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ABSTRACT OF THE DISSERTATION

Perturbative Quantum Chrom odynam ics 
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Neutrinos and M uons
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Professor Graciela B. Gelmini, Chair

We compare the leading and next-to-leading order Quantum Chromodynamics pre­

dictions for the flux o f atmospheric muons and neutrinos from decays of charmed 

particles. We then compute this flux for different Partonic D istribution Functions 

(PDF's) and different extrapolations of these at small partonic momentum fraction 

x. We find that the predicted fluxes vary up to almost two orders of magnitude at 

the largest energies studied, depending on the chosen extrapolation of the PDF’s. 

We show that the spectral index o f the atmospheric leptonic fluxes depends linearly 

on the slope o f the gluon distribution function at very small x. Finally, we analyze 

the uncertainties o f our model and we consider the dependence o f our simulation 

on the prim ary cosmic ray flux.

xi
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Chapter 1

Introduction

Atmospheric neutrinos and muons are the result o f interactions of primary cos­

mic rays in the atmosphere. These usually generate a large number o f secondary 

particles, which subsequently interact and decay, while streaming down in the atmo­

sphere, creating very complex particle cascades w ith  a large number of muons and 

neutrinos that can reach sea level and eventually penetrate throughout our planet.

The flux o f these atmospheric leptons is the most important source o f background 

for present and future “neutrino telescopes” , which are supposed to open soon a 

new window in astronomy by detecting neutrinos from astrophysical sources like 

Active Galactic Nuclei and others. The current and future projects for these types 

o f detector arrays, like AMANDA [1], Baikal [2], NESTOR [3] and ANTARES [4],

w ill ultim ately reach the km3 volume o f detection, allowing to observe neutrinos and 

muons at energies as high as 1012 GeV. To evaluate the atmospheric background at 

energies above 1 TeV, it  is necessary to consider the “prompt” component o f this 

flux, i.e. the neutrinos (and muons) created from semileptonic decays o f charmed 

particles, as opposed to the “conventional” neutrinos coming from decays o f pions 

and kaons. The purpose o f this dissertation is to produce a state-of-the-art evalu-

1
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ation o f the atmospheric “prompt” flux, which might be interesting not only as a 

background for neutrino telescopes, but also to address specific problems o f High 

Energy Particle Physics. To achieve this objective we have implemented a fu ll com­

puter simulation o f the particle cascades in the atmosphere, which is based on the 

following points.

• We have bu ilt our model on the general framework o f the existing TIG  model

(after Thunman, Ingelman and Gondolo, 1996) which was the first to employ

perturbative Quantum Chromodynamics (pQCD) for the charm production

model, but only at leading-order (LO ). We have kept the general approach o f

TIG  to the modeling o f the prim ary cosmic ray flux, o f the atmosphere and

of the cascade evolution.

• We have completely redesigned the simulation o f charm production in the

atmosphere, implementing the fu ll next-to-leading order (NLO) pQCD calcu­

lations o f M. Mangano, P. Nason and G. R idolfi (M NR model and computer

program).

• We have included particular features in  the charm production module, related

to im portant issues of Particle Physics. In  particular a ll the NLO processes can

be calculated using the most recent Partonic D istribution Functions (PDF’s),

like the CTEQ or MRS sets. Also, for our extreme energies, we needed extrap­

olations o f these PDF’s beyond experimental ranges: for the gluon PDF (by

far the most im portant) we have implemented the extrapolation at very low

momentum fraction x  (x <  10-5) as x  * g(x) ~  x~x , where A can be varied

in the theoretically reasonable interval between 0 and 0.5 . The determina­

tion o f A, which is not known experimentally, is a critica l issue in  Quantum

Chromodynamics.

2
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• Following the charm production module, we have included a fu ll simulation

o f particle cascades, done w ith  the PYTH IA  program, which handles parton

shower evolution, hadronization, interactions and decays, down to the final 

leptons. Several runs o f the program have produced fluxes consistent w ith 

previous calculations, for the “prom pt” component, existing in  the literature 

and have tested different options and features of our model.

We subdivide our analysis in four main parts corresponding to the following 

chapters.

Part One (Chapter 2): NLO versus LO QCD Predictions.

We describe here how we calibrate our model for charm production. We use the 

most recent experimental data o f to ta l and differential cross sections to determine 

the best choice of QCD parameters and PDF’s, needed in our program to extrapolate 

the cross sections beyond the range accessible to accelerator physics. We give fu ll 

details o f our simulation, including the model for the prim ary cosmic rays, the 

atmosphere, charm production and cascade evolution, describing different possible 

operative modes and arguing the re liab ility  o f the different options. We then show 

the results for the lepton fluxes, comparing in particular the difference between a 

LO and a NLO calculation.

Part Two (Chapter 3): Dependence on the Gluon Distribution Function.

We consider the existing possible theoretical extrapolations o f the gluon PDF at 

very low x  and we discuss how the leptonic fluxes are affected by such choice, which 

is related to the value o f the parameter A. We then justify  theoretically the results 

obtained. From a detailed analysis o f the dominant process, the gluon fusion, we 

derive the dependence of the charm and leptonic fluxes on A and, from this analysis, 

we notice the possibility of measuring A w ith  neutrino telescopes.

3
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Part Three (Chapter 4): Error Analysis and Measurement o f the Gluon PDF at 

very low x.

We consider a ll possible sources o f uncertainty, concentrating in particular on 

the charm production model. We estimate the overall errors on cross sections and 

fluxes. Using this error analysis, we return in more detail on the possibility of 

an experimental measure o f A. Such determination might be possible through the 

spectral index o f the fluxes, rather than their absolute value. We give an estimate 

o f the overall theoretical uncertainty for A.

Part Four (Chapter 5): Dependence on the Cosmic Ray Model.

We discuss different models for primary cosmic rays and how they affect the 

final leptonic fluxes and related spectral indices. This dependence constitutes an 

additional source of uncertainty o f our model and affects the measure of A as well.

4
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Chapter 2 

Part One: NLO versus LO QCD 

Predictions

2.1 Introduction to Part One

The flux o f atmospheric neutrinos and muons at very high energies, above 1 TeV, 

passes from being originated in the decays o f pions and kaons to being predominantly 

generated in semileptonic decays o f charmed particles (see for example [5]). This flux 

is o f importance for large area detectors o f high energy cosmic neutrinos. Future km3 

arrays would be able to observe muons and neutrinos w ith energies tha t may reach 

1012 GeV. Atmospheric muons and neutrinos would be one o f the most important 

backgrounds, lim iting the sensitivity o f any “neutrino telescope” to  astrophysical 

signals. Besides, they might be used for detector calibration and perhaps, more 

interestingly, be exploited to do physics, e.g. study neutrino masses.

Present experimental attempts to detect atmospheric muons from  charm are 

spoiled by systematic errors. Theoretical predictions depend strongly on the relia­

b ility  o f the model adopted for charm production and decay and d iffe r by orders of

5
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magnitude, due to the necessity o f extrapolating present accelerator data on open 

charm production in fixed target experiments, at laboratory energies o f about 2 0 0  

GeV, to the larger energies needed for atmospheric neutrinos, from 103 to 10® GeV 

(at about 108 GeV the rates become too small for a km3 detector). These energies, 

from 40 GeV to 14 TeV in the center of mass, are comparable to the energies o f the 

future RHIC at Brookhaven, 200 GeV, and LHC at CERN, 7 TeV.

The theoretically preferred model, perturbative QCD (pQCD), was thought to 

be inadequate because it  could not account for several aspects o f some o f the early 

data on open charm production (in conflict w ith each other, on the other hand 

[6 ]), and because o f a sensitivity o f the leading-order (LO) calculation, the only 

existing until recently, to the charm quark mass, to the low partonic momentum 

fraction, x, behavior o f the parton distributions and to higher order corrections. 

So, even if  some now-obsolete pQCD calculations have appeared [7, 8 ], the models 

for charm production trad itiona lly favored in studies o f atmospheric fluxes have 

been non-perturbative: for example, besides semi-empirical parametrizations o f the 

cross section, the quark-gluon string model (QGSM, a.k.a. dual parton model), 

based on Regge asymptotics, and the recombination quark-parton model (RQPM), 

incorporating the assumption o f an intrinsic charm component in the nucleon (see

[9])-

Today, however, pQCD predictions and experimental data are known to be 

compatible [10, 11, 12, 13, 14]: charm production experiments form a consistent 

set o f data, and the inclusion o f next-to-leading order (NLO) terms has been a 

major improvement over the leading-order treatment. Quoting from Appel [10], “the 

success o f these calculations has removed the impetus to look for unconventional 

sources of charm production beyond the basic QCD” .

A  study based on pQCD was therefore performed in Ref. [15] (called T IG  from

6
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now on). CLEO and HERA, results were incorporated, but for sim plicity the LO 

charm production cross section was adopted, m ultiplied by a constant K  factor o f 2 

to bring it  in  line w ith  the next-to-leading order values, and supplemented by parton 

shower evolution and hadronization according to the Lund model. The neutrino and 

muon fluxes from charm were found to be lower than the lowest previous prediction, 

namely a factor o f 20 below the RQPM [16], of 5 below the QGSM [17, 18], and of 

3 below the lowest curve in Ref. [8 ].

Here we use the same treatment o f T IG , except for the very important difference 

o f using the actual next-to-leading order pQCD calculations o f Mangano, Nason and 

Ridolfi [19] (called MNR from now on), as contained in the program we obtained 

from them (see also [20]), to compute the charm production cross sections. These 

are the same calculations used currently to compare pQCD predictions w ith exper­

imental data in  accelerator experiments. The main goal o f this part is to compare 

the fluxes obtained w ith  the NLO and w ith  the LO, i.e. we w ill compute the K  

factor for the neutrino and muon fluxes. This K  factor is necessarily different from 

the K  factor fo r charm production (which can be found in the literature), because 

only the forward going leptons contribute significantly to the atmospheric fluxes.

A  sim ilar comparison was very recently made in [21], using the approximate 

analytical solutions introduced by T IG  to the cascade equations in  the atmosphere. 

We make instead a fu ll simulation o f the cascades, using the combined MNR and 

PYTHIA programs. These two treatments o f the problem are complementary. For 

comparison, we include results obtained w ith  the CTEQ 3M gluon structure func­

tion used in Ref. [2 1 ]. We find our CTEQ 3M results to be close to those o f the 

PRS study, in  spite o f the very different approaches used in  the two calculations.

Addressing righ t away a concern tha t has been expressed to us several times, 

about the applicab ility o f perturbative QCD calculations, mostly done for accel-

7
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erator physics, to the different kinematic domain of cosmic rays, we would like to 

point out that, since the characteristic charm momentum in  our simulations is of 

the order of the charm mass, k ~  0 (mc), we do not have here the uncertainty 

present in the differential cross sections [19], when kx is much larger than mc (as is 

the case in accelerators), due to  the presence of large logarithms o f +  m l)/m  

Depending on the steepness o f the gluon structure function we take, we do have, 

however, large logarithms, known as “ln ( l/x )” terms, where x  ~  ^ 4 m l/s  (s is the 

hadronic center of mass energy squared) is the average value o f the hadron energy 

fraction needed to produce the cc pair. These should not be im portant for steep 

enough gluon structure functions, but we have not made any attem pt to deal with 

this issue.

In the next section o f th is  chapter we explain our norm alization of the NLO 

charm production cross section in the MNR program. In Sect. 2.3 we describe the 

computer simulations used to  calculate the neutrino and muon fluxes. In Sect. 2.4 

we show the results o f our simulations, we discuss the differences between a NLO 

and a LO approach and we make a comparison w ith the fluxes o f the T IG  model.

In this work we consider only vertical showers for sim plicity (the same was done 

by TIG).

2.2 Charm production in perturbative QCD

In  this section, we show evidence that perturbative QCD gives a fa ir description 

o f the present accelerator data on open charm production in  the kinematic region 

most important for cosmic ray collisions in the atmosphere.

There are s till not many experiments on open charm production w ith good 

enough statistics, despite the recent improvements, but many are expected in  the

8
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near future.

We use a NLO approach which is based on the MNR calculation, for which 

we have obtained the computer code. The NLO cross section for charm produc­

tion depends on the choice o f the parton distribution functions (PDF’s) and on 

three parameters: the charm quark mass mc, the renormalization scale h r ,  and the 

factorization scale h f -

2.2.1 Choice of mc, h r , h f

MNR have two default choices o f mc, h r  and h f '  for to ta l cross sections they 

choose mc =  1.5 GeV, h r  — mc, H f  =  2mc; for differential cross sections they 

choose instead mc =  1.5 GeV, h r  =  mr> V f  =  2m j, where m t  =  \Jk^ +  rri* is the 

transverse mass.

The current procedure to reproduce the measured differential cross sections 

[12,13,14] is to use the MNR default choices for these three parameters and m ultip ly 

the result by the global factor o f about 2 or 3 necessary to match the predicted and 

measured to ta l inclusive cross sections. Although this procedure might be accept­

able in  face o f the uncertainties in the pQCD predictions, we find it  unsatisfactory 

from a theoretical point o f view. We prefer to fit the differential and to ta l cross 

sections w ith  one and the same combination o f mc, h r i  and h f -

We make separate fits o f mc, hr, and hf  for each o f the following sets o f PDF’s: 

MRS R l, MRS R2 [22], CTEQ 3M [23] and CTEQ 4M [24] (see the next subsection 

for details).

We are aware tha t several choices o f mc, hr and hf  may work equally well. In 

fact the cross sections increase by decreasing h f . Hr ° r  mc, so changes in  the three 

variables can be played against each other to obtain practically the same results.

9
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We present here just one such choice.

We choose hr =  m-r, Hf  — 2ttit for all sets, and

mc = 1.185 GeV for MRS R l, (2 .1 )

mc = 1.31 GeV for MRS R2, (2 .2 )

mc = 1.24 GeV for CTEQ 3M, (2.3)

mc = 1.27 GeV for CTEQ 4M. (2.4)

We fit mc, hr, and hf to the latest available data on charm production [1 1 , 12, 

13, 14] in proton-nucleon and pion-nucleon collisions. We use mainly the data on 

pN  collisions, which are more relevant to us, but examine also the nN  data to see 

how well our choice o f parameters works there.

The MNR program calculates the total cross section for cc pair production, crci. 

We converted the experimented data on D + or D~ production a(D +, D~), D° or 

D° production a(D°, D°), or the same cross sections just for x F >  0 [x F is the 

Feynman x), cr+(D + , D~) and a+(D °, D°), into aa  values following [14].

The data we used for the ‘calibration’ o f the MNR program are shown in Ta­

ble 2.1 and Table 2.2 [11, 12, 13, 14]. These tables also present a comparison of 

experimental data on tota l inclusive D-production cross sections (converted to ac£ 

total cross sections) w ith those calculated w ith the MNR program.

