ∈ R.

Definition 2.12. Let G be a group and X be a G-set. We say that X to-
gether with a map p : X → G is an augmented rack when it satisfies the
augmentation identity, i.e.

p(x · g) = g−1 p(x) g

for all g ∈ G and all x ∈ X.
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We observe that for any augmented rack p : X → G, one may define a rack
operation on X as x⊳x′ := x ·p(x′) for all x, x′ ∈ X . Then, the map p becomes
an equivariant morphism of racks (with respect to the given G-action on X and
the conjugation action on the group G). Augmented racks are in fact the Yetter-
Drinfel’d modules over the Hopf algebra G (in the symmetric monoidal category
of sets), or in other words, the Drinfel’d center of the symmetric monoidal
category of G-modules, see [9].

Example 2.13. There are many examples of augmented racks. For example,
for each rack R, the canonical morphism R → Aut(R) and the morphism i :
R → As(R) are augmented racks.

We now introduce the notion of a crossed module of racks:

Definition 2.14. A crossed module of racks is a morphism of racks µ : R →
S together with an action of S on R by automorphisms such that:

1. µ is equivariant, i.e. µ(r · s) = µ(r)⊳ s for all s ∈ S, r ∈ R and

2. Peiffer’s identity is satisfied, i.e. r · µ(r′) = r ⊳ r′ for all r, r′ ∈ R.

2.2 Examples of crossed modules of racks

We now provide some important classes of examples.

Example 2.15. Let µ : M → N be a crossed module of groups. Passing to the
associated conjugation racks of M and N , we obtain a crossed module of racks.
Indeed, the group morphism N → Bij(M) gives rise to a morphism of racks,
and thus we have a rack action of the conjugation rack N on the conjugation
rack M . Moreover we have:

(r ⊳ r′) · n = ((r′)−1rr′) · n = (r′ · n)−1(r · n)(r′ · n) = (r · n)⊳ (r′ · n),

for all n ∈ N and all m,m′ ∈ M , where we have used the fact that the group
N acts on M by automorphisms. Finally, the equivariance condition for µ and
the Peiffer identity follow from the analogous conditions for the crossed module
of groups.

Remark 2.16. Let us recall here a mechanism to construct explicit examples
of crossed modules of groups, and thus, a fortiori, of racks. In fact, one can
construct crossed modules in an explicit way from cohomology classes [θ] ∈
H3(G, V ) for some group G and a G-module V , cf [19]. Indeed, choose an
injective presentation of V , i.e. a short exact sequence

0 → V → I → Q → 0, (1)

where I is an injective G-module. The long exact sequence in cohomology
contains the connecting map

∂ : H2(G,Q) → H3(G, V ),
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which by injectivity of I is an isomorphism. There exists thus a unique class
[α] ∈ H2(G,Q) with ∂[α] = θ. To [α], one may associate an abelian extension

0 → Q → Q×α G → G → 0,

and this extension can be spliced together with the short exact sequence (1) to
give a crossed module

0 → V → I → Q×α G → G → 0.

Under the isomorphism between equivalence classes of crossed modules of groups
with kernel V and cokernel G and H3(G, V ), this crossed module corresponds
to [θ]. In many cases, this crossed module is explicitely constructible, see [19].
Observe that for this construction, it suffices to have ∂ surjective, and this only
in degree two, so one does not need an injective presentation.

Example 2.17. An augmented rack p : X → G is an example of a crossed
module of racks. Indeed, we have already remarked that X may be equipped
with a rack operation making p an equivariant morphism of racks. Then, G acts
on the rack X , because the group morphism G → Bij(X) is also a morphism of
conjugation racks (cf Lemma 2.9). Moreover,G acts by automorphisms, because

(x⊳ x′) · g = (x · p(x′)) · g

= x · (gg−1p(x′)g)

= (x · g) · p(x′ · g)

= (x · g)⊳ (x′ · g)

for all g ∈ G and all x, x′ ∈ X. We have already mentioned that the equivariance
of p comes from the augmentation identity. The Peiffer identity comes from the
definition of the rack operation on X .

Example 2.18. There is also a generalized augmented rack, i.e. an augmented
rack of racks instead of groups. For this, let R be a rack and X be an R-module
(in the sense of Definition 2.8). Suppose there is a map p : X → R which
satisfies the generalized augmentation identity, i.e.

p(x · r) = p(x) ⊳ r

for all r ∈ R and all x ∈ X . Then this generalized augmented rack defines a
crossed module of racks. Namely, X becomes a rack with the product

x⊳ y := x · p(y),

for all x, y ∈ X . For this, note first that p is a morphism of racks:

p(x⊳ y) = p(x · p(y)) = p(x) ⊳ p(y).

7



We verify the rack identity using the fact that · is a rack action and the gener-
alized augmentation identity:

(x ⊳ y)⊳ z = (x · p(y)) · p(z)

= (x · p(z)) · (p(y)⊳ p(z))

= (x⊳ z) · p(y ⊳ z)

= (x⊳ z)⊳ (y ⊳ z).

Furthermore, R acts by automorphisms on the rack X :

(x⊳ y) · r = (x · p(y)) · r

= (x · r) · (p(y)⊳ r))

= (x · r) · p(y · r)

= (x · r) ⊳ (y · r).

It is clear that p is equivariant by the generalized augmentation identity, and
that the Peiffer identity follows from the definition of the rack product on X .
Thus in conclusion, p : X → R is a crossed module of racks.

These three classes of examples are ordered here with growing generality,
i.e. crossed modules of groups are particular augmented racks, and augmented
racks are particular generalized augmented racks.

2.3 Relations between these classes of examples

It turns out that the last class of examples from the previous section is equivalent
to crossed modules of racks:

Proposition 2.19. There is a one-to-one correspondence between crossed mod-
ules of racks and generalized augmented racks.

Proof. In Example 2.18, we gave the construction of a crossed module of racks
from a generalized augmented rack. Conversely, given a crossed module of
racks µ : R → S, forgetting the rack structure on R leaves us with a generalized
augmented rack. Clearly, the two constructions are inverse to each other.

Thanks to this proposition, we will very often regard crossed modules simply
as a rack R, an R-module X and an equivariant map p : X → R.

Proposition 2.20. The functor As : Racks → Grp sends crossed modules of
racks to crossed modules of groups.

Proof. Let p : R → S be a crossed module of racks. Then by functoriality,
p extends to a group homomorphism p : As(R) → As(S), which is just p on
elements of word length one.

The rack action R× S → R gives rise to a rack morphism S → Bij(R) that
extends by the universal property to a group homomorphism As(S) → Bij(R).

8



The action of As(S) on R is then extended to As(R) demanding that it should
be an action by group automorphisms:

(r1r2) · s = (r1 · s)(r2 · s),

for all r1, r2 ∈ As(R) and all s ∈ As(S). This equation first extends the action of
As(S) to an action on the free group F (R), but as (r1⊳ r2) ·s = (r1 ·s)⊳ (r2 ·s),
this passes to the quotient As(R) of F (R).

The map p is equivariant, i.e. p(r · s) = p(r) ⊳ s = s−1p(r)s for all r ∈
As(R) and all s ∈ As(S), because this statement holds for elements of word
length one, and extends to all elements r ∈ As(R) by the fact that p is a group
homomorphism and the action is an action by automorphisms. It extends finally
to all s ∈ As(S) using the action property.

The Peiffer identity is shown in a similar way.

Remark 2.21. One could investigate whether the functors Aut : Racks → Grp

and Bij : Racks → Grp also send crossed modules of racks to crossed modules
of groups.

One can do the replacement of racks by the associated groups also partially,
i.e. replace in a crossed module p : X → R the rack R by the group As(R).
Note that the statements of the following two propositions compose to give back
the statement of the previous proposition.

Proposition 2.22. Given a crossed module of racks, the corresponding map
p : X → As(R) is an augmented rack.

Proof. The rack homomorphism p : X → R extends by the universal property
to a map p : X → As(R). The action of R on X (given by a rack homomorphism
R → Bij(X)) extends by the universal property to a group action of As(R) on
X . The identity

p(x · r) = r−1p(x)r

is true for elements r of word length one in As(R) (and all elements x ∈ X),
because of p(x ·r) = p(x)⊳r. This then extends to all elements using the action
property.

In the same way, one can replace the G-setX in an augmented rack, regarded
as a rack, by the associated group As(X):

Proposition 2.23. Given an augmented rack p : X → G, the induced map
p : As(X) → G is a crossed module of groups.

Proof. Regarding X as a rack, the rack morphism p : X → Conj(G) gives rise
by the universal property to a group homomorphism p : As(X) → G. Then G

acts on the subrack X ⊂ As(X) by automorphisms, and imposing

(x1x2) · g = (x1 · g)(x2 · g)
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for all x1, x2 ∈ X and all g ∈ G extends the action on X to an action on the
free group F (X). Then, using (x1 ⊳ x2) · g = (x1 · g)⊳ (x2 · g), it extends to an
action by automorphisms on the quotient As(X) of F (X).

One shows the equivariance of p and the Peiffer identity as in the proof of
Proposition 2.20.

Remark 2.24. Proposition 2.23 is due to Fenn-Rourke [7] p.356.

Remark 2.25. The proofs of Propositions 2.20 and 2.23 are very similar, but
observe the difference in their the statements.

We therefore have the three main classes of examples:

cr−mod(Grp) ⊂ augm Racks ⊂ cr−mod(Racks)

Furthermore, we have the pair of adjoint functors

Conj : Grp
//
Racks : Asoo

which extend to functors going back and forth between these classes. The
(elementary) composition functors which arise have components of the form

Conj(As(R))

for a rack R, or
As(Conj(G))

for a group G. In general As(Conj(G)) is far from being G and Conj(As(R)) is
far from being R. This is the information loss one suffers by going from crossed
modules of racks to augmented racks, or from augmented racks to crossed mod-
ules of groups.