For the data o f Table 2.1, for pN  collisions, the conversion is done using

=  1.5 x  i  x  [a(D+, D~) +  a(D °, D 0)] (2.5)

10
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i f  cross sections are measured for any x f , or

tr*  =  1.5 x  2 x  i  [c+(D+, D ~) +  cr+(D°, D 0)] , (2.6)

i f  experimental data are given for xp >  0 only. The explanation o f the factors in 

Eqs. (2.5),(2.6) is as follows. The \  factors convert single D  inclusive into D D  

pair inclusive cross sections. The 1.5 factors are required to take into account the 

production o f Ds and Ac (which is included in aci) through the ratios [14]

— a  0.2, -  °-3> (2.7)a(D+, D ° ) ~  ' ’ a{D+, D°)

(the same relation also for antiparticles). The factor 2 in Eq. (2.6) converts from 

xp >  0 to a ll x F (i.e. it  is oct /a ce,{xp >  0) for the pN  case).

In  the case of 7rJV collisions (Table 2.2) the factor 2 in equation (2.6) is replaced 

by 1 .6 , which is the value o f (Jctla ci{xp >  0 ) when a pion beam is used.

Table 2.1 explains our choice o f mc values. The mc values in Eqs.(2.1),(2.2),(2.3) 

and (2.4) reproduce well the central values o f the pN  charm inclusive tota l cross 

sections [11 ], using the program w ith the four different PDF’s.

In  Table 2.2 we also present a sim ilar analysis for irN  collisions, using only MRS 

R1 for sim plicity. In  this case slightly higher values o f mc fit the t N  data [11, 14] a 

b it better, while mc =  1.185 GeV, the value we take w ith the MRS R1 PDF, fits the 

pN  data [11,12,14] a b it better. Notice that for the pions we used a different PDF, 

SMR2 [25], the same used in Refs. [1 1 , 12] (obviously not used in  our calculations 

o f atmospheric fluxes). We present the irN  data just for completeness, to show 

that they too are reasonably well fitted  w ith  our choice o f parameters. These other 

values o f me in  Table 2.2 well reproduce the ir^ N  data at 250 GeV [11] and the
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n~N  data at 350 GeV [13] (which seem a b it too low w ith respect to the data at 250 

GeV). Even if  each value o f mc reproduces best each to ta l cross section, a ll three 

provide reasonable fits to a ll data, as can be seen also in the Figs. 2.1-2.3.

In Figs. 2.1-2.3 we present to ta l and differential cross sections calculated w ith 

the MNR program and compared to the experimental data. As a way o f example, 

we describe our fits for MRS R1 only.

Fig. 2.1a shows the fit to pN  to ta l cross sections (converted into ace values as 

described above). In  addition to the experimental value o f Table 2.1 — which is the 

fundamental one, since i t ’s the experiment whose differential cross sections we want 

also to fit — we added other experimental points coming from previous experiments 

(for details see [14]). For pN  the mc =  1.185 GeV is the best choice.

Fig. 2.1b shows the same for ttJV collisions. Here, as explained before, values of 

mc =  1.25 GeV or mc =  1.31 GeV are a better choice. Again we added here for 

completeness other experimental points coming from previous experiments [14].

Fig. 2.2ab shows fits to D-inclusive differential cross sections. In this figure the 

theoretically obtained dac£/dxp  and daci/dpj. were converted into D-cross sections, 

w ith no extra factors. Fig. 2.2ab presents the data o f the E769 collaboration [12] 

for pN  and irN  at 250 GeV. In these cases the differential aci cross sections are 

converted into single inclusive ones (by a factor o f 2 ) and then into cross sections 

for production o f D * , D°, D° and Dg (by a factor o f 1.2/1.5, see Eq. (2.7)) for the 

E769 data. For example,

*  i f x 2 x g  (2.8)

for Fig. 2.2a (and sim ilar factors for da/dp^ for Fig. 2.2b). The f it to the da/dpi^ pN  

data in  Fig. 2.2b seems to be a b it too low, but it  is not very different from the
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f it shown in Fig. 2.2 o f reference [12]. The predicted d tr/d p f are not sensitive to 

differences in  mc that are instead more noticeable in da/dxp.

Fig. 2.3ab presents the irN  data at 350 GeV o f the WA92 collaboration [13] in 

a way sim ilar to Fig. 2.2ab. In these cases the differential acl cross sections are 

converted into a single inclusive ones (by a factor of 2 ) and then into cross sections 

for production of D ± , D° and D° only (by a factor o f 1.0/1.5, see Eq. (2.7)) for the 

WA92 data. Sim ilar conclusions can be drawn: for pions mc =  1.31 GeV is the best 

choice in this case.

We have performed the same analysis w ith MRS R2, CTEQ 4M and CTEQ 3M, 

even if  we do not show here any o f the fits. The results for tota l and differential 

cross sections were sim ilar to those shown for the MRS R l, the only difference being 

the choice of mc.

In conclusion, we obtain good fits to all data on charm production w ith one 

choice of /xr, fip  and mc for each PDF, without other normalizations.

2.2.2 Choice of PD F’s

Consider the collision o f a cosmic ray nucleus of energy E  per nucleon, w ith a nucleus 

o f the atmosphere in which charm quarks of energy Ec are produced, which decay 

into leptons o f energy Ei (in the lab. frame, namely the atmosphere rest frame). 

Due to the steep decrease w ith increasing energy o f the incoming flux o f cosmic 

rays, only the most energetic charm quarks produced count for the final lepton 

flux, and these c quarks come from the interactions o f projectile partons carrying 

a large fraction o f the incoming nucleon momentum. Thus, the characteristic x  of 

the projectile parton, tha t we call Xi, is large. I t  is Xi ~  O (10~l ). We can, then, 

immediately understand tha t very small parton momentum fractions are needed in
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our calculation, because typical partonic center o f mass energies >/§ are close to 

the cc threshold, 2mc ~  2 GeV (since the differential cross section decreases w ith 

increasing s), while the tota l center o f mass energy squared is s =  2mpfE (w ith 

the nucleon mass, ~  1 GeV). Calling x2 the momentum fraction o f the target 

parton (in the nuclei o f the atmosphere), then, XiX2 =  s/s =  A m i/(2m ^E ) ~  

GeV/E. Thus, x2 — O (GeV/0.1 E), where E  is the energy per nucleon o f the 

incoming cosmic ray in the lab. frame. The characteristic energy Ec of the charm 

quark and the dominant leptonic energy Ei in the fluxes are E t~  Ee ~  0.1 E, thus 

x2 ~  0(G eV / Ei), as mentioned above.

For x >  10- 5  (E  <  103 TeV), PDF’s are available from global analyses o f existing 

data. We use four sets of PDF’s. MRS R l, MRS R2 [22] and CTEQ 4M [24], 

incorporate most o f the latest HERA data and cover the range o f parton momentum 

fractions x >  10-5  and momentum transfers Q2 >  1.25 -  2.56 GeV2. MRS R l and 

MRS R2 differ only in the value o f the strong coupling constant as at the Z boson 

mass: in MRS R l a ,(M |) =  0.113, and in MRS R2 ar,(A/£) =  0.120. The former 

value is suggested by “deep inelastic scattering” experiments, and the la tte r by LEP 

measurements. This difference leads to different values o f the PDF parameters at 

the reference momentum Q \ =  1.25 GeV2 where the QCD evolution o f the MRS 

R l and R2 PDF’s is started. The CTEQ 4M is the standard choice in  the M S  

scheme in the most recent group o f PDF’s from the CTEQ group (a ,(M |) =0.116 

for CTEQ 4M). We also use an older PDF by the CTEQ group, namely the CTEQ 

3M [23], only for comparisons w ith  [21], where it  is used as the main PDF.

For x <  10-5  (E  >  103 TeV), we need to extrapolate the available PDF’s. For 

x  <§C 1, all these PDF’s go as

x fi(x , Q2) ~  A{x~XdQ2), (2.9)
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where i  denotes valence quarks uv,dy, sea quarks S , or gluons g . The PDF’s we 

used (except the older CTEQ 3M) have As(Qjj) ^  Ag(Qo), in contrast to older sets 

o f PDF’s which assumed an equality. As x  decreases the density o f gluons grows 

rapidly. A t x  ~  0.3 it  is comparable to the quark densities but, as x  decreases it  in­

creasingly dominates over the quark densities, which become negligible at x  <  1 0 -3.

We need, therefore, to extrapolate the gluon PDF’s to x  <  10-5. Extrapolations 

based on Regge analysis usually propose xg{x) ~  x~x w ith A ~  0.08 [26], while 

evolution equations used to resum the large logarithms as ln ( l/x )  mentioned above, 

such as the BFKL (Balitsky, Fadin, Kuraev, Lipatov [27]) find also xg(x) ~  x~x 

but w ith  A cz. 0.5 [26]. A detailed analysis o f the dependence o f the neutrino fluxes 

on the low x  behavior o f the PDF’s w ill be given in the next chapter. As mentioned 

above, in the present part our goal is to compare NLO to BORN simulations, 

for which we use a simplified extrapolation at low x  o f the gluon PDF, which is 

somewhat in between the two extreme theoretical behaviors described above. For 

MRS R1-R2 and CTEQ 4M we take a linear extrapolation o f ln ^ (x ) as a function 

of Inx, in which we took ln ^(x ) =  —(Ag{Q2) +  1) In x  +  In Ag, where Ag(Q2) was 

taken as its value at x  =  10“ 5, the smallest x  for which the PDF’s are provided; for 

the CTEQ 3M we used a polynomial approximation which is included in the PDF 

package.

2.3 Simulation of particle cascades in the atmo­

sphere

We simulate the charm production process in  the atmosphere and the subsequent 

particle cascades, by modifying and combining together two different programs: the
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MNR routines [19] and PYTH IA  6.115 [28].

The MNR program was modified to become an event generator for charm pro­

duction at different heights in the atmosphere and for different energies o f the 

incoming prim ary cosmic rays.

The charm quarks (and antiquarks) generated by this first stage o f the program 

are then fed into a second part which handles quark showering, fragmentation and 

the interactions and decays o f the particles down to the final leptons. The cascade 

evolution is therefore followed throughout the atmosphere: the muon and neutrino 

fluxes at sea level are the final output of the process.

In this section we give a brief description of the main parts o f the simulation. 

Even i f  our program is completely different from the one used by TIG , because 

it  is constructed around the MNR main routines, nevertheless we keep the same 

modeling o f the atmosphere and of the primary cosmic ray flux as in TIG  and the 

same treatment o f particle interactions and decays in the cascade.

Our main improvement is the inclusion of a true NLO contribution for charm 

production (and updated PDF’s), so we keep all other assumptions o f the TIG 

model in order to make our results comparable to those o f TIG . We study the effect 

o f modifying some o f the ir other assumptions in the next chapters.

2.3.1 The model for the atmosphere

We assume a simple isothermal model for the atmosphere. Its density at vertical 

height h is

m  = (2.10)
« o

where the scale height /to =  6.4 km and the column density X 0 =  1300 g/cm2 at 

h — 0 are chosen as in  T IG , to fit the actual density in the range 3 km <  h <  40 km,
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im portant for cosmic ray interactions. Along the vertical direction, the amount of 

atmosphere traversed by a particle, the depth X , is related to the height h simply 

by

X  =  r  p (ti)d ti =  X 0e-h/ho. (2.11)
Jh

The atmospheric composition at the important heights is approximately constant: 

78.4% nitrogen. 21.1% oxygen and 0.5% argon w ith average atomic number (A) =  

14.5.

2.3.2 The primary cosmic ray flux

Following TIG  [15], we neglect the detailed cosmic ray composition and consider all 

primaries to be nucleons w ith energy spectrum

0 at(£> 0 )
nucleons

cm? s sr GeV /  A

1.7 (E/GeV)~2J f a r  E <  5 106 GeV

174 {E /G eV )-3-° f a r  E  > 5  106 GeV
(2.12)

The prim ary flux is attenuated as it  penetrates into the atmosphere by collisions 

against the air nuclei. An approximate expression for the intensity o f the primary 

flux at a depth X  is (see [15] again)

M B ,  X ) =  «-*/*»<*) M E ,  0) • (2.13)

The nuclear attenuation length An , defined as

=  1 -  Zs«{E ) ’ 2̂’14^
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has a m ild energy dependence through Z nn  and A H e r e  Z nn  is the spectrum- 

weighted moment for nucleon regeneration in nucleon-nucleon collisions, for which 

we use the values in  Fig. 4 o f Ref. [15]. And A at is the interaction thickness

Aw(£’ h) =  ZA^N A(E)nA(h) ’ (2'15)

where n^(h) is the number density o f a ir nuclei o f atomic weight A  at height h 

and ctha(E) is the tota l inelastic cross section for collisions o f a nucleon N  w ith a 

nucleus A .1 This cross section scales essentially as A2/3, since for the large nucleon-

nucleon cross sections we deal w ith, the projectiles do not penetrate the nucleus.

So we set ona(.E) =  A2/3a ss (E ). For <jn n (E) we use the fit to the available data 

in Ref. [30]. Using our height independent atmospheric composition, we sim plify 

Eq. (2.15) as follows,

A» (£:’ h) =  ■ (2-16) 

Here ( )  denotes average and u is the atomic mass unit, that we w rite as

u =  1660.54 mb g/cm2. (2.17)

We therefore find tha t in our approximations An (E) is independent o f height.

‘We recall that the elastic cross section contributes negligibly to the primary flux attenu­
ation because the average elastic energy loss is very small, less than 1 GeV at the high en­
ergies we consider. This can be seen using the differential elastic cross section dati/dQ2 = 
(datt/dQ2)Q2- 0exp(—bQ2) with 6 =  [7.9 +■ 0.91npjO6]GeV-2, with pj„6 in GeV [29]. Here Q 
is the momentum transfer of the colliding proton of incoming momentum ptat and mass M . 
The mean energy loss is the mean value of Q2/2M  (here M  is the target proton mass) namely 
(1/2AT6) =  67MeV/(l+0.11n(pjO6/GeV)). This is 46 MeV at E  — lOOGeV, and smaller at higher 
energies.

18
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2.3.3 Charm production with MNR routines

As we remarked before, the modified MNR routines are the first stage o f our sim­

ulation. For a given energy E  o f a primary incoming proton in the lab system, i.e. 

in the atmosphere reference frame, we generate a collision w ith a nuclear target at 

rest in the atmosphere, activating the MNR routines (prim ary event, pN  collision, 

w ith N  =  (p +  n ) /2) .

These routines generate to ta l and differential cross sections through a VEGAS 

integration, which creates a large number o f ‘subevents’, each one w ith a particular 

weight, which in the orig inal MNR program are summed together to calculate the 

final cross sections.

It  is easy to modify the program so that each o f these subevents (together 

w ith its weight) can represent the production of a charm c (or o f a cc pair, or cc 

gluon, etc.) w ith given kinematics in any particular reference frame o f interest. 

The original MNR routines can calculate single differential cross sections, in which 

the kinematics o f only one final c quark is available, and double differential cross 

sections, in which the fu ll kinematics of the cc pair (plus an additional parton in 

NLO processes) becomes available, for each subprocess. We have used both these 

possibilities. We w ill refer to them as ‘single’ and ‘double’ modes. The ‘single’ 

is the mode we use to obtain a ll our results. We use the ‘double’ mode only to 

compare the results o f the independent fragmentation model used in the evolution 

o f cascades in the ‘single’ mode, w ith the more reliable string fragmentation model, 

which can only be used in  the ‘double’ mode, as we explain below.