2.4 Algebraic structure on the category cr−mod(Racks)

It is well-known (see for example [10] p. 319) that the category of augmented
racks over a fixed group carries a braiding:

Lemma 2.26. For two augmented racks pi : Xi → G, i = 1, 2, with respect to
a fixed group G, their tensor product X⊗Y is defined as X×Y with the action

(x, y) · g = (x · g, y · g)

and the equivariant map p : X × Y → G defined by p(x, y) = p1(x)p2(y). Then
the formula

cX,Y : X ⊗ Y → Y ⊗X, cX,Y (x, y) := (y, x · p(y))

defines a braiding on the category of augmented racks over the fixed group G.

Remark 2.27. For the larger category of crossed modules of racks over a fixed
rack R, one can use Proposition 2.22 to define a braiding on the category of
crossed modules of racks over a fixed rack.
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3 Crossed modules and categorical racks

3.1 From categories to crossed modules

It is well known that crossed modules of groups µ : M → N are in one-to-one
correspondence with category objects in the category of groups Grp, also known
as strict 2-groups or categorical groups [1, 6]. We recall the correspondence given
in [1]: Given µ : M → N , we construct a strict 2-group by taking G0 := N as
the group of objects and the semi-direct product G1 := M ⋊ N as the group

of morphisms. In the other direction, given a strict 2-group G1

s //
t

// G0 we

take N := G0 and M := ker(s), where s is the source map. The map µ is given
by the restriction of the target map t to ker(s). We will call the passage to
t : ker(s) → G0 the standard construction. From this well-known construction,
we note following lemma:

Lemma 3.1. Let M and N be groups such that N acts on M by automor-
phisms, and let µ : M → N be an equivariant homomorphism. Then the
semi-direct product M ⋊ N carries a unique structure of a category such that
the objects are N , the morphisms M ⋊ N , the source (m,n) 7→ n, the target
(m,n) 7→ µ(m)n and the identity n 7→ (1M , n).

In fact, there are three more objects which are equivalent to strict 2-groups,
see [13]:

1. groups G with a subgroup N and two homomorphisms s, t : G → N

with s|N = idN , t|N = idN and [ker(s), ker(t)] = 1 (these are called 1-cat
groups),

2. simplicial groups with Moore complex of length one,

3. group objects in the category of (small) categories.

We desire to have correspondences of a similar type for crossed modules of
racks.

Definition 3.2. A 1-cat rack consists of a pointed rack R, a subrack N and
two rack morphisms s, t : R → N such that s|N = idN , t|N = idN and ker(s)
and ker(t) act trivially on each other.

One approach to the construction of a similar correspondence to that de-
scribed above in the group case is to consider category objects in the category
of racks, see [4].

Definition 3.3. A strict 2-rack or categorical rack is a category object in
the category of racks. That is, a strict 2-rack consists of two pointed racks R0

(rack of objects) and R1 (rack of morphisms) equipped with rack morphisms
s, t : R1 → R0 (source and target), i : R0 → R1 (identity-assigning) and
◦ : R1 ×R0

R1 → R1 (composition) such that the usual axioms of a category are
satisfied.
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One crucial property of the composition in a strict 2-group is the middle four
exchange property which simply means that the composition ◦ is a morphism of
groups:

(g1g2) ◦ (f1f2) = (g1 ◦ f1)(g2 ◦ f2).

We observe that this property holds for all morphisms f1 : a 7→ b, f2 : a′ 7→ b′,
g1 : b 7→ c, g2 : b′ 7→ c′, where the constraints on the domains and ranges reflect
the composability.

From this property, one deduces that the kernel of the source map, ker(s),
and the kernel of the target map, ker(t), commute and that the group product on
G1 uniquely determines the composition. Note that as the inclusion of identities
the map G0 →֒ G1 is a group homomorphism and the identity 1 ∈ G1 is both
the identity with respect to the composition and unit with respect to the group
product. We see that we have a similar property in the framework of strict
2-racks:

Proposition 3.4. The middle four exchange property for a strict 2-rack implies
that ker(s) and ker(t) act trivially on each other.

Proof. For strict 2-racks, the middle four exchange property states

(g1 ⊳ g2) ◦ (f1 ⊳ f2) = (g1 ◦ f1)⊳ (g2 ◦ f2)

for all f1 : a 7→ b, f2 : a′ 7→ b′, g1 : b 7→ c, and g2 : b′ 7→ c′. By choosing
b = c = 1, g1 = 1 and by using the fact that the identity in 1 ∈ R1 is both unit
and identity we deduce that

f1 ⊳ f2 = f1 ⊳ (g2 ◦ f2)

for all f1 ∈ ker(t).
In the special case when a′ = b′ = 1 with f2 = 1 and thus g2 : 1 7→ c, i.e.

g2 ∈ ker(s) we obtain from the above that

f1 = f1 ⊳ g2

for all f1 ∈ ker(t) and all g2 ∈ ker(s). This means that elements from ker(s) act
trivially on elements of ker(t).