The MNR program [19, 20] contains all BORN and NLO processes. In the 

‘single’ mode we can generate the following processes, w ith  only the kinematics of
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the c quark available,

gg -¥ cX ; qq —► cX  (BORN) g g - tc X ;  q q c X ;  qg -► cX (NLO) (2.18)

where q represents any light quark or antiquark. In the ‘double’ mode we have the 

following processes

gg —► cc; qq -> cc (BORN) gg —> cc<j; qq -> ccg; qg —► ccg (NLO) (2.19)

for which the kinematics of all the outgoing partons is fu lly determined for each 

‘subevent’.

A ll the kinematical variables of the partons in the final state constitute the input 

for the next stage o f the program, described in the next subsection.

An im portant characteristic of the first stage is that, besides mc, hr , and (ip, 

we can select any desired PDF to be used w ith the charm production routines. We 

have updated the set o f PDF’s in the original MNR program.

According to the discussion of Sect. 2.2, we use the MRS R l, MRS R2, CTEQ 

3M and CTEQ 4M parton distribution functions, together w ith the values o f mc, 

fiR, and fip  in Eqs. (2.1-2.4).

As a concrete example of the integrals performed in our program, here we write 

the differential flux o f muons (namely o f n+ +  fi~) w ith energy (/z stands 

here for or ( j T )  in the ‘single’ mode (0 M has units cm- 2  s-1  sr-1  GeV ~l )

M B ')  =  £ ‘ d E f i ° i h M E , X { h ) ) '£ n A(h )x

MNR PYTHIA
(2.20)
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Here n^(/i) is the number density of nuclei of atomic number A  in  the atmosphere, 

E  is the energy o f the prim ary cosmic ray proton, Ec the energy of the charm 

produced in the collision pA  -> cY (Y  here stands fo r anything else). Using 

the relation da(pA —> cY )/dE c =  A da(pN —> cY )/dE c, the sum over A becomes 

Y.AnA(h)A =  p{h)/u. Using dX  =  -p(h)dh, Eq. (2.13), and normalizing to one 

the distribution in depth X , becomes

M E») =  d E  f ° ° d X  M E , x  =  o)J Eu </ Xn

e-XIAN{E)

An (E)
n h ) A N(E)

u
(2.21)

where, from Eqs.(2.14) and (2.16), AN/u  =  2M [oNN{\ — Z NN))~l and

dE,
da(pN  cY;E, Ec) dNn(c -»• p.; Ec, E^, h)'

dEc MNR ■

$

a PYTHIA
(2 .22)

Here the factor o f 2 accounts for the muons produced by c (only c quarks are used 

in the program for s im plic ity); the pN  inclusive charm production cross section is 

computed w ith the M N R  program (here are the integrations over the PDF’s and 

partonic cross sections) and the last square bracket is the number o f muons of energy 

E^ which reach sea level, produced in the cascades simulated by PYTHIA. Each 

cascade is initiated by a c quark (in the ‘single’ case) o f energy Ec and momentum 

k (provided by the M N R  routines) at a height h chosen through a random number 

R  homogeneously d istributed between 0 and 1, which gives the value of the X  

probability d istribution in  Eq. (2.21), namely R  =  The cancellation

o f soft and collinear singularities is performed in the M N R  program under the 

integral sign. This process requires the generation o f six correlated events for each 

randomly generated final-state configuration. In  our program we make sure that 

also the height o f the event, the only additional parameter o f each event, is chosen
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to have one common value for a ll correlated events.

2.3.4 Cascade evolution with PYTHIA routines

The parton c (or partons in  the ‘double’ case) generated by the first stage, namely 

by the MNR routines, are entered in the event lis t o f PYTH IA and they become 

the starting point of the cascade generation.

PYTHIA first fragments the c quark (in the ‘single’ mode, or a ll the partons 

in the ‘double’ mode) into hadrons, after showering, which can be optionally shut 

off. The charm quarks hadronize into D°, D°, D ± , D f  and Ac. We used here 

the Peterson fragmentation function option. For each hadron produced, a simple 

routine added to PYTHIA decides i f  the hadron interacts in the atmosphere (loosing 

some energy) or decays. This is the same approach as in TIG . PYTHIA follows in 

this way the cascade in  the atmosphere and populates the histograms of muons 

and neutrinos as a function of their different energies. We mention here a few 

im portant technical details. The ‘single’ and ‘double’ modes described before use 

different fragmentation models. In the ‘single’ mode only one c quark is available 

and is entered at the beginning o f the event lis t (w ith  its energy and momentum 

in the partonic CM reference frame). In this case PYTH IA  uses the ‘independent 

fragmentation’ model (see [28] for details). We only include c quarks and at the 

end m ultip ly the result by a factor of two to account for in itia l c quarks.

In  the ‘double’ mode, instead, which we only use at the LO, we start w ith two (cc) 

partons in the event lis t. In  this case we opt to use the ‘string fragmentation’ model 

(Lund model, [28]). This model generally gives better results than the independent 

fragmentation, in which energy and momentum conservation have to be imposed a 

posteriori and whose results depend on the reference frame used, which em pirically is
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chosen to be the partonic CM frame. To impose energy and momentum conservation 

in the independent fragmentation, we used the option (M STJ(3)=1, see again [28]) 

in which particles share momentum imbalance compensation according to their 

energy (roughly equivalent to boosting events to CM frame) but we have convinced 

ourselves that the results do not depend much on the way o f imposing energy and/or 

momentum conservation, because tria l runs w ith different options have given similar 

results for the fluxes.

Even if  independent fragmentation is in general less desirable than string frag­

mentation, we use the ‘single’ mode as our main choice. The main reason to use 

the ‘single’ mode is tha t the simulations run in acceptably short times (4-5 days) 

on a few SUN workstations tha t we use, while giving results practically identical to 

the ‘double’ mode in the comparisons we have made (see Fig. 2.6c). The simulation 

o f the cascades in the ‘double’ mode takes between five and ten times longer. We 

tested the goodness o f the independent fragmentation by comparing the outcome 

of fluxes computed at the Bom level, in which the charm fluxes at production are 

identical (we put one c in  the atmosphere and m ultip ly the outcome by two to ac­

count for the c in one case, and we put cc in the atmosphere, instead, in the second 

case) and the sole difference in both modes is due to the different fragmentation 

models used. The results were extremely close (at Bom level the difference is less 

than 5%, at energies above 105GeV), as can be seen in Fig. 2.6c.

Apart from the mentioned differences between the ‘single’ and ‘double’ modes, 

the simulations then proceed basically in the same way in  both modes. For each 

o f the ‘subevents’ , i.e. fo r each set o f in itia l parton(s) put in  the event list, a 

certain height in the atmosphere is randomly chosen as explained above, this being 

the position at which the partons are generated from the in itia l proton-nucleon 

collision. This random height h is generated in  a way sim ilar to  T IG  (see Ref.
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[15]), but different, because we include a correction for nucleon regeneration in 

nucleon-nucleon collisions by using As, the nuclear attenuation length, in Eq. (2.13) 

instead o f XN , the interaction thickness (see Eqs. (2.14),(2.15) and (2.16)).The only 

difference compared to TIG  (see Eq. (15) in the last paper o f Ref. [15]) is the 

inclusion o f the (1  — Z ss )  correction term. This was done because we could not 

include regenerated protons directly in our simulation of the cascades, since events 

and subevents are now created by the MNR routines and not by PYTHIA, as it 

was in  TIG .

When parton showering is included at the beginning of the cascade simulation 

performed by PYTHIA, some double counting is present. The double counting 

appears when a LO diagram, for example gg —> cc, w ith a subsequent splitting 

contained in  PYTHIA, for example c —► gc is summed to NLO diagram, gg -» gcc 

w ith the same topology, as if  both diagram were independent, when actually the 

NLO contains the first contribution when the intermediate c quark on mass shell. 

We have not tried to correct this double counting but have instead confronted the 

results obtained including showering (our standard option) w ith those excluding 

showering (in which case there is no double counting) and found very sim ilar leptonic 

fluxes (see Fig. 2.6b).

The particles generated after the in itia l hadronization are then followed through­

out the atmosphere and PYTHIA evolves the cascade w ith  the same treatment of 

interactions and decays proposed by TIG . The final number o f muons and neutri­

nos at sea level is therefore calculated considering a ll the ‘subevents’, each w ith 

its respective weight Wi from the MNR program, which produce the final particles 

through a ll the possible decay channels o f charmed particles decaying into prompt 

leptons. Since only the decay modes o f charmed hadrons going into n  or or ue are 

le ft open in  the simulation, and there are essentially just 2  modes for each charmed
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particle (for example: D + —► e+ i/e +  anything , w ith branching ratio =  0.172; 

D + —>■ Vp +  anything , w ith branching ratio =  0.172; a ll other channels closed), 

the branching ratios for each o f these modes is fictitiously taken by PYTHIA to 

be 1 /2  and need to be normalized by multiplying by the actual branching ratio 

(0.172 for the example above) and dividing by 1/2. Besides, since not all events are 

accepted by PYTH IA  to generate a complete cascade, the result is normalized by 

dividing by the sum of a ll the weights o f accepted events and m ultip ly ing it  by the 

to ta l c inclusive cross section.

2.3.5 Summary

To summarize, our computation o f the final fluxes is organized as follows.

•  An external loop over the prim ary energy E  generates an integration over E  

in the range 101 — 10n GeV.

•  For each prim ary energy E, the MNR routines generate ‘subevents’ w ith weight 

Wi, for a ll the LO and NLO processes.

•  Each subevent is assigned a random height (so that im p lic itly  an integration 

over h is performed) and a ll this is passed to PYTHIA as a definite set of parton(s) 

to be put at the beginning o f the event list.

•  For each o f these ‘subevents’, PYTHIA treats showering (in  our standard op­

tion), hadronization and evolution o f the cascade in the atmosphere, and generates 

the final leptons.

•  For each decay channel o f interest, the produced leptons are weighted with Wi 

and then summed into the final fluxes.
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2.4 Neutrino and muon fluxes

Figs. 2.4-2.6 show the results of our simulations. Fig. 2.4 shows the total inclusive 

charm-anticharm production cross sections crc2, and the K  factor for c production, 

namely the ratio between the NLO and Born cross sections, K c =  o"^£'°/c r^OTn, for 

the four PDF’s we consider and for TIG. Fig. 2.5 shows our main results obtained 

w ith  our default choice o f options: a ‘single’ mode calculation including the con­

tributions from a ll processes in Eq. (2.18) and w ith  parton showering included in 

the cascade simulation performed by PYTHIA). F in a lly  Fig. 2.6 shows the relative 

importance o f the processes included in the fluxes and a comparison of the ‘single’ 

and ‘double’ modes and o f the ‘on’ and ‘off’ showering options.

In Fig. 2.4a, the tota l inclusive charm-anticharm production cross sections <rcS 

are plotted over the energy range needed by our program, E  <  1011 GeV, for our 

four different PDF’s. They were calculated using the MNR program, w ith the 

‘calibration’ described in Sect. 2.2, up to the NLO contribution. For comparison, 

we also show the cross section used by TIG  and the Bora (LO) contribution for one 

o f the PDF’s, MRS R l. We see in the figure that a ll our cross sections agree at low 

energies, as expected due to our ‘calibration’ at 250 GeV, and are very sim ilar for 

energies up to 106 — 10r GeV. A t higher energies they diverge, differing by at most 

50% at the highest energy we use, 10u GeV. In  fact, a t energies beyond 107 GeV, 

the CTEQ 3M cross section becomes progressively larger than the CTEQ 4M and 

MRS R2 cross sections, which are very close to each other. The MRS R l becomes 

on the contrary progressively lower than the other three.

We see in Fig. 2.4a that for energies above 104 GeV our cross sections are 

considerably higher than the one used by TIG . This difference can be traced in part 

to the use by T IG  o f an option o f PYTHIA by which the gluon PDF is extrapolated
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to x <  10“ 4 w ith  A =  0.08, while all the PDF’s we use have a higher value o f 

A ~  0.2 — 0.3. And in part to T IG  scaling the LO cross sections obtained w ith 

PYTH IA  by a constant K  factor o f 2, while at large energies the K  factor is actually 

larger than 2 by about 10-15% (see Fig. 2.4b).

In Fig. 2.4b we exp lic itly show the K  factor for c production, namely the ratio 

between the NLO and Born cross sections, K c =  c r ^ 0 /# ^ 0™, for our PDF’s and 

for T IG . A ll the K e values are around the usually cited value o f 2 for most o f the 

intermediate energies, but are larger at the lowest energies and also at the highest 

energies (except for CTEQ 3M), and they a ll are w ithin about 15% of each other.

Fig. 2.5 contains three sets o f figures, one for each lepton: p, and ue. The left 

figure o f each set shows the ^-w eighted vertical prompt fluxes, for a ll our PDF’s up 

to NLO (labelled ‘NLO’) and, as an example, the LO (labelled ‘BORN’) for MRS R l, 

together w ith the to ta l fluxes up to NLO of TIG , both from prompt and conventional 

sources (dotted lines). The right part o f each set shows the corresponding K i value 

(where I =  n, i/e), i.e. the ratio o f the tota l NLO flux to  the Born flux of the 

figure on the left. The figures show that our fluxes are higher than those o f TIG 

for E  >  103 GeV. Leaving apart differences in the two simulations that cannot be 

easily quantified, this discrepancy can largely be explained by the different cross 

sections used by T IG  and us: the T IG  cross section is lower than ours for E  >  104 

GeV. Using a value o f A sim ilar to TIG  (A ~  0) at small x, we obtain fluxes sim ilar 

to those o f T IG  at energies above 10® GeV (see next chapter).

In  particular, our fluxes are a ll larger than TIG  by factors o f 3 to 10 at the 

highest energies, what puts our fluxes in  the bulk-part o f previous estimates (see 

Refs. [16, 17,18, 8 ]). There is an evident dependence o f the fluxes on the choice o f 

PDF. I t  is remarkable tha t MRS R2 and CTEQ 4M give very sim ilar results. Those 

o f the MRS R l become lower and those o f the older CTEQ 3M PDF become higher
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as the energy increases (both differing by about 30-50% at the highest energies w ith 

respect to the MRS R2-CTEQ 4M fluxes). This is due to the intrinsic differences 

o f the PDF packages used and the consequent different extrapolated values of A at 

small x  or high energies.

The CTEQ 3M fluxes were included to compare our results w ith those o f Ref. 

[21]. We find our CTEQ 3M results to be close to those o f Ref. [21], in spite o f the 

very different approaches used in the two calculations. Our fluxes lie between the 

two curves for CTEQ 3M shown in Fig.8 o f Ref. [21], corresponding to different 

choices o f renormalization and factorization scales. Our fluxes are lower (by 30-40% 

at 107GeV), than the main CTEQ 3M choice o f Ref. [21] (solid line o f their Fig.8 ), 

which is calculated using values of fiR, hf and mc sim ilar to ours. Our cross section 

for charm production, for the CTEQ 3M case, is essentially equal to the one used 

in Ref. [21] (shown in the ir Fig. 2), so the discrepancies in the final fluxes are to be 

explained in terms o f the differences in the cascade treatment. I t  is very difficu lt to 

trace the reasons for these differences.