In the same way, choosing a = b = 1 and b′ = c′ = 1, f1 = 1 and g2 = 1,
and therefore f2 ∈ ker(t) and g1 ∈ ker(s), we obtain

g1 = g1 ⊳ f2,

which means that ker(t) acts also trivially on ker(s).

Corollary 3.5. A strict 2-rack has an underlying 1-cat rack, i.e. a pointed rack
R together with a subrack N and two homomorphisms s, t : R → N such that
s|N = idN , t|N = idN and ker(s) and ker(t) act trivially on each other.
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Proof. Indeed, define R := R1, N := i(R0), and take source and target maps
s, t : R → N . The properties s|N = idN and t|N = idN come from t ◦ i = idR0

and s◦ i = idR0
. By Proposition 3.4, we have that ker(s) and ker(t) act trivially

on each other.

Remark 3.6. This correspondence from strict 2-racks to 1-cat racks is actu-
ally functorial. We leave it to the interested reader to define the necessary
(2-)category structure on both classes of objects in order to make this a math-
ematical statement. Similar remarks apply to the propositions in this and the
next subsection.

Remark 3.7. Unfortunately, the four equations following from the middle four
exchange property in a strict 2-rack:

1. g1 ◦ (f1 ⊳ f2) = (g1 ◦ f1)⊳ f2 with the restriction f2 ∈ ker(t),

2. f1 ⊳ f2 = f1 ⊳ (g2 ◦ f2) with the restriction f1 ∈ ker(t),

3. g1 ⊳ g2 = g1 ⊳ (g2 ◦ f1) with the restriction g1 ∈ ker(s), and

4. (g1 ⊳ g2) ◦ f1 = (g1 ◦ f1)⊳ g2 with the restriction g2 ∈ ker(s),

do not seem to enable us to reconstruct the composition starting from the rack
product, or vice-versa (as we can in the case for strict 2-groups). We leave this
observation as a question for future study.

Proposition 3.8. A strict 2-rack gives rise, via the standard construction, to
a crossed module of racks.

Proof. Recall from Proposition 2.19 that a crossed module of racks consists of
a rack R, an R-module X and an equivariant map p : X → R. Given a strict
2-rack (R0, R1, s, t, i, ◦), we define R := R0. The rack R acts on X := ker(s)
by

x · r := x⊳ i(r).

Indeed, ker(s) is preserved by this action since

s(x · r) = s(x⊳ i(r)) = s(x)⊳ s(i(r)) = 1⊳ r = 1.

The fact that this is an action follows from the rack identity:

(x · r) · r′ = (x ⊳ i(r))⊳ i(r′)

= (x ⊳ i(r′))⊳ (i(r)⊳ i(r′))

= (x · r′) · (r ⊳ r′).

Then the map t|ker(s) is equivariant, because for all x ∈ X and all r ∈ R

t(x · r) = t(x⊳ i(r)) = t(x)⊳ t(i(r)) = t(x) ⊳ r.

13



Remark 3.9. It is a natural question to ask whether the generalized augmented
rack t|ker(s) : ker(s) → R constructed in the proof is actually a crossed module of
racks in the sense of Definition 2.14 rather than using Proposition 2.19 to make
it a crossed module of racks, because ker(s) already carries a rack structure as
a subrack of R1.

In fact, it is clear that t|ker(s) is a morphism of racks, and it is easy to see
that the above action of R on X is by automorphisms. The only thing which is
not clear is Peiffer’s identity.

This means that starting from a strict 2-rack we can always define a rack
product on X = ker(s) such that t : X → R becomes a crossed module, but
there is, a priori, no relation to the induced rack product from R1.

3.2 From crossed modules to categories

We will now indicate how one may try to perform the reverse direction, i.e.
construct strict 2-racks from crossed modules of racks or from 1-cat racks. For
this, we use the fact that we are able to pass from crossed modules of racks to
augmented racks (or directly to crossed modules of groups) and from augmented
racks to crossed modules of groups, see Section 2.3.

Indeed, what we are lacking is an analogue of Lemma 3.1 in the pure frame-
work of racks. The most natural approach would be to use the analogue of the
semi-direct product in the realm of racks, i.e. the hemi-semi-direct product, see
Definition 2.10. Actually, this does not work. We were unable to combine a rack
R, an R-module X and an equivariant map p : X → R into a rack structure
which gives even a pre-category in the category of racks. However, this can be
done in some special cases, such as when p has trivial image {1}, or if the rack
product is trivial on R, or if the rack action of p(X) on R is trivial.

We are, nevertheless, able to do the following: Given an augmented rack or
a crossed module of racks, one can use the functor As as described in Section 2.3
to associate to it a crossed module of groups. To this, one can apply the usual
cronstruction to obtain a strict 2-group. Finally, one may use the following
proposition from [4]:

Proposition 3.10. [Carter-Crans-Elhamdadi-Saito [4]] The functor Conj : Grp →
Racks sends strict 2-groups to strict 2-racks.

As in Section 2.3, one can obtain crossed modules of groups by starting with
a crossed module of racks (applying the functor As on both racks) or starting
with an augmented rack (applying As only on the G-set). Another way would
be to regard the augmented rack as a crossed module of racks - this would result
in applying As also on the group G.

Yet another option, this time without using the functor As, requires more
structure:

Proposition 3.11. Given an augmented rack p : X → G such that X is a
G-module, i.e. an abelian group with a linear G-action, and p : X → G is a
homomorphism, then the usual semi-direct product construction from Lemma
3.1 gives rise to a strict 2-group.

14



Remark 3.12. One may ask what happens when we start with a crossed module
of racks (or an augmented rack), associate an augmented rack (or a crossed
module of groups) to it, perform the 2-group construction, regard it as a strict
2-rack, and then reconstruct a crossed module of racks from it.

Given a crossed module of racks µ : R → S, we associate to it the crossed
module of groups µ : As(R) → As(S), which can then be regarded as a strict
2-group in the usual way. Then the standard construction of a crossed module
of groups from a strict 2-group applies here, and gives t|ker(s) : ker(s) → As(S).
It is clear that ker(s) = As(R) (as the map s is the projection from the semi-
direct product As(R)⋊As(S) to As(S), see Lemma 3.1). Thus we get back the
crossed module of groups between the associated groups. In case we started
with a crossed module of racks µ : R → S such that the augmented rack
µ : R → As(S) satisfies the hypotheses of Proposition 3.11, then the crossed
module we get from the above construction is µ : R → As(S).

Observe that on the augmented rack p : X → G from Proposition 3.11, there
are two rack structures on X . One is the trivial rack structure coming from the
conjugation rack with respect to the abelian group structure on X , and the
other comes from the (x, y) 7→ x · p(y)-construction.

4 Crossed modules of racks and trunks

Our main idea to go beyond the constructions from the previous section is to
associate to a crossed module of racks µ : R → S not a category, but a trunk,
see [8].

4.1 Basic definitions

Definition 4.1. A trunk is a directed graph Γ together with a collection of
oriented squares

C
c // D

A

b

OO

a // B

d

OO

called preferred squares.

In categorical language, the set of objects consists of the vertices of Γ and
the set of morphisms consists of the edges of Γ. There are then source and target
maps for arrow/edge. We notice that we are missing the identity-assigning and
composition morphisms. Instead of these, however, we have preferred squares
(commutative square diagrams) which, in some sense, replace the composition.

We now introduce the missing identities:

Definition 4.2. A pointed trunk is a trunk equipped with a chosen edge
eA : A → A for each vertex A and the following preferred squares for any given
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edge a : A → B:

A
a // B

A

eA

OO

a // B

eB

OO

The edges eA : A → A are called identities.

We will assume that all our racks are pointed and all our trunks have iden-
tities. Now, in order to model racks in terms of trunks, we pass to the so-called
corner trunks, see [8] p. 324:

Definition 4.3. A corner trunk is a trunk which satisfies the two corner
axioms:

(C1) Given edges a : A → B and b : A → C, there are unique edges a⊳ b : C →
D and a⊲ b : B → D such that the following square is preferred

C
a⊳b // D

A

b

OO

a // B

a⊲b

OO

(C2) In the following diagram, if the squares (ABCD), (BDY T ) and (CDZT )
are preferred, then then the diagram can be completed, as shown by the
dotted lines, such that the squares (ABXY ), (ACXZ) and (XY ZT ) are
preferred.

Z // T

X

>>

// Y

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

C

OO

// D

c

OO

A

OO

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

a // B

OO

b

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

Lemma 4.4. In a corner trunk, the binary operations ⊲ and ⊳ satisfy:

1. (a⊳ b)⊳ (b ⊲ c) = (a⊳ c)⊳ (b⊳ c)

2. (b ⊲ c)⊲ (b ⊲ a) = (b ⊳ c)⊲ (c⊲ a)

3. (b ⊲ a)⊳ (b ⊲ c) = (b ⊳ c)⊲ (a⊳ c) for all arrows a, b, c.

In fact, a setX with two operations⊲ and ⊳ (which are bijective and) satisfy
the above three identities, is called a birack. Biracks also serve to construct link
invariants, see e.g. [5].
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The case which is most interesting to us is when one of the two operations
⊲ or ⊳ is trivial. Then, by Lemma 4.4 above, the other operation satisfies a
(left or right) rack identity. This means that these types of corner trunks codify
racks. The notion of a corner trunk can be pointed in an obvious way.