We also see in the figures that, for each PDF, the fluxes for the different leptons 

are very sim ilar: those for neutrinos and ut  are essentially the same, those for 

muons are only slightly lower (about 10% less at the energies o f interest). Also the 

K i's  don’t  differ much for the three leptons, apart from some unphysical fluctuations 

especially evident at the highest energies. Even i f  they vary slightly, for different 

PDF’s, they a ll show a sim ilar energy dependence, namely they increase at low 

energies and sometimes at high energies also. This behavior is also sim ilar to that 

o f the K c factors in Fig. 2.4b, but w ith a weaker overall energy dependence, as 

expected, since the leptons o f a given energy result from c quarks w ith a range of 

higher energies.

The K i factors are a ll w ith in the range 2.1 — 2.5: they are approximately 2.2 for
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MRS R l, 2.4 for MRS R2 and CTEQ 4M, and 2.3 for CTEQ 3M. Thus, our analysis 

shows that evaluating the lepton fluxes only at the Bom level, and m ultiplying them 

by an overall Ki factor o f about 2.2 — 2.4 (i.e. 10 to 20% larger than the value o f 2 

used by T IG 2), can be good enough to evaluate the NLO fluxes w ithin about 10%. 

Thus we find the approach used by T IG , who m ultiplied the LO fluxes obtained w ith 

PYTH IA  by two, essentially correct, except for their relatively low K  factor and 

the discrepancies existing even at Bom level between our fluxes and those o f T IG . 

In fact, as we mentioned previously, the differences between our final results and 

those o f TIG  depend mostly on the different total inclusive c cross sections, which 

can be traced to the extrapolation o f the gluon PDF at small x  rather than to the 

K  factor. Possible causes o f the different results due to the intrinsic differences of 

the computer simulations cannot be easily quantified.

In Fig. 2.6 we address three issues. First, we show that the fluxes can be obtained 

w ith in  about 30% with just the gluon-gluon process. This would speed up the 

simulations and, when using the MNR program, would give (contrary to intu ition) 

higher fluxes than those actually derived from a ll processes. Secondly, we show 

that the fluxes obtained including or excluding showering in the simulation made by 

PYTH IA  (we included showering in  our standard options) do not differ significantly. 

The th ird  issue we deal w ith is the difference between the ‘single’ and ‘double’ 

modes described before. We show tha t at LO the results from a ‘double’ mode 

calculation coincide w ith those o f the much shorter ‘single’ mode, that we use in  a ll 

our calculations. Let us deal w ith  these three issues in turn.

In  Fig. 2 .6 a we show, for a given PDF, the MRS R l, the relative importance o f

2We note that in the original TIG model there is no distinction between K c and Kt factors 
since only the Bom level is considered. Their K  =  2 factor is just a multiplicative constant which 
can be considered either a Kc or a Ki.
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the different processes contributing to the final fluxes. The solid line is the total 

flux obtained as the sum o f a ll the processes o f Eq. (2.18) and the dotted line shows 

the result o f only gluon-gluon fusion (gg), the sum o f Born (gg) and pure NLO 

(excluding Born) gg processes. Also shown are the separate contributions only at 

the Bora and at the NLO (excluding LO) o f both gg and quark-antiquark (qq) fusion, 

which clearly shows that gg dominates. This is to be expected because the gluon 

PDF is either much larger than (for x <  0.1) or comparable to (for x ~  0(0.1)) 

the quark PDF’s. The figure plots the absolute value o f the quark-gluon (qg) terms 

because, for the values o f the factorization scale that we employ in our calculations, 

these terms are negative. This is due to the way the original MNR calculation is 

subdivided into processes. In fact, in the MNR program, a part o f the quark-gluon 

contribution to the cross sections is already contained in other processes, and must 

be subtracted in the processes labelled as qg. The amount subtracted depends on 

the factorization scale fip  and may drive the qg contribution negative. Roughly 

speaking, i f  g,p is small the qg term is positive, otherwise (as in our case) the term 

is negative. The absolute value of the qg term is in between the qq and the gg 

terms, what makes negative the sum of a ll the processes different from gg. Thus, 

gluon-gluon processes alone give a result slightly larger than the total, by about 

30%.

In  Fig. 2 .6 b we check the effect of shutting o ff the showering option available in 

PYTH IA . We study only one specific case, the MRS R l. The overall effect is m ini­

mal: the exclusion o f showering slightly increases the energy o f the parent charmed 

hadrons and therefore causes the final fluxes o f lepton daughters to move towards 

higher energies; the effect is barely noticeable and just slightly more important for 

the Bora fluxes (the overall difference is about 5%). When showering is included 

some double counting occurs, whose effect must be smaller than the difference be-
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tween the results w ith showering on and off (since in this case no double counting 

occurs).

Finally in Fig. 2.6c we confront the ‘single’ and ‘double’ modes o f the program, 

for just one PDF, MRS R l, at Born level. A t this level, the calculation o f the charm 

flux at production is identical (we obtain the fluxes from c and m ultip ly by two at 

the end to account for the c in  one case, and we obtain the fluxes d irectly from cc 

in the other). So, what is actually compared in the two modes at the Born level 

is the fragmentation model: independent fragmentation in the ‘single’ mode and 

string (Lund) fragmentation in the ‘double’ mode. The results from both modes at 

the Born level are almost identical: as already remarked the difference is less than 

5% for energies above 106 GeV.

2.5 Conclusions for Part One

We have used the actual next-to-leading order perturbative QCD calculations of 

charm production cross sections, together w ith a fu ll simulation o f the atmospheric 

cascades, to obtain the vertical prompt fluxes o f neutrinos and muons.

Our treatment is sim ilar to the one used by T IG , except for the very important 

difference of including the true NLO contribution, while TIG  used the LO charm 

production cross section m ultiplied by a constant K  factor o f 2 to bring it  in line 

w ith  the next-to-leading order values. The main goal of this part is to examine 

the validity o f T IG ’s procedure by computing the ratio of the fluxes obtained w ith 

the NLO charm production cross section versus those obtained w ith the LO cross 

section.

These ratios, the K i factors are between 2.1 and 2.5 for the different gluon PDF’s 

in  the energy range from 102 to 109 GeV (see Fig. 2.5). Consequently, our analysis
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shows that evaluating the lepton fluxes only at the Born level, and m ultiplying 

them by an overall factor o f about 2.2 — 2.4, slightly dependent on the PDF, can be 

good enough to evaluate the NLO fluxes w ith in  about 10%. Therefore, we find the 

approach used by T IG  (i.e. m ultiplying the LO fluxes by two) essentially correct, 

except for the ir relatively low K  factor. We find different lepton fluxes than TIG , 

but this is mostly due to the discrepancies, even at Born level, between our charm 

production cross sections and T IG ’s.

In fact, the prompt neutrino and muon fluxes found by TIG  were lower than 

the lowest previous prediction. We find here instead fluxes in the bulk part of those 

previous predictions. This difference can be traced largely to the use by TIG  of 

an option of PYTH IA  by which the gluon PDF is extrapolated for x  <  10- 4  w ith 

A =  0.08, while a ll the PDF’s in this paper have a higher value o f A ~  0.2 -  0.3. 

Using a value o f A sim ilar to TIG (A ~  0) we obtain fluxes sim ilar to those of TIG , 

at energies above 106 GeV (see next chapter).
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Beam
Energy
(GeV)

cr+(xF >  0 ) 
(Atb)

M E X P .)
(pb)

<rcs(MNR)
(pb)

PDF

pN

E769 [11]

250
<t+ (D + ,D ')  =  
3.3 ± 0 .4  ±0 .3  
cr+(D°,D°) =  
5.7 ± 1 .3  ±0 .5

13.5 ±  2.2 13.54

mc =  1.185 GeV

MRS R l

pN

E769 [11]

250
a+(D + ,D ~) =  
3.3 ± 0 .4  ±0 .3  
a+(D °,D °) =  
5.7 ± 1 .3  ±0 .5

13.5 ±  2.2 13.43

mc =  1.31 GeV

MRS R2

pN

E769 [11]

250
<r+(D+ ,D ~) =  
3.3 ± 0 .4  ±0 .3  
a+(D °,D °) =  
5.7 ± 1 .3  ±0 .5

13.5 ±  2.2 13.59

mc =  1.27 GeV

CTEQ4M

pN

E769 [11]

250
v+(D + D ~ )  =  
3.3 ±  0.4 ±  0.3 
a+(D Q,D °) =  
5.7 ± 1 .3  ±0 .5

13.5 ±  2.2 13.45

mc =  1.24 GeV

CTEQ3M

Table 2.1: Data on to ta l cross sections for charm production for pN  collisions, from 
E769 experiment, have been converted to cc cross sections and compared to the 
predictions o f the MNR program running at slightly different values o f the charm 
mass mc, using different PDF’s.
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Beam
Energy

(GeV)

o+(xF >  0 ) 
(fib)

^e(EXP.)
(fib)

<Tcj(MNR) 
(pb) 

mc — 
1.185 
GeV

<r<*(MNR) 
(^6) 

me =  
1.250 
GeV

7T-JV 

E769 [11]

2 1 0
a+(D+,D~) =  
1.7 ±0 .3  ±0 .1  
<r+(D °,D °) =  
6.4 ±  0.9 ±  0.3

9.7 ±1 .2 14.08 10.64

7X~N 

E769 [11]

250 a+(D + ,D -) =  
3.6 ±0 .2  ±0 .2  
a+(D°,D°) =  
8.2 ±0 .7  ±0 .5

14.2 ±  1.1 16.54 12.56

ir+N  

E769 [11]

250
c+(D+,D~) =
2.6 ±  0.3 ±  0.2 
<t+(D \D ° )  =
5.7 ±0 .8  ±0 .4

1 0 .0  ±  1.2 16.54 12.56

E769 [11]

250
* +(D+,D~) =
3.2 ±0 .2  ±0 .2  
<r+(D°, D°) =
7.2 ±0.5  ±0 .4

12.5 ±  0.8 16.54 12.56

7r N

WA92 [13]

350
<x+(D +,D ~) =  

3.28 ±  0.08 ±  0.29 
a+(D °,D °) =  

7.78 ±0.14 ±0.52

13.3 ±  0.7 2 2 .2 2 17.06

(13.5 for

mc =  1.31 
GeV)

Table 2.2: Data on to ta l cross sections for charm production for %N  collisions, from 
E769 and WA92 experiments, have been converted to cc cross sections and compared 
to the predictions o f the MNR program running at slightly different values o f the 
charm mass mc, using MRS R l.
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Figure 2.1: Comparison o f experimental data for aci w ith MNR predictions for 
different mc values: (a) in pN  collisions ([14], Table 2.1), (b) in %N collisions ([14], 
Table 2.2) (PDF: MRS R l).
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Figure 2.2: Comparison of differential cross sections for {D+,D  , D °,D 0, D$ and 
Dg) production, calculated using MNR at different mc values, w ith B769 data for 
pN  and ttN  [12]: (a) da/dxF, (b) da/dp$- (x F >  0 ) (PDF:MRS R l).
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Figure 2.3: Comparison of d ifferentia l cross sections for (D +, D  , D °, D°) produc­
tion, calculated using MNR at different me values, w ith  WA92 data fo r irN  [13]: 
(a) da/dxF, (b) d a /d &  (xF >  0) (PDF: MRS R l).
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Figure 2.4: (a) Total cross sections for charm production <r<£ up to  NLO, for different 
PDF’s, compared to the one used in the TIG model [15] (fo r MRS R1 we also show 
the Bom cross section), (b) Related Kc factors.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



> v lO - 8
prompt

Q> 1 0 ~ 3

V ' I '  I 1 I 1 I 1 I 1 - I

J -L  1 . 1 . 1 . 1 . 1

3 4 5 6 7 8 9

I ■ I ■ I ■ I ■ l ■ I

r Vm+ V m  MRS RR “
* * --------- CTEQ4M _

\  " -------------- CTEQ 311

2 3 4 5 6 7 8 9
logl0(E/GeV)

2 3 4 5 6 7 8 9
logl0(E/GeV)

Figure 2.5: ^-w eighted vertical prompt fluxes, for different PDF’s, at NLO (for 
MRS R l we also show the Bom  flux), for the three types o f leptons considered, 
compared to the T IG  [15] conventional and prompt fluxes (le ft figures) and the 
related Ki factors for each case (right figures).
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the showering option, at Bora and NLO. (c) Comparison o f the fluxes calculated in 
the ‘single’ or ‘double’ mode, a t Bom only (PDF: MRS R l) .
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Chapter 3 

Part Two: Dependence on the 

Gluon Distribution Function

3.1 Introduction to  Part Two

We recall from Part One tha t the flux of atmospheric neutrinos and muons at 

very high energies, above 1 TeV, originates prim arily from semileptonic decays of 

charmed particles instead o f pions and kaons, which are the dominant decay modes 

at lower energies. This flux is one o f the most important backgrounds for “neutrino 

telescopes” , lim iting their sensitivity to astrophysical signals, especially for future 

km3 detectors which might be able to observe neutrinos and muons at extremely 

high energies, even up to 1012 GeV.

We use perturbative QCD (pQCD), the theoretically preferred model, to com­

pute the charm production. We perform a true next-to-leading order (NLO) pQCD 

analysis o f the production o f charmed particles in  the atmosphere, together w ith 

a fu ll simulation o f the particle cascades down to the final muons and neutrinos. 

This is done by combining the NLO pQCD calculations o f charm production and
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computer routines o f Mangano, Nason, and Ridolfi [19, 20] (called MNR in the fol­

lowing) w ith the computer simulations of the cascades generated by PYTHIA [28]. 

These are the same programs currently used to compare pQCD predictions w ith 

experimental data in accelerator experiments.

We have already presented results of our calculations in  the first part, in which 

a ll the details of the program we use can be found. The main goal of this first 

part was to compare the fluxes obtained w ith the NLO and the leading order (LO) 

calculations, i.e. we computed the K  factor for the neutrino and muon fluxes. 

This was done to improve on the first study of atmospheric fluxes based on pQCD, 

performed by Thunman, Ingelman, and Gondolo a few years ago in Ref. [15] (called 

TIG  in the following). T IG  used the LO charm production cross section computed 

by PYTHIA, m ultiplied by a constant K  factor of 2 to b ring  it  in  line with the NLO 

values, and supplemented by parton shower evolution and hadronization according 

to the Lund model.

In Chapter Two we found the K  factors for different parton distribution func­

tions (PDF’s), as function o f energy, to be in a range between 2.1 and 2.5. A sim ilar 

analysis was recently made in  Pasquali, Reno, and Sarcevic [21] (called PRS from 

now on), w ith results compatible w ith ours, using a treatm ent o f the problem com­

plementary to ours. In  fact, PRS used approximate analytic solutions to the cascade 

equations in the atmosphere, also introduced by TIG , w hile we make instead a fu ll 

simulation o f the cascades.

In Chapter Two we showed that the approach used by T IG  (i.e. multiplying the 

LO fluxes by an overall K  factor of 2) was essentially correct, except for their relative 

low K  factor (since K  values o f 2.2 - 2.4, depending s ligh tly  on the PDF, provide 

estimates o f the NLO w ith in  about 10%). However, while T IG  found neutrino and 

muon fluxes lower than the lowest previous estimate, we found instead larger fluxes
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(by factors of 3 to 10 at the highest energies, about 109 GeV), in  the bulk part of 

previous predictions. The main reason for this difference is studied in this chapter.