Example 4.5. Any rack (R,⊳) gives rise to a corner trunk T (R), called the
rack trunk, see [8] p. 327. The trunk T (R) consists of a single vertex ∗, while
the preferred squares are given by the rack operation

∗
a⊳b // ∗

∗

b

OO

a // ∗.

b

OO

Example 4.6. The action rack trunk, cf [8] p. 329. Let X be an R-set where
R is a rack. From this data, we construct a trunk TX(R). Namely, we take X

as the set of vertices and edges of the form x
r
→ x · r for r ∈ R and x ∈ X . The

preferred squares are then of the form:

x · r′
r⊳r′// (x · r) · r′

x

r′

OO

r // x · r

r′

OO

for all r, r′ ∈ R and x ∈ X . Observe that this fits together in the upper right
hand corner because for our right action we have

(x · r) · r′ = (x · r′) · (r ⊳ r′).

As in [8], we see that TX(R) is indeed a corner trunk. From the categorical

point of view, we will denoted morphisms x
r
→ x · r as pairs (x, r), and then

we have source and target maps X ×R
s //
t

// X given by s(x, r) = x and

t(x, r) = x · r. As already remarked in loc. cit., the operation expressed by the
preferred squares can be expressed as:

(x, r) ⊳ (x, r′) = (x · r′, r ⊳ r′), (x, r′)⊲ (x, r) = (x · r, r′).

The first formula ressembles the hemi-semi-direct product, see Definition 2.10,
but with a composability condition (the first components have to be equal to
x).

In the special case where a rack (R,⊳) acts on itself by x 7→ x⊳y, the action
rack trunk TR(R) is called extended rack trunk in [8] on p. 329.

4.2 From crossed modules of racks to trunks

Given a crossed module of racks µ : R → S, we have, in particular, an S-set R,
and we can thus apply the construction from Example 4.6 to obtain a corner
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trunk. This is, in our opinion, the correct “categorical object” associated to a
crossed module of racks, as it is a ‘sort of trunk’ in the category of racks. Thus,
we introduce:

Definition 4.7. A trunkified rack consists of a trunk map between an action
rack trunk (for R acting on X) and the extended rack trunk of R.

Proposition 4.8. There is a one-to-one correspondence between crossed mod-
ules of racks and trunkified racks.

Proof. We first observe that by Proposition 2.19, it is enough to work with
generalized augmented racks instead of crossed modules of racks. A generalized
augmented rack consists of a rack R, an R-module X and an equivariant map
p : X → R. We can associate to these the extended rack trunk TR(R), the
action trunk TX(R) and the induced trunk map p : TX(R) → TR(R) (or p :
TX(R) → T (R)).

In the other direction, we recover from a trunk map TX(R) → TR(R) the
rack R and the rack action of R on X . The trunk map gives an equivariant
map, and therefore we recover our crossed module.

Remark 4.9. One can, of course, introduce alternative versions of trunkified
racks. For example, one could choose to define a trunkified rack as a trunk in
the category of racks.

In order to associate to a crossed module of racks such a trunkified rack,
one idea would be to take the image of the above trunk map appearing in the
proof of Proposition 4.8. Unfortunately, we were unable to show that this gives
a trunk in the category of racks, and so this remains a question for further
investigation.

We conclude this section with the following scheme which may enable us to
eventually associate a strict 2-rack to a crossed module of racks. Let p : X → R

be a crossed module of racks. Denote by cat : Trunks → Cats the functor
from the category of (small) trunks to the category of (small) categories that
associates to a trunk T the category whose objects consist of the same set of
vertices/objects as the trunk, but whose set of morphisms (between two fixed
objects) are generated by the set of arrows of T (between these objects) such
that the preferred squares become commutative diagrams.

We then form the trunk map p : TX(R) → TR(R) and take the image
trunk im(p) and show that this is a trunk in the category of racks. We then
demonstrate that, in general, the functor cat : Trunks → Cats sends trunks in
the category of racks to categories in the category of racks (i.e. that Cat can
be enriched in racks). Finally, the image cat(im(p)) is then the categorical rack
associated to p : X → R.

5 Applications

We now show that some of these categorical objects that we have associated to
crossed modules of racks have topological/geometrical applications.
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5.1 The rack space of a crossed module of racks

In the paper [8], the authors associate to a rack X a rack space BX by taking
the geometric realization of the cubical nerve NX of the trunk T (X) associated
to X . They also show that for an action rack trunk TY (X) (with the rack X

acting on Y ), the canonical map Y → {∗} induces a trunk map TY (X) → T (X),
which gives rise to a covering BY X → BX , see Theorem 3.7 in [8].

Now starting with a crossed module of racks p : X → R, we have first of all
a trunk map TX(R) → T (R) inducing the covering BXR → BR. Then we also
have a trunk map

p : TX(R) → TR(R),

where TR(R) is the extended rack trunk. This map also induces a map of �-sets
between the cubical nerves

p : NX(R) → NR(R),

and finally a map between the corresponding rack spaces BX(R) → BR(R), see
[8] p. 331.

Both �-sets NX(R) and NR(R) are in fact �-coverings of NR. We will show
that p is a covering:

Proposition 5.1. Suppose that BR(R) is arcwise connected and locally arcwise
connected. Then the geometric realization of the natural map p : NX(R) →
NR(R) is a covering of topological spaces.

Proof. The lifting theorem for a continuous map into the base of a covering
implies that we only need to show that π1(BXR, x) ⊂ π1(BRR, p(x)).

Now recall the fact that the fundamental group π1(BY X, y) is just the sta-
bilizer of y, i.e.

π1(BY X, y) = Staby ⊂ As(X),

see Proposition 4.5 in [8]. In particular, we have π1(BX, ∗) = As(X). Thus in
order to show the claim, we just need to show that the subgroups π1(BXR, x)
and π1(BRR, p(x)) satisfy

π1(BXR, x) ⊂ π1(BRR, p(x))

as subgroups of As(R). This follows from the inclusion of the corresponding
stabilizers Stabx ⊂ Stabp(x).

In this sense, we can associate to each crossed module of racks a covering of
rack spaces. We anticipate that this will serve to enhance link invariants.

Remark 5.2. It would be interesting to know what kind of local property these
rack spaces have. In order to have a nice theory of covering spaces, one would
like to work with topological spaces which are, for example, arcwise connected
and locally simply connected.
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5.2 Crossed modules of racks from link coverings

Here we are doing in some sense the inverse construction with respect to what we
did in the previous section. Namely, given a covering (and a link), we associate
to it a crossed module of racks.

We now consider an inverse construction, in some sense: Suppose given
augmented racks pi : Xi → Gi for i = 0, 1 and a commutative diagram

X1
p1 //

α

��

G1

β

��
X0

p0 // G0

where β is a group homomorphism and α is a morphism of group-sets over β,
i.e. for all x ∈ X1 and all g ∈ G1, we have

α(x ∗ g) = α(x) · β(g).

Here we have written the right actions x ∗ g for the action of G1 on X1, and
y · h for the action of G0 on X0. We then ask: Under which conditions is
α : X1 → X0 a crossed module of racks ?

Proposition 5.3. Suppose that there is a right action of G0 on X1, denoted
(x, g) 7→ x ◦ g, such that

1. x ∗ g = x ◦ β(g) for all g ∈ G1 and all x ∈ X1,

2. α is equivariant, i.e. α(x ◦ g) = α(x) · g, for all g ∈ G0 and all x ∈ X1,
and

3. (y ∗ p1(x)) ◦ g = (y ◦ g) ∗ p1(x ◦ g) for all g ∈ G0 and all x, y ∈ X1.

Then α : X1 → X0 is a crossed module of racks for the augmented racks
pi : Xi → Gi for i = 0, 1.

Proof. The sets X0 and X1 become racks via the usual definitions: x ⊳ y :=
x ∗ p1(y) for x, y ∈ X1 and x⊳ y := x · p0(y) for x, y ∈ X0. The map α is then
a morphism of racks since

α(x ⊳ y) = α(x ∗ p1(y))

= α(x) · β(p1(y))

= α(x) · p0(α(y))

= α(x) ⊳ α(y)

Using the map p0, the action ◦ of G0 on X1 induces an action of X0 on X1.
Property 3 clearly translates into the fact that the action ◦ is by rack aut-

morphisms:

(y ⊳ x) ◦ g = (y ∗ p1(x)) ◦ g = (y ◦ g) ∗ p1(x ◦ g) = (y ◦ g)⊳ (x ◦ g).
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Property 2 is the equivariance of map α:

α(x ◦ p0(y)) = α(x) · p0(y) = α(x) ⊳ y,

and
Peiffer’s identity is satisfied thanks to Property 1

x ◦ p0(α(y)) = x ◦ β(p1(y)) = x ∗ p1(y) = x⊳ y.

We can use Proposition 5.3 to define a crossed modules of racks in a geo-
metrical/topological context. Before we come to our construction, we recall the
fundamental rack of a link from Fenn and Rourke [7] p. 358.

A link is a codimension two embedding L : M ⊂ Q of manifolds. We
will assume that M is non-empty, that Q is connected (with empty boundary)
and that M is transversely oriented in Q. In other words, we assume that each
normal disc to M in Q has an orientation which is locally and globally coherent.

The link is called framed if there is a cross-section λ : M → ∂N(M) of the
normal disk bundle. Denote by M+ the image of M under λ. In the following,
we will only consider framed links.

Then, Fenn and Rourke associate to L ⊂ Q an augmented rack (called the
fundamental rack of the link L) which is the space Γ of homotopy classes of
paths in Q0 := closure(Q \N(L)) of L, from a point in M+ to some base point
q0. During the homotopy, the final point of the path at q0 is kept fixed and the
initial point is allowed to wander at will on M+.

The set Γ has an action of the fundamental group π1(Q0, q0) defined as
follows: let γ be a loop in Q0 based at q0 representing an element g ∈ π1(Q0).
If α ∈ Γ is represented by the path α, define a ·g to be the class of the composite
path α ◦ γ.