Here we explore the dependence o f the atmospheric fluxes on the extrapolation 

o f the gluon PDF at very sm all partonic momentum fraction x, x  <  10-5, which is 

crucial for the fluxes at high energies. As explained below, the relevant momentum 

fraction x of the interacting atmospheric parton is o f the order o f the inverse of the 

leptonic energy Ei (in the atmospheric rest frame) in GeV. This energy, in turn, is 

o f the order of 0.1 E , where E  is the energy per nucleon o f the incoming cosmic ray 

in the laboratory frame (the atmospheric rest frame). Thus, for Ei >  105 GeV, we 

need the PDF’s at x  <  10-5 , values o f x  which are not reached experimentally. The 

final fluxes depend mostly on the gluon PDF, since this is by far the dominant one 

at these small x  values and charm is mostly produced through gluon-gluon fusion 

processes.

A concern that has been expressed to us several times is the applicability of the 

MNR NLO-pQCD calculations, mostly done for accelerator physics, to the different 

kinematic domain o f cosmic rays. In response we remark tha t, for the less steep 

extrapolations o f the gluon structure function g(x) that we use at small x, we have 

large logarithms, known as “ ln ( l/x ) ” terms, where x  ~  yj4m%fs, s is the hadronic 

center of mass squared energy and this x is the average value o f the hadron energy 

fraction needed to produce the cc pair. W ith the extrapolation g{x) ~  i A_l (see 

below) and A close to 0.5, and possibly for the intermediate choices o f A also, there 

should be no large logarithm . The problem arises for A too close to zero. Moreover, 

contrary to the case in accelerators, we do not have the uncertainty present in the 

differential cross sections [19] when bp is much larger than m c, due to the presence 

o f large logarithms o f (& f +  Because we do not have here a forward cut in

acceptance, the characteristic transverse charm momentum in  our simulations is o f
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the order o f the charm mass, k r  — 0 (mc).

In this part, as in Chapter Two, the MNR program is used to compute the 

inclusive charm cross section, and the cascades simulated by PYTH IA are initiated 

by a single c quark. This is the ‘single’ mode described in Part One, where we 

argued its advantages. We explained there our normalization o f the NLO charm 

production cross sections in the MNR program, and described in  detail the computer 

simulations used to calculate the neutrino and muon fluxes, which we briefly review 

in Sections 3.2 and 3.3. Except for the inclusion o f the NLO calculations our model 

closely follows TIG . In Section 3.4 we show the neutrino and muon fluxes we obtain 

for different low x  behaviors o f the gluon PDF and we compare them w ith the TIG  

fluxes. In Section 3.5, we give analytic arguments tha t explain and support our 

results.

Finally, as in Part One (and TIG), we consider only vertical showers for sim­

plicity.

3.2 Charm production in pQCD and choice of 

PD F’s

Our NLO calculation is based on the MNR computer code. The NLO cross section 

for charm production depends on the choice o f the parton distribution functions 

and on three parameters: the charm quark mass mc, the renormalization scale h r, 

and the factorization scale h f -  In order to calibrate the charm production routines 

we fit the most recent experimental data [11,12,13,14] (differential and total cross 

sections) w ith  one and the same combination o f mc, /xr, and h f ,  for each PDF we 

use (see Part One for complete details). Several choices o f mc, h r  and Hf  may
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work equally well. In  fact the cross sections increase by decreasing h f , iir  or mc, so 

changes in the three variables can be played against each other to obtain practically 

the same results. We use jus t one such choice for each PDF. We intend to further 

study the uncertainty related to this range o f possible choices in  Part Three.

3.2.1 Choice of m c ^ R , ^ F

As in Chapter Two, here we use the PDF’s MRS R l, R2 [22] and CTEQ 4M [24], 

w ith the following parameters. We choose fiR =  m r, Pf  =  2rar for a ll sets, where 

%  is the transverse mass, m r =  +  m*, and

mc =  1.185 GeV for MRS R l, (3.1)

mc =  1.31 GeV for MRS R2, (3.2)

mc =  1.27 GeV for CTEQ 4M. (3.3)

The data we use for th is ’calibration’ of the MNR program are shown in Table 

1 and Table 2 o f the second chapter. In this part, we add to our lis t o f PDF’s the 

latest of the MRS set, the MRST [31], w ith charm mass

mc =  1.25 GeV for MRST, (3.4)

obtained w ith the same procedure used for the other PDF’s.

As we w ill see clearly in Sect. 3.5, due to the steep decrease w ith increasing 

energy of the incoming flux  o f cosmic rays, only the most energetic charm quarks 

produced w ill count, and these come from the interactions o f projectile partons car­

rying a large fraction o f the incoming nucleon momentum. Thus, the characteristic 

x  o f the projectile parton, that we call x i,  is large. I t  is Xi ~  O(10_1). We can,
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then, immediately understand that very small partonic momentum fractions are 

needed in  our calculation, because typical partonic center o f mass energies \ / I  are 

close to the cc threshold, 2mc ~  2 GeV (since the differential cross section decreases 

w ith  increasing s) while the to ta l center o f mass energy squared is s =  2m s E  (w ith 

m u  the nucleon mass, m s  ~  1 GeV). Calling x2 the momentum fraction of the 

target parton (in a nucleus o f the atmosphere), then X\Xi =  s/s  =  Ami/(2msE) — 

G eVfE. Thus, x2 — O(G eV/0.1F), where E  is the energy per nucleon o f the in­

coming cosmic ray in the lab frame. The characteristic energy Ec of the charm 

quark and the dominant leptonic energy Ei in  the fluxes are E i~  Ec ~  0.1 E, thus 

x2 zz 0 (G eV /E i). Namely x2 ^  10- 6,10- 7  at Ei ~  1 ,10 PeV.

3.2.2 Choice of PDF’s

For x  >  10- 5  (E  <  103 TeV), PDF’s are available from global analyses of existing 

data. We use four sets o f PDF’s. Three of these, MRS R l, MRS R2 [22] and CTEQ 

4M [24] (used also in Part One), incorporate most o f the latest HERA data and 

cover the range o f parton momentum fractions x >  1 0 ~ 5 and momentum transfers 

Q2 >  1.25 — 2.56 GeV2. MRS R l and MRS R2 differ only in the value of the strong 

coupling constant a a at the Z boson mass: in  MRS R l a ,(M |)  =  0.113, and in MRS 

R2 a 5(M |)  =  0.120. The former value is suggested by “deep inelastic scattering” 

experiments, and the la tte r by LEP measurements. This difference leads to different 

values o f the PDF parameters at the reference momentum Qq =  1.25 GeV2, where 

the QCD evolution o f the MRS R l and R2 PDF’s is started. The CTEQ 4M is 

the standard choice in the M S  scheme in  the most recent group of PDF’s from 

the CTEQ group (o r,(M |) =  0.116 for CTEQ 4M). In  this part we also use the 

very recent MRST [31]. This new PDF set includes a ll the latest experimental
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measurements that have become available and, for the firs t time, an investigation 

of the uncertainty in  the gluon distribution function. We w ill use the main choice of 

the MRST set, the “central gluon” MRST, related to the central value o f the gluon 

PDF’s of the package, which is considered the optimum global choice of this new 

set. The range in Q2 and x  o f MRST set is the same as for the older MRS R1-R2 

(x > 10~ 5 and Q2 >  1.25 GeV2), and =  0.1175.

For x  <  1 , a ll these PDF’s go as

*/<(*» Q2) s  AiX~Xi{Q2\  (3.5)

where i  denotes valence quarks uv, dv, sea quarks S, or gluons g. The PDF’s we used 

have As(Qjj) ^  A9 (Qq), in contrast to older sets of PDF’s which assumed an equality. 

As x  decreases the density of gluons grows rapidly. A t x  ~  0.3 it  is comparable to 

the quark densities but, as x  decreases it  increasingly dominates over them. Quark 

densities become negligible at x ^  10-3 .

The PDF’s need to be extrapolated to x  <  10-5  (E  >  103 TeV). Extrapolations 

based on Regge analysis usually propose xg(x) ~  x~x w ith A cs 0.08 [26], while 

evolution equations used to resum the large logarithms a , ln ( l/x )  mentioned before, 

such as the BFKL (Balitsky, Fadin, Kuraev, Lipatov [27]) find also xg(x) ~  x -A, 

but w ith A ss 0.5.

In this work we use extrapolations w ith different values o f A. For the older 

MRS R1-R2 and CTEQ 4M we consider only the two extreme behaviors and the 

intermediate one tha t we used in Part One, namely: (i) a constant extrapolation 

Xg(Q2) =  0 for x  <  10-5; (ii) a linear extrapolation o f lng (x) as a function of 

Inx, lng(x) =  -(A g(Q2) +  1 ) ln x  -M nA g, where Ag(Q2) is taken at x  =  1 0 “ 5, the 

smallest x  for which the PDF’s are provided (we call A(R1), A(R2) or A(4M) the A’s
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so obtained); ( iii)  an extrapolation w ith Ag(Q2) =  0.5 for x  <  1 0 -5. Cases (i) and 

(iii) are extreme choices theoretically justified before [26], while (ii) is somewhat in 

between, w ith  a resulting A ~  0.2 — 0.3.

For the new MRST we have included several values o f A, in order to test the 

dependence on th is parameter in a more complete way: (i) extrapolations w ith d if­

ferent A’s, i.e. Ag(Q2) =  0,0.1,0 .2 ,0.3,0.4,0.5 for x <  10 -5 ; (ii) we also included 

the linear extrapolation of In g{x) as a function o f In x, sim ilar to the second inter­

mediate choice o f the previous list; we w ill call A(T) the A obtained in this way.

3.3 Simulation of particle cascades in the atmo­

sphere

In this section we briefly describe the computer simulation used to calculate the 

neutrinos and muons fluxes; a more detailed description can be found in Chapter 

Two. The charm production process in the atmosphere and the particle cascades 

are simulated by modifying and combining together two different programs: the 

MNR routines [19] and PYTHIA 6.115 [28].

The MNR program was modified to become an event generator for charm pro­

duction at different heights in the atmosphere and for different energies o f the 

incoming prim ary cosmic rays.

The charm quarks (and antiquarks) generated by this first stage of the program 

are then fed in to  a second part which handles quark showering, fragmentation and 

the interactions and decays o f the particles down to the final leptons. The cascade 

evolution is therefore followed throughout the atmosphere: the muon and neutrino 

fluxes at sea level are the final output o f the process.
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In order to make our results comparable to those o f T IG , we keep the same 

modeling o f the atmosphere and o f the prim ary cosmic ray flux as in T IG  and the 

same treatment o f particle interactions and decays in  the cascade.

We recall however that our main improvements are the inclusion o f a true NLO

contribution for charm production, the use o f updated PDF’s and, in  this second

part, the different extrapolations used for the gluon PDF at low x.

In the rest o f this section we review briefly the model for the atmosphere and 

the prim ary flux used in this study, which was introduced originally by TIG .

We assume a simple isothermal model for the atmosphere. Its density at vertical 

height h is

=  (3.6)

w ith the parameters, scale height ho =  6.4 km and column density X q =  1300 g/cm 2 

at h =  0, chosen as in TIG  to fit  the actual density in the range 3 km <  h <  40 km, 

im portant for cosmic ray interactions. Along the vertical direction, the amount of 

atmosphere traversed by a particle, the depth X ,  is related to the height h simply 

by

X  =  r  p(h!)dti =  X Q e-'*/'*0. (3.7)
Jh

The atmospheric composition a t the im portant heights is approximately constant: 

78.4% nitrogen, 21.1% oxygen and 0.5% argon w ith  average atomic number (A) =  

14.5.

Following T IG  [15], we neglect the detailed cosmic ray composition and consider 

a ll primaries to be nucleons w ith  energy spectrum

M E ,  0 )
nucleons

cm2 s sr GeV  /  A
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1.7 (E /G e V ) '2-7 fo r  E  < 5  106 GeV

174 (E /GeV)~30 fo r  E  > 5  10® GeV

The primary flux is attenuated as it  penetrates into the atmosphere by collisions

against the air nuclei. An approximate expression for the intensity o f the primary

flux at a depth X  is (see [15] again)

M E ,  X )  =  M E ,  0) . (3.9)

The nuclear attenuation length A at, defined as

A"(B)=r f̂Shi ■ (3-10)
has a m ild energy dependence through Ajy and Zn n , the spectrum-weighted moment 

for nucleon regeneration in nucleon-nucleon collisions. We use the Z nn  values in 

Fig. 4 o f Ref. [15]. The interaction thickness \ N is

W )  =  ± 7 ' £ ) M V ' (311)

where n A(h) is the number density o f a ir nuclei o f atomic weight A  at height h 

and <J{4a(E) is the to ta l inelastic cross section for collisions of a nucleon N  w ith 

a nucleus A. This cross section scales essentially as A2/3, oNA(E) =  A2/3onn(E ). 

For <Tfirtf(E) we use the fit to the available data in  Ref. [30]. Using our height 

independent atmospheric composition, we sim plify Eq. (3.11) as follows,

•M E . A) =  M ^(E )  =  2 44 7m e )  • (3'12)
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Here ( )  denotes average and u is the atomic mass unit, that we w rite as

u =  1660.54 mb g/cm2. (3.13)

Therefore in our approximations An (E) is independent o f height.

3.4 Neutrino and muon fluxes

We present here the results o f our simulations w ith a ll the PDF’s and the values of 

A described in Section 3.2.

3.4.1 Total cross sections

The NLO total inclusive charm-anticharm production cross sections aci for our four 

different PDF’s are shown in Fig. 3.1 over the energy range needed by our program, 

E  <  10u GeV. In the top part of the figure we compare the results o f MRS R1-R2 

and CTEQ 4M (w ith their different values o f A described before) to the cross section 

used in the TIG  model. In the bottom part we show the same comparison, done 

just with the new MRST, w ith  its different A’s (in all these figures cross sections 

increase for increasing values o f A).

A ll these cross sections were calculated using the MNR program, w ith the ‘cali­

bration’ described in Sect. 3.2, up to the NLO contribution. We can see in the figure 

that all our cross sections agree at low energies, as expected due to our ‘calibration’ 

at 250 GeV, and are very sim ilar for energies up to 106 GeV. Beyond this energy 

they start showing their dependence on the A value and also a slight dependence 

on the PDF used, which was already noticed in Part One. As it  can be seen from 

both parts o f the figure, the increase o f the cross sections w ith  A is evident at the
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highest energies: at the maximum energy considered the cross sections for the two 

extreme values o f A differ by almost a factor o f ten.

We also notice that, for energies above 104 GeV, our cross sections are always 

considerably higher than the one used by TIG . As we have already explained in the 

first part, T IG  used an option o f PYTHIA by which the gluon PDF is extrapolated 

for x <  10-4  w ith A =  0.08. In  fact the TIG  cross section at the highest energies 

shows the same slope of our results for A ~  0, but it  is always lower than our lowest 

cross sections by about a factor o f three.

This can be explained only in part by the fact that the TIG  cross section up to 

NLO is the LO result obtained w ith PYTHIA, m ultiplied by a constant K  factor 

of 2, while at large energies the K  factor is actually larger than 2 by about 10-15%. 

The bulk o f the difference is however due to the different evaluations o f the cross 

sections, even at LO, done by the MNR routines (our method) and directly by 

PYTHIA (approach used by T IG ).

3.4.2 Prompt atmospheric fluxes

Our results for the prompt fluxes are shown in Figs. 3.2-3.5, for MRS R1-R2, CTEQ 

4M and MRST.

In  Figs. 3.2 and 3.3 we show the ^-w eighted vertical prompt fluxes E fyt, cal­

culated to NLO, for muons and muon-neutrinos, together w ith the fluxes from TIG , 

both from prompt and conventional sources (dotted lines). The flux o f electron- 

neutrinos is practically the same as that o f muon-neutrinos. Fig. 3.4 describes the 

spectral index o f the differential fluxes, defined as a t =  —d in fo /d in .E i.

The effects o f the different extrapolations o f g{x) to x  <  10~ 5 (see Sect. 3.2) are 

noticeable at E i >  10s GeV. In  Figs. 3.2 and 3.3, the ^-w e ighted fluxes increase
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w ith A: they can differ by up to two orders o f magnitude at the highest energy 

considered, 109 GeV, for the two extreme choices o f A. This behavior is sim ilar for 

a ll the PDF’s considered.

The A dependence o f the fluxes can also affect the energy at which the prompt 

contribution dominates over the conventional sources: this is particularly true for 

the muon fluxes as it  can be seen in Fig. 3.2; for the fluxes this effect is

less im portant (see Fig. 3.3) and it  doesn’t  exist for the ve +  i7e fluxes, for which 

the conventional contribution is much lower. Apart from these differences due to 

the A values, charm decay dominates over conventional sources at f?M >  106 GeV 

for muons, EVll >  10s GeV for muon-neutrinos, and £,« > 104 GeV for electron- 

neutrinos.

We also see that a ll our fluxes for A ~  0 are sim ilar to those o f TIG  at energies 

above 10® GeV. We have already mentioned tha t TIG  used a very low value of A, 

A =  0.08. I t  is remarkable that, for these low values of A, we obtain sim ilar final 

fluxes in spite o f the differences of the two simulations and of the tota l cross sections 

already noted in Fig. 3.1.

We can also compare our fluxes to those o f the recent PRS results [21]. As we 

have already noticed in Part One, for intermediate values of A our results are very 

sim ilar to the PRS ones. From Fig. 3.3, fo r example, we see that our fluxes for the 

A =  0.3 case (calculated w ith MRST) are close to the corresponding PRS results 

shown in  Fig. 8  o f Ref. [21], calculated w ith  CTEQ 3M and A ~  0.3. Our results 

are lower than the PRS by 30 -  50% at the highest energies, which is probably due 

to the PDF’s used and to the different approach o f the two groups.

Regarding the dependence of the spectral index a* on the slope A o f the gluon 

PDF, we notice in  Fig. 3.4 that, for a ll four PDF’s, above about 10® GeV the 

differences in  slope between the A =  0 and A =  0.5 fluxes is about 0.5, suggesting
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that the spectral index is at (Et) =  bt (Et) — A, namely,

M E i)  ~  Et - a tm  =  E r btm+X , (3.14)

where bt(Et) is an energy dependent coefficient, that can be read o ff directly from 

the A =  0 curve (bt(Ei) is the spectral index for A =  0). We w ill jus tify  this result 

in  Sect. 3.5. Due to this linear dependence o f the spectral index on A, given a model 

which specifies the function bt(Et), the value o f A could be determined through a 

measurement o f any o f the <j>i fluxes at two different energies. We w ill study in 

detail this possibility in the next chapter.

Here we only comment on the typical rates in a km3 detector. I t  can be estimated 

from the curves of Pig. 3.2 that the number o f prompt atmospheric muons traversing 

a km3 detector from above would be over 100  per year around a muon energy o f 1 

PeV, decreasing rapidly to less than 1 per year above 100 PeV. In this energy range 

there is a concrete possibility o f detecting these prompt muons. Notice that the 

intensity of the prompt muon flux depends critica lly on the value o f A, suggesting 

s till another way to estimate A through the measurement o f the fluxes.

In Fig. 3.5 we study the dependence o f the prompt fluxes on the PDF for fixed 

values o f A. We summarize our previous results for A =  0 (left) and for A =  0.5 

(right), and compare them again to T IG . The figures on the top show the Un­

weighted fluxes, those on the bottom  the spectral indices. As we already noticed in 

Part One, the dependence on the PDF is not strong, all fluxes are very sim ilar. This 

indicates that our procedure for the ‘calibration’ o f our simulation w ith different 

PDF’s (described in Sect. 3.2) is good. There are, however, some differences between 

the PDF’s: in some cases (especially for A =  0) the results o f MRS R2  and CTEQ 

4M are very sim ilar and higher than those o f MRS R l and MRST (also very close
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to each other). The maximum difference between a ll these fluxes is at the level of 

30 to 70% at high energies.

We want here to remark once more that our A =  0 fluxes are very close to that 

o f T IG  at energies above 106 GeV (and also below 103 GeV, but the prompt fluxes 

are not important at these low energies). For increasing values o f A, our results are 

higher than TIG , even by two orders o f magnitude for A =  0.5, and at the highest 

energies. From the bottom part o f the figure we notice that also the spectral indices 

are almost independent o f the PDF used. This indicates tha t the linear dependence 

between a* and A o f Eq. (3.14) is not affected by the choice o f the PDF and again 

m ight be used to determine the value o f A. We w ill return on this analysis in more 

details in the next chapter.

3.5 Analytic insight

In  this section we first find the characteristic values o f the partonic momentum 

fractions in the cosmic ray nucleus and in the nucleus in the atmosphere, and then 

derive the linear relation between the slope o f the atmospheric muon (or neutrino) 

fluxes and the slope o f the gluon parton distribution function.

3.5.1 Characteristic values of partonic momentum fractions

We first show that the characteristic values o f the partonic momentum fractions o f 

the incoming cosmic ray parton, x i,  and o f the target parton belonging to a nucleus 

in the atmosphere, X2 , are respectively,

Xi c- 10- 1  x2 cz (E / 10 GeV) - 1 (3.15)
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where E  is the energy o f the incoming nucleon (a proton in this paper) in the 

atmosphere reference frame. Because of the small value o f x2, for the relevant 

energies E  ^  104 GeV, the gluon density g(x2) is much larger than the density of 

quarks, which we, thus, neglect in  these analytic arguments.

Let us first consider the charm flux at production d(f>c(Ee, X )/d X ,  defined as the 

rate of c quark production1 per un it area, unit depth and un it charm energy {Ec in 

the atmosphere reference frame) in the interactions o f the attenuated nucleon flux 

4>n(E,X) w ith the air nuclei in the atmospheric layer between X  and X  +  dX. To 

obtain d<f>c(Ee,X ) /d X  for a layer o f transverse area A  and height \dh \ , we simply 

m ultiply the c production rate per a ir nucleus (which equals the incoming nucleon 

flux at depth X  times the cross section for N  +  A —► c +  Y, where Y  stands for 

“anything” and N is simply a proton p in our study) by the number o f nuclei A  in 

the layer (which is A \d h \ r iA . ( h ) )  and divide the result by the transverse area A  and 

the layer thickness dX  =  p{h)\dh\. We find

d<l>c(Ec,X )  r % (/i) /p  da(pA -» cY ;E ,E C) , 0 ,
~ d X  ?  r t S p B .  M  ' 1  dEc  ■ ( 3 1 6 )

We assume that the charm production cross section simply scales as A, which 

is expected when it  is much smaller than the tota l inelastic cross section. In  this 

case, the sum over A  becomes triv ia l, and we have (u is the atomic mass unit)

= l- r < l E  ME. JO . (3.17)
u A  U J Ec uJjg

In these analytical considerations, we assume a simple power law for the primary

1This is what we compute in our simulations (we use our ‘single’ mode), only the production 
of a  c quark is calculated. Then the result is multiplied by two to include the contribution of the 
antiquark (see Part One for details).
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flux and an energy independent attenuation length.2 W ith  these approximations, 

the attenuated primary flux reads

<f>N(E ,X )= < t> (X )E - ''- \ (3.18)

where <f>(X) =  <f>Qexp(—X /A ^ ) .  Substituting this approximate expression for the 

attenuated primary flux and changing the integration variable from E  to xg =  Ec/E  

in Eq. (3.17), we find

m ^ X )  _  * X )  f  t o Q N ^ c Y ^ E ' )
dX  u Jo d iE

The differential cross section da{pN  -> cY)fdxs  is given in terms o f the partonic 

differential cross section d&ijfdxE  (where i and j  are partons belonging to the 

projectile 1 and the target 2 respectively), and the PDF’s / / ( x i,  fi2F) and / 2(x2, fi2F) 

as

da^ 'J x ^ ' CY  ̂ =  ? / » f ) ^  (3.20)

Here x i and x2 are the momentum fractions o f the projectile and target partons. 

Mangano et al. [19] give the partonic cross section in terms o f functions hy as

Ec^  M l .  ̂  A  /**. v r ). (3.21)

where k and Ec are the momentum and energy o f the produced c quark, and,

2The dependence of An on E  is actually very mild. In fact the whole factor e~xfx" ^  behaves 
like E~& with $  or 0.1 for E  >  10® GeV and P even smaller for E <  10® GeV. Including this 
contribution in our analytic argument would just mean to replace 7  with 7  +  0 everywhere, i.e. 
the total spectral index would become 7  + 1 +  /3 ~  3.1 instead of 3.0, for energies above the knee 
at E  =  5 10® GeV. This slight change can actually be seen in our results of Fig. 3.8 (see the 
description of that figure).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in the notation o f Ref. [19], p =  4m2/s , rx =  1 — T\ — r2, r x =  (fc • p i/p i • p ^ , 

r2 =  (Ac * p2/p i - p2) and I  =  (p i + p 2) 2 , while pi andp2 are the projectile and target 

parton momenta respectively, px =  x xPx,p2 =  x2P2. The hats indicate quantities 

in the partonic center o f mass (those without hats are in the lab frame at rest w ith 

the atmosphere).

In the partonic center o f mass frame, the projectile and target parton momenta

are

Pi =  ( t ' 0' 0’ t )  ’ *  =  ( t , 0 ,0 ’ ~ t )  ’ *  =  ( ^ ° -*»•,*)■  (3-22>

and we have

Then, after integration over azimuthal angles,

_  Bc +  k _ . 2EC . .
r 2 — , rx — 1 -p. (3.23)

v s  Vs

d3/fe cPfc -  -
-= -  =  —=- =  27rd Ecdk =  -Ksdr^dTx. (3.24)
Ec E ,

The kinematic bounds mc <  Ec <  \ / I /2  and | fc| <  E% — m l fix  the integration 

domains of r2 and rx. Using p =  4m 2/s , we get (1—^/1 — p )/2  <  r2 <  ( l+ \ / l  — p)/2 

and 0  <  rx <  1 -  r2 — (p /4 r2). We can use the relation

Be k * P2 k • P2 /•o oc\xE =  —  =  - — =  X! —— - =  X ir2, (3.25)
E  Px • r 2 Pi • p2

to write the differential cross section in  dx# as

“ S L - f t k f L t t o - *  r,). (3.26)

The bound x tx2 =  s /s >  4m2/2mpi? =  4exf (nip is the proton mass, mp 2 :
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1 GeV), where we define
m l

* =  (3.27)T̂TtpHiQ

implies tha t x i  and x2 have a minimum lower bound larger than zero. In fact, 

x t >  4exg/x2 >  4exg (since X2 <  1). Taking x \ as the independent variable, then 

4exg <  x i <  1 and 4exg/xi < x2 <  1 . We now change the order o f the integrations, 

in  order to perform the integration in xg before the integrations in x t , x2 and r2.

The integration over xg in Eq. (3.19) then becomes triv ia l, amounting to the 

replacement of Xg by x^r^ , except for the necessary changes in the integration 

domains which become 0 <  x i,x 2, 72 <  1 and 0 <  xg <  (x iX 2/e )r2( l  — r2). For the 

S(xB — X1T2) in Eq. (3.26) to yield a non-zero result, we need to take 0 <  x Lr2 < 

(x ix 2/c )r2( l  -  r2), which means that r2 <  1 -  (c /x2) , and given that r2 >  0 , this 

means x2 >  e. This leads to a factorization o f the x i and x2 integrations as follows:

(3.28)

<x2

where the functions Co are defined as

r l - v  r l - u - n

Q j ( v ,  HR, h f ) = v  dr2 r2 /  drx ^ ( r * ,  r 2 ,4ur2, HR, V f ) , (3.29)
Jo Jo

and the argument v  is v  =  e/x2 (to rewrite the integration in  r 2 we noticed that 

p /4 r2 =  v ) .  The functions hy are given by h ij(rx, t2, p, h r , H f ) — f i f  ( t2, p)S(rx) +  

0 (o £ ). We w ill take only gluons as partons from now on, thus / /  (x, H f) =  f j ( x , Mg) =

The function Cgg, using hgg at the Bom level, is shown in  Fig. 3.6a for 7  =  1.7 

and 2  (corresponding to the spectral indices 7  +  1 o f the prim ary flux above and
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below the knee). In the same figure we see that the maximum of Qg(v) is at 

v ~  0.1, namely x2 — 10 e. However, given that g(x2, //B) is a sharply increasing 

function w ith  decreasing x2 (i.e. for increasing v at fixed Ec), the maximum o f the 

product g(x2, n2F)Qgg(v) is always to the right o f the maximum of £gg(v), at v >  0 .1 . 

Therefore, the integral in x2 is dominated by the values of x 2 of order e, namely

Also, the integral in x i shows that large values o f x i w ill be dominant since

while 0 <  A <  0.5 (thus 7  -  A — 1 >  0). To see more precisely what range o f x i 

dominates the integral, it is necessary to prove two statements. The first is that 

r2 =  x b /x i <  1 , due to kinematical constrains, therefore x i >  x B. The second is 

that the characteristic value o f xB is 0 .1 , namely that the c-quark is mainly produced 

w ith 0 .1  o f the proton energy

W ith  respect to the kinematical lim it on r2, as we already mentioned, r 2 =  

xB/x i <  1 — v, and we obtained as a kinematical constraint that e <  v =  e /x2 <  1 

(since x 2 goes from e to 1). Thus, r 2 <  1 -  e <  1, since e is always larger than zero. 

Another way o f obtaining this bound is the following. Since the partonic processes

That in  fact Ee =  0(0.1 E) is clearly demonstrated in Fig. 3.6b, which shows 

the function Xg(d<r/dxB) normalized by the to ta l c-production cross section. Thus

(3.30)

x1g(xi) —y x i  A~l for small x, where the exponent is positive, since 7  =  1.7 or 2,

Ec =  0(0.1 E). (3.31)

involved are gg —> cc or gg —> ccg, then > /l >  2(Ec)max and due to mc ^  0, 

(^)max ^  (^c)max) therefore T2 < 2(Ec)max/y/~§ -  1*
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we have proven that the dominant range of x i is x \ >  0 (0 .11?) and also, combining 

together Eq. (3.30) and Eq. (3.31), our statement in  Eq. (3.15) about x2.