We can use this action to define a rack structure on Γ. Let p ∈ M+ be a point
on the framing image. Then p lies on a unique meridian circle of the normal
disc bundle. Let mp be the loop based at p which follows the meridian around
in a positive direction. Let a, b ∈ Γ be represented by paths α, β respectively.
Let ∂(b) be the element of π1(Q0, q0) determined by the homotopy class of the
loop β−1 ◦mβ(0) ◦ β. The fundamental rack of the framed link L is defined to
be the set Γ = Γ(L) with the operation

a⊳ b := a · ∂(b) : = [α ◦ β−1 ◦mβ(0) ◦ β].

In case the link is evident, but there are different manifolds, we will denote
Γ more precisely by ΓQ.

Fenn and Rourke show in [7] Proposition 3.1, p. 359, that Γ is indeed a rack,
and go on to show that ∂ : Γ → π1(Q0, q0) is an augmented rack. Furthermore,
adding in part of the exact homotopy sequence

π2(Q) → π2(Q,Q0) → π1(Q0) → π1(Q)
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they show in Proposition 3.2, p. 360, that the associated crossed module of
groups (using Proposition 2.23) of the augmented rack ∂ : Γ → π1(Q0, q0) is
Whitehead’s crossed module of groups

π2(Q,Q0) → π1(Q0).

We will now extend this theory to coverings on the topological side and
crossed modules of augmented racks on the algebraic side.

Consider a covering space π : P → Q, and a link L ⊂ Q. Let us furthermore
consider a link L : M ⊂ Q (which we also denote by LQ) and its inverse image
LP := π−1(M) ⊂ P . We will suppose that the link Lp is also framed, and this
is in a manner which is compatible with the framing of LQ.

We have therefore two augmented racks

ΓP → π1(P0, p0) and ΓQ → π1(Q0, π(p0)).

From now on, we will suppress the base points in the notation.

Theorem 5.4. There is an action of π1(Q0) on ΓP such that the conditions
of Proposition 5.3 are satisfied, i.e. the induced map π : ΓP → ΓQ is a crossed
module of (augmented) racks.

Proof. The action is given by the following procedure:
An element c of π1(Q0) is represented by a based loop γ in Q0. It lifts to

a unique path γ̃ in P0 which ends at the base point p0 ∈ P0. Now take an
element x in ΓP , represented by a path ξ. This path ξ projects to a path π(ξ)

in Q0 which can be lifted to π̃(ξ) such that π̃(ξ)(1) = γ̃(0) meaning that they
are composable. The outcome is that ξ (or more precisely some lift of π(ξ)) can
be composed with Γ̃, and the composition is then, by definition, the action of
the homotopy class c = [γ] on x = [ξ].

Observe that the map β : π1(P0) → π1(Q0) is induced by π : P → Q and
is injective. We identify via β the group π1(P0) as a subgroup of π1(Q0), the
subgroup of loops in Q0 which lift to loops in P0.

We therefore clearly have Property 1, because when lifting the element β(g)
to a loop in P0, the action on x becomes ξ ◦ β(g), which is the action in the
augmented crossed module ΓP → π1(P0).

The map α (also induced by π : P → Q) is clearly equivariant, because π

distributes on the factors of the composition of paths.
Finally Property 3 is illustrated by the following picture:
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γ̃(1)

p̃1(ξ) γ̃

γ̃(0) = η̃(1)

η̃(0) η̃

There are two elements x, y of ΓP and one element g of π1(Q0) in play here.
Therefore we have two paths ξ, η upstairs, and one loop γ downstairs. The
paths ξ and η are pushed down using π and then lifted to ξ̃ and η̃.

On the LHS of the equation, which is Property 3, there is an action of p1(x)
applied to the element y, meaning the two paths rejoin each other at the point
p := γ̃(0) ∈ P in the above picture, where one of them is carrying a loop at its
left end (which is the ∂ = p1 map!). Moreover, the loop γ is lifted to some path
γ̃ from γ̃(0) to the base point p0 = γ̃(1).

On the RHS of the equation, translating into paths in P0, we have two paths
from somewhere to p and then to p0, which illustrate the action of γ on x and y.
But then one takes p1 = ∂ of the path corresponding to the action on x, which
means this path gets a little loop on its left end. Then compose the two paths.

One sees that both sides are equal because on the right hand side, the sup-
plementary round trip along the path corresponding to the lift of γ cancels in
the composition.

Observe that it follows from the constructions in this section that in the
above situation, π : P → Q induces simultaneously a map of crossed modules
of groupes

π2(P, P0) //

α

��

π1(P0)

β

��
π2(Q,Q0) // π1(Q0)

between the associated crossed modules introduced by Whitehead and a crossed
module π2(P, P0) → π2(Q,Q0) as associated to the crossed module of racks
ΓP → ΓQ. This follows immediately from the fact that the functor As : Racks →
Groups sends the fundamental racks associated to the links to the corresponding
homotopy groups, see [7] Proposition 3.2, p. 360.
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