Even i f  we have not yet included gluon shadowing in  our calculations, we want 

to point out tha t this effect might only be im portant fo r the target gluon (given 

that X2 is very small) but it  is not important for the gluons in  the projectile (given 

that Xi >  0.1). This means that the uncertainties on the composition of cosmic 

rays w ill not affect the results through shadowing effects.

As a summary of our arguments we can say that, due to the incoming flux 

being rapidly falling w ith increasing energy o f the prim ary, only the charm quarks 

produced w ith  a large fraction o f the incoming energy, Ee ~  0.1 E, w ill count in the 

charm flux at production, and those highly energetic c quarks come from projectile 

partons carrying a large fraction of the incoming momentum Xi >  xe — 0.1. On 

the other hand, because typical partonic center o f mass energies \ / I  are close to the 

cc threshold, 2mc a  2 GeV (since the cross section decreases steeply w ith increasing 

Vs), while the to ta l center of mass energy squared is s =  2mvE  (w ith the proton 

mass, rap ~  1 GeV), the product x ix 2 =  s/s — \m 2c/(2m pE ) ~  GeV/E. This shows 

that X2 — (G eV /E xi) ~  GeV/0.1 E.

3.5.2 Atmospheric fluxes and dependance on A

We now derive the dependence on A o f the muon and neutrino fluxes for a simple 

power law prim ary flux.

We can explain first the dependence on A o f the spectral index o f d</>c/d X  at large 

energies, and then, using this result, the dependence on A o f the spectral indices 

o f atmospheric muons and neutrinos. To start w ith, we notice that the integral 

for d<f>e/d X  depends on the charm energy Ec only through the presence o f the
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parameter e in the integration on x2. To approximately perform this integration at 

large energies, let us replace g(x2) ~  x2 A l  iQ that integral and take C(e/x2) — Cmax 

(namely develop (  in powers o f v =  e/x2 and keep only the constant term) then

J  dx2 g(x2) C ~  Cmax J  dx2 x2 . (3.32)

Since t  1, this integral is well approximated by Cmaxt~x/K  for a ll A ■£ 0 . Better 

approximations to the function C give sim ilar results. For example, approximat­

ing the function C by two power laws, one above and another below the maxi­

mum, which is at about x 2 =  5e (C =  Cmax(2^2/ 5 e ) 2' 1 for x 2 between e and 5e and 

C =  Cmax(5e/x2)0,4 for x 2 between 5e and 1 ), the integral in Eq.(3.32) becomes 

Cm ax(5e)-A/ ( 0 .9  +  1.7A -  A2). Thus the essential dependence o f e~x is maintained. 

Recalling that e =  m2/ ( 2 nip Ec), Eq. (3.19) is proportional to E x, and the same is 

true for Eq. (3.32), therefore

^ ( E c, X ) ~ E r - M  ■ (3.33)

The charm production function d<t>c(Ec, X ) /d X ,  calculated numerically, is shown 

in Fig. 3.7 for a typical X  =  57.12 g/cm 2 (h =  20 km). We are using here the PDF 

MRS R1 w ith the three related values o f A =  0, A(R1), 0.5. We clearly see here 

tha t the slope at Ec >  105GeV depends on the extrapolation o f the gluon PDF at 

x  <  10~s. This is one order o f magnitude lower in  energy than in  Fig. 3.1 for the 

to ta l cross section. This reflects the fact mentioned above that the characteristic 

charm energy is Ec =  0 (0 .If? ). Fig. 3.8 shows that, as predicted analytically, 

the slopes (the negative o f the spectral index in  our notation) o f the charm fluxes 

at production depend almost linearly on A. In  fact, in Fig. 3.8, we can see that
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the logarithmic slopes o f the A =  0 and A =  0.5 fluxes differ precisely by 0.5, 

above 5 106 GeV (namely, above the knee) to about 109 GeV (the maximum energy 

at which our fluxes are reliable, given tha t we take 10u  GeV as the maximum 

incoming proton energy E ). In fact, the slope o f the A =  0 flux in that interval is 

about -3.1 to -3.2, while that of the A =  0.5 flux is about -2.6 to -2.7. Above the 

knee, the primary spectrum goes as E s w ith  S ~  ( —7  -  1 — 0.1) =  —3.1, where 

we have also included the 0 .1  contribution coming from the ^-dependence o f A# 

(see footnote in previous discussion), thus the charm spectrum, (in the energy range 

107 GeV £ E C<  109 GeV) goes approximately as E*+x as expected from Eq. (3.33).

Using the definition o f the leptonic fluxes in  terms of the charm spectrum at 

production d<f>c/d X , we can now find the dependence of the spectral index of muon 

and neutrino fluxes w ith  A. For example, the differential flux 0M of muons w ith 

energy E^ (fi stands here for n+ or n~) is

0 J £ J  =  2 r  dX  dE,
Jx0 JEu

00 .C d(j>c{Ec,X )
dX

d N n ( c  -►  n ; E c J S f ^ X )

dEu
(3.34)

(0,t has, thus, units o f [1/  cm2 s sr GeV]). Here the factor o f 2 accounts for the 

muons produced by c and the last square bracket is the number of muons of energy 

Eft produced at sea level by the cascades, each cascade initiated by a c quark o f 

energy Ec at a depth X .

Our results above indicate that we can w rite  the atmospheric charm spectrum 

at production as (see Eq.(3.33)) d<f>c(Ec,X ) /d X  ~  F(X )E ~ 't~1+x w ith F( X )  a 

function independent o f energy. Replacing th is form for d<f>e(Ec,X ) /d X  in  Eq.
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(3.34) and m ultiplying and d ivid ing by 7 l+A we can w rite  <f>̂ as

Q d X F ( X ) E M r )

7 " l + X  \dNn(c-> n;Ee,E,„xy
dEp '

(3.35)

We can argue that in so far as the values of the parent charm quark energy Ec 

and the daughter lepton energy are not very different, the dependence of the 

integral on A (and on 7 ) should be mild. In this case, from  Eq. (3.35), we find that 

the spectral index o f the muon (and similarly o f the neutrino) flux contains A as a 

term, i.e.

where the dependence o f the function /(E M, 7 , A) on A and 7  should be mild. The 

function 6M(£ M, 7 , A) should depend linearly on 7  and again very m ildly on A. We 

w ill return on this in the next chapter. This justifies the results shown in Pigs. 3.4 

and 3.5, presented in Sect. 3.4, showing all the spectral indices obtained using all 

our PDF’s.

Finally we examine the deviations from linearity o f the relation between the 

spectral index a* and the gluon PDF slope A. In Fig. 3.9a we show directly the 

relation between A and a*, using the values coming from  our simulation for the 

MRST case already presented in  Fig. 3.4, but now p lo ttin g  them for fixed energy 

E^. We show two examples, for E^ =  1 PeV, 10 PeV, where our points indicate a 

good agreement w ith the linear relation between a* and A o f Eq. (3.14).

The m ild dependence on A o f the functions 6*(A) =  or*H-A can be seen in Fig. 3.9b, 

where we show the percentage difference [6<(A) — 6<(0)]/6*(0) for the different values 

o f A =  0 — 0.5 w ith  the MRST PDF. It is evident tha t, in  the range where our 

theoretical arguments are applicable (for E^ >  106 GeV) the 6*(A) functions differ

* „ (£ „ )  /(£?„, 7 , A)EM" 7" l+A =  E ; b̂ ' ^ +x , (3.36)
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only by 2 -  3% for different A values, namely they are almost independent o f A, 

given one particular PDF. This analysis confirms the valid ity o f Eq. (3.14), which 

leads to the possibility o f obtaining information on A at small parton fractions x  not 

reachable in experiments, through the measurement of the fluxes. We w ill study 

this possibility in more detail in  Chapter Four.

3.6 Conclusions for Part Two

The actual next-to-leading order perturbative QCD calculations o f charm produc­

tion cross sections, together w ith  a fu ll simulation of the atmospheric cascades, were 

used to obtain the vertical prom pt fluxes of neutrinos and muons.

We have analyzed the dependence o f the atmospheric fluxes on the extrapolation 

o f the gluon PDF at very low x , which is related to the value o f the parameter A. 

This was done using four different sets o f PDF’s: MRS R l, MRS R2, CTEQ 4M 

and MRST, with variable A in the range 0-0.5.

The charm production cross sections and the final lepton fluxes depend critica lly 

on A for leptonic energies Ei >  105 GeV, which correspond to x  <  10-5  GeV. We 

found that the fluxes vary up to  almost two orders o f magnitude at the highest 

energy considered, 109 GeV, fo r the different A’s in the allowed interval; on the 

contrary, for fixed A, the results don’t depend much on the choice o f the PDF.

For the lowest values o f A (A ~  0  — 0.1) our fluxes are very close to those o f T IG  

[15], confirming that the very low flux prediction is mostly due to  a low value o f A 

(A-nc — 0.08). For higher values o f A (A ~  0 .2  — 0.5) our results are in  the bulk o f 

previous predictions and, in  particular, for A ~  0.3 they are very close to a recent 

semi-analytical calculation [21] done w ith a similar value o f A.

We have also considered the dependence of the spectral index o f the final fluxes
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on the parameters o f the model. From both, computer simulations and analytical 

considerations, we find that the spectral index on of atmospheric leptonic fluxes 

depends linearly on A as in Eq. (3.14).

This suggests the possibility of obtaining bounds on A in “neutrino telescopes” 

for small values o f x  not reachable in colliders, if  the spectral index o f leptonic 

atmospheric fluxes could be determined by these telescopes. We w ill investigate 

this possibility in detail in  the next part.
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Figure 3.1: Total cross section fo r charm production up to NLO, for our different
PDF’s and A values, compared to  tha t used by TIG [15]. Top panel: MRS R1-R2  
and CTEQ 4M; bottom panel: MRST (cross sections increase w ith  A).
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Figure 3.2: Prompt muons: £ 3-weighted vertical fluxes at NLO, compared to the 
T IG  [15] conventional and prompt fluxes (dotted lines). We show results using the 
four PDF’s MRS R l, MRS R2, CTEQ 4M and MRST.
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Figure 3.3: Prompt muon-neutrinos: E 3-weighted vertical fluxes at NLO, compared 
to the T IG  [15] conventional and prompt fluxes (dotted lines). We show results using 
the four PDF’s MRS R l, MRS R2, CTEQ 4M and MRST.
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Figure 3.4: Prom pt muons: spectral index o f the NLO vertical fluxes for the four 
PDF’s MRS R l, MRS R2, CTEQ 4M and MRST.
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Figure 3.5: Dependence o f prompt fluxes and their spectral index on the PDF at 
fixed A: le ft side A =  0, right side A =  0.5.
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Figure 3.6: (a) The function (gg(v) at the Bom level for 7  =  0, 1.7 (below the knee) 
and 7  =  2  (above the knee), (b) Flux-weighted charm production spectra 
at several beam energies (using MRS R l, A(R1)).
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Chapter 4 

Part Three: Error Analysis and 

Measurement of the Gluon PDF 

at very low x

4.1 Introduction to Part Three

We recall once again that atmospheric neutrinos and muons are the most im portant 

source o f background for present and future neutrino telescopes, which are expected 

to open a new window in astronomy by detecting neutrinos from astrophysical 

sources.

A t energies above 1 TeV, atmospheric lepton fluxes have a prompt component 

consisting o f neutrinos and muons created in  semileptonic decays o f charmed pa rti­

cles, as opposed to the conventional leptons coming from decays o f pions and kaons. 

Thus a model for charm production and decays in  the atmosphere is required.

We base our model on QCD, the theoretically preferred model, to compute the 

charm production. We use a next-to-leading order perturbative QCD (NLO pQCD)
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calculation o f charm production in  the atmosphere, followed by a fu ll sim ulation of 

particle cascades generated w ith PYTH IA  routines [28].

We have already examined the prompt muon and neutrino fluxes in the two 

previous parts. In Part One, we found that the NLO pQCD approach produces 

fluxes in the bulk o f older predictions (not based on pQCD) as well as o f the re­

cent pQCD semianalytical analysis o f Pasquali, Reno and Sarcevic [21]. We also 

explained the reason o f the low fluxes o f the TIG  model [15], the first to use pQCD 

in this context, which were due to the chosen extrapolation of the gluon partonic 

d istribution function (PDF) at small momentum fractions x, and we confirmed the 

overall valid ity of the ir pioneering approach to the problem.

In Part Two, we analyzed in detail the dependence of the fluxes on the extrap­

olation o f the gluon PDF at small x, which, according to theoretical models, is 

assumed to be a power law w ith exponent A,

xg(x) ~  x~x, (4.1)

w ith A in the range 0-0.5. Particle physics experiments are yet unable to determine 

the value o f A at x  <  10-5 . We found that the choice of different values o f A at 

x  <  1 0 ~ 5 leads to a wide range o f final background fluxes at energies above 10s 

GeV.

Due to this result, in  Part Two, we suggested the possibility o f measuring A 

through the atmospheric leptonic fluxes at energies above 10s GeV, not the absolute 

fluxes, because o f the ir large theoretical error, but rather through the ir spectral 

index (i.e. the “slope” ). In  particular, we now propose to use the slope o f the flux 

o f down-going muons.

We want to stress tha t we are proposing to use down-going muons, at energies
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Eft >  100 TeV, where prompt muons dominate over conventional ones, and not up- 

going neutrino-induced muons whose flux is orders o f magnitude smaller. W hile an 

important contribution to up-going muons is expected from astrophysical neutrinos, 

there is no background for down-going atmospheric muons.

In this chapter we further investigate the possibility o f measuring A, in the more 

general context o f an overall error analysis of our model.

We can identify five potential causes of uncertainty in  our final results. The 

first one is the possible presence o f large logarithms o f the type as In and a , In s 

(the latter are the so called “In 1 /a?” terms). The second is the treatment of the 

m ultip licity in the production o f cc at high energies.

The third one consists o f a ll the sources o f uncertainty hidden in the treatment 

o f particle cascades generated by PYTHIA. The fourth one is the uncertainty in 

the NLO pQCD charm production model we use. This includes the dependence 

o f the fluxes on the three parameters o f the model and the PDF’s used. The fifth  

and final one is the choice o f the prim ary cosmic ray flux, which is the input o f our 

simulation. O f a ll these potential sources of uncertainty we conclude that only the 

last two are relevant.

We deal w ith these five potential sources of error in turn. In Sect. 4.2 we address 

the question o f the large logarithms a3 lnpf. and a , In s, and in Sect. 4.3 we analyze 

the problem o f m u ltip lic ity in our charm production mechanism.

In  Sect. 4.4 we consider the uncertainties due to the cascade generation by 

PYTHIA and to our NLO pQCD charm production (the core o f our analysis). 

Here we evaluate the errors due to the parameters o f the model, errors that affect 

the charm production cross section, the final differential and integrated fluxes and 

the ir spectral indices. We also determine how the final results (fluxes and the ir 

spectral indices) are affected by the choice of different extrapolations o f the PDF’s
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at x <  1 0 -5.

We are fina lly ready in Sect. 4.5 to discuss how A could be measured. We study 

the dependence on the different extrapolations of A at x <  10~5, we consider the 

spectral indices and, using the discussion o f Sect. 4.4, we provide an estimate o f the 

errors on these indices and examine the feasibility of an experimental determ ination 

of A at x  <  10- 5  w ith neutrino telescopes.

Finally in Sect. 4.6 we discuss the error on the determination o f A coming from 

the uncertainties in the elemental composition o f the cosmic ray flux.

4.2 Importance of the as]n l / x  terms

We address here a concern that has been expressed to us several times, about the 

applicability o f perturbative QCD calculations, mostly done for accelerator physics, 

to the different kinematic domain o f cosmic rays.

Contrary to the case in accelerators, we do not have the uncertainty present 

in the differential cross sections [19] when the transverse momentum p r  is much 

larger than mc, uncertainty which is due to the presence of large logarithms of 

(P r  +  m c ) / m c- The reason is that we do not have a forward cut in acceptance, and 

so the characteristic transverse charm momentum in our simulations is o f the order 

o f the charm mass, p r  — 0 (mc), and not p r  »  0 (m c) as in accelerator experiments.

We may however, depending on the steepness of the gluon structure func­

tion A, have large logarithms o f the type a , Ins, known as “ln ( l/ r ) ” terms (here 

x  ~  s is the average value o f the hadron energy fraction needed to  produce

the cc pair at hadronic center o f mass energy squared s). These “ln ( l / 2r)”  terms 

arise when the t-channel gluon exchange becomes large, and eventually they have 

to be resummed. Although techniques exist for resumming these logarithms [32],
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we have not done it. On the other hand we have phenomenologically altered the 

behavior o f the parton distribution functions at small x  by imposing a power law 

dependence o f the form x f(x )  ~  x~x. This is analogous to resumming the ln ( l/x )  

terms in a universal fashion and absorbing them in an improved evolution equation 

for the gluon density (such as the Balitskyii-Fadin-Kuraev-Lipatov (BFKL) evolu­

tion equation) [33], a procedure which increases A. For sufficiently large A, the large 

In l / x  terms should not be present.

To find if  our NLO cc cross sections are dominated by the In l / x  terms, we have 

used the following qualitative criterion [34]. We have plotted the ratio

r — gOT° ~ g t°  -  (4 .2 )
<JioCLa ln (s /m j)/ir

as a function o f the beam energy E. I f  the ratio is constant we are dominated by 

the In l / x  terms and i f  it  decreases we are not. The good behavior is a decreasing 

R. Figure 4.1 shows indeed that up to highest energy we consider in this paper, 

i.e. 10u GeV, R  decreases for A >  0.2, but is roughly constant for smaller A’s. This 

indicates that we are not dominated by the In \ / x  terms provided A >0.2.

4.3 M ultiplicity in charm production

Another concern is the fact tha t at high energies the charm production cross section 

we use, <r<£, is sometimes larger than the to ta l pp cross section. A t first sight this 

seems absurd, but we show here that <rCc contains the charm m ultip licity, i.e. it  

counts the number of cc pairs produced, and so can be larger than the to ta l cross 

section. On the other hand, the inclusive charm production cross section, i.e. the 

cross section fo r producing a t least one cc pair, is always smaller than the to ta l pp
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cross section.

We call (Tq c d  the perturbative QCD cross section o f cc pa ir production in pp  

collisions,

< tq c d  =  $3 aQCD(ij cc), (4.3)
ij

where the sum is over the partons i  and j  in the colliding nucleons, and

£TQCD{ i j  -> cc) =  J d x id x 2dQ2<l(T̂ ^  ^  f i ( x u p2F) f j (x2, p2F). (4.4)

Here d a {ij —► cc)/dQ2 is the i j  -> cc parton scattering cross section, Q2 is the 

four-momentum transfer squared, X{ is the fraction of the momentum of the parent 

proton carried by parton i, and /,(x , p2F) is the usual parton d istribu tion  function 

for parton momentum fraction x and factorization scale pp.

In the scattering o f each pair o f partons (one parton from the target and one 

from the projectile) only one cc pair may be produced, but the number o f parton 

pairs interacting in each nucleon-nucleon collision is in general not lim ited to one 

and it  increases w ith the number o f partons f(x , p2F)dx in each nucleon.

For A close to 0.5, <t q c d  becomes larger than the tota l pp cross section ~  

200 mb at Ep ~  1010 GeV. I t  is obvious therefore that our results a t high energy and 

large A are unphysical, unless m u ltip lic ity  is taken into account. In  fact, multiparton 

interactions should be taken into account already at a smaller cross section o f order 

10 mb, as determined in  studies o f double parton scattering [35].

In  order to incorporate m ultiparton scatterings into our analysis, we use an 

impact-parameter representation for the scattering amplitude, and ignore spin- 

dependent effects (cfr. [36]). Assuming the validity o f factorization theorems, the 

mean number o f parton-parton interactions i j  —► cc in the collision o f two protons
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at impact parameter b is given by

nce(b) =  £ / dPb'dxidXidQ2— ^-3-^  ^  f i { x l t / £ , & ) f j ( x 2,n% , b +  £), (4.5)

where / t (x, b)cPb is the number o f partons i  in the interval (x, x  +  dx) and in 

the transverse area element dPb at a distance 6 from the center o f the proton. For 

sim plicity o f notation we drop the vector symbol in b and write b from now on.

I f  na [b) <C 1, nc£(b) is the probability o f producing a cc pair in a pp collision at 

impact parameter b. I f  nce(b) >  1 , nr f(6) is just the mean value o f k, the number 

o f cc pairs produced, at impact parameter 6. Let the probability o f k scatterings 

i j  —> cc in  a pp collision at impact parameter b be Pkce(b). Then

” c c(b) =  '£ k P kce{b). (4.6)
fc=0

The inclusive cross section for charm production is obtained by integrating the 

probability o f having at least one i j  —► cc scattering, which is 1 — P0cC(6), over the 

impact parameter 6. Thus

Ocfincl ~  (4.7)

The fc-tuple parton cross section is obtained instead by integrating the probability 

o f exactly k parton scatterings Pkce(b) over the impact parameter 6,

okc£ =  J  dPb Pkce(b). (4.8)

O f course, crcSnd =  T,k akct for k ±  0.
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The to ta l pp cross section can be obtained in  analogy to Eq. (4.7) as

(4.9)

where P 0 ( b )  is the probability of not having any parton-parton interaction at impact 

parameter b,  into any final state. Since there are final states other than cc, one has 

Pocc (b )  >  P o ( b ) .  I t  follows that 1 -  P Qcc ( b )  <  1 -  P Q(b )  and so acfinci < <7t0t. This is 

what one would expect.

On the other hand, in our evaluation of charm production by cosmic ray inter­

actions in the atmosphere, we must count the number o f cc pairs produced in the pp 

collision. So we define aci including the number k o f cc pairs produced per collision 

(the m u ltip lic ity). We find

This cross section can be larger than the inclusive charm cross section and even 

the to ta l pp cross section, because it  accounts for m ultiparton interactions. In 

particular, the ratio acC/<rcancj gives the average charm m ultiplicity.

Notice that here we consider only independent production of cc pairs in  2—>2, 

4-> 4, etc. processes, and we neglect coherent production o f multiple cc pairs in 

2-+4, 2-+6, etc. processes. This w ill underestimate the charm production cross 

section.

We assume in the following that the partonic distributions /,-(x, p.p, b) factorize

as

where / t-(x, pp) is the usual parton distribution function, and p,(6) is the probability
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'£ k o ka =  J< P b '£ kP k'C(b) = j S b  M b ) - (4.10)

/i(x , p2p, b) =  f i( x , fip)pi(b) (4.11)
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density of finding a parton in the area cPb  at impact parameter b. We normalize

Pi(b)  to f  d?b p i(b )  = 1, to maintain the usual normalization /  d x  x/,(x ) =  1. The

factorization in Eq. (4.11) is consistent w ith the usual parton picture and w ith our 

assumption of no parton-parton correlations.

The mean number o f i j  —> cc scatterings at impact parameter b then becomes

nce(b) =  £  Oij (b)<TQCD (ij -> cc), (4.12)
ij

where

a i j (b )  =  J  <Pb'p i(b ')p j(b  +  6') (4.13)

is an overlap integral, and oqc£>(*7 cc) is the QCD parton-parton cross section for 

i j  —> cc, as in Eq. (4.4). From the normalization o f pi(b) it  follows tha t /  d?b aij(b) =  

1 for every i , j .  Hence from Eqs. (4.10) and (4.12) we find

<Tce =  <*q c d , (4.14)

where g q c d  =  Yiij <JQCD(ij -> cc) is the charm production cross section calcu­

lated w ithin QCD. This justifies our use o f (Tq c d  as a c i in the calculation of the 

atmospheric fluxes.

The way in which we use cra  in our simulation is as follows. We input only one 

cc pair per pp collision at a given energy E, and m ultip ly by aa , which includes the 

cc m ultip licity. We make, therefore, the following approximation in the kinematics 

o f the cc pairs produced in  the same pp interaction. Even i f  in  a real multiparton 

collision the energy available to the second and other cc pairs is smaller than E, 

we are neglecting this difference. This is a very good approximation because the 

fraction o f center o f mass energy tha t goes into a cc pair is o f the order o f \Js/s ~
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yJlQ GeV/E  <C 1 at the high energies we are concerned w ith.

4.4 Uncertainties due to  cascade simulation, pa­

rameters of charm production model and choice 

of PD F’s

In Part One we considered the uncertainties related to the cascade generation in 

PYTHIA. There we tried different modes o f cascade generation, different options 

allowed by PYTH IA  in the various stages o f parton showering, hadronization, in­

teractions and decays, etc., w ithout noticing substantial changes in the final results 

(differing at most by 10 %). These uncertainties are however very d ifficu lt to quan­

tify, due to the nature o f the PYTHIA routines. Since these uncertainties are small, 

we neglect them in this analysis and continue to use PYTHIA w ith the options 

described in Part One as our main choice for the simulation: ‘single’ mode w ith  

showering, ‘independent’ fragmentation, interactions and semileptonic decays ac­

cording to T IG  (see Chapter Two for details).

Important sources o f uncertainty are contained in our charm production model, 

which is NLO pQCD as implemented in the MNR program [19], calibrated at low 

energies.

The calibration procedure consisted in  the following:

•  choosing a PDF set from those available and fixing the related value o f Aq c d ',1

•  choosing mc, up  and hr, which are the charm mass, the factorization scale and 

the renormalization scale respectively, so as to fit simultaneously both the to ta l and

lWe note that Aq c d  can be chosen in the MNR program independently of the PDF and there­
fore can constitute an additional independent parameter of our model. We have opted however to 
choose the value of A q c d  assumed in the PDF set being used, for consistency.
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differential cross sections from existing fixed target charm production experiments 

[1 1 , 12] at the energy o f 250 GeV, without additional normalization factors;

•  checking that the to ta l cross section generated after the previous choices fits 

reasonably well the other existing experimental points for fixed target charm pro­

duction experiments [14].

Besides the choice o f the PDF set, our procedure has the freedom to choose rea­

sonable values o f the three parameters m c, ftp, and h r  so  as to fit the experimental 

data. In Part One and Two we made the standard choice [19, 14] of

Hf =  2 7717’ , nR =  rnr, (4.15)

where m r =  \Jpt +  m c is the transverse mass. The values o f the charm mass are 

taken slightly different fo r each PDF set, namely:

m c =  1.185 GeV for MRS R l, (4.16)

m c =  1.310 GeV for MRS R2, (4.17)

m c =  1.270 GeV for CTEQ 4M, (4.18)

m c =  1.250 GeV for MRST. (4.19)

Here we explore the changes induced in cross sections and fluxes at high energies 

by different choices o f m c, f ip t and hr which fu lfil our calibration requirements.

We have performed th is analysis w ith the most recent PDF set: the MRST [31] 

(other PDF’s give sim ila r results). A t first we fix  A =  0 and then we examine other 

values of A. We note th a t the calibration procedure described above is independent 

o f A because it  involves only relatively low energies, where the low x  extrapolation 

is not an issue.
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4.4.1 MRST A =  0: fluxes

We considered the A =  0 case because it  is the most significant for the evaluation of 

the uncertainties in  the spectral indices, as it  w ill be clear in the next subsection. 

We have considered the following reasonable ranges of the parameters

1.1 GeV < m c <  1.4 GeV, (4.20)

0.5 rr ir <  Hf <  2 rrvr, (4.21)

0.5 m r  <  h r  <  2 rriT, (4.22)

where the bounds on mc come from the 1998 Review of Particle Physics [37], while 

those for hf and hr are those used in the existing literature [19, 14].

W ithin these ranges we have looked for values o f the three parameters capable 

of reproducing the experimental data in our calibration procedure described before. 

Table 4.1 summarizes the different sets o f parameters: we have varied the charm 

mass through the values mc =  1 .1 , 1.2, 1.25, 1.3, 1.4 GeV (mc =  1.25 GeV was 

our previous optim al choice for MRST in Eq. (4.19)) and then found values o f the 

factorization and renormalization scales that reproduce the experimental value o f 

the total cross section ac£ =  13.5 ±  2.2 /ab at 250 GeV [11]. In particular, for each 

value of me, we took h f  — n ir / 2 , % ,  2rwr and found the value o f h r  which best 

fits the data.

We have also checked tha t these choices give good fits to the differential, besides 

the total, cross sections at 250 GeV [12], w ithout additional normalization factors, 

as done for the original choice o f parameters in Part One. For mc =  1 .1  GeV we 

had to choose values o f hr slightly outside the range in Eq. (4.22) (but we have 

kept these values in  our analysis anyway).
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For all the sets o f parameters in Table 4.1 we have run our fu ll simulations for 

the MRST, A =  0 case and the results are described in Figs. 4.2-4.5.

In Figs. 4.2 and 4.3 we show the resulting to ta l charm production cross section 

aci for all o f the fifteen sets o f parameters in Table 4.1, together w ith recent exper­

imental data (from  Table 1 of Ref. [14], where a ll the data for pp or pN  collisions 

have been transformed into a cross section following the procedure described 

in Part One). Fig. 4.3 is an enlargement of the region o f Fig. 4.2 containing the 

experimental data.

In Fig. 4.2 we see the spread o f the cross sections, which is more than one order 

of magnitude at 10u  GeV. One can clearly distinguish three “bands” o f increasing 

cross sections for p F =  ra x /2 , m? and 2rax- W ith in  each “band” the cross sections 

increase w ith increasing values of rac, or w ith decreasing values o f p r . Our standard 

choice (rac =  1.25 GeV, p F  =  2rax, P r  =  rax) proves to be one o f the highest cross 

sections we obtain.

In Fig. 4.3 we see better how all of these cross sections verify our calibration 

procedure. They pass through the point at 250 GeV [11], agree w ith  the point at 

400 GeV [38] and disagree w ith the very low experimental point at 200 GeV [39]. 

The lower values o f pp — rax/2 and rax fit better the lowest experimental point at 

800 GeV [40], while the higher value of pF =  2rax fits  better the upper point at 

800 GeV [41].

We believe tha t the spread o f the total cross sections shown in Fig. 4.2 provides 

a reasonable estimate o f the uncertainty o f our charm production model at fixed 

A. Since our standard choice o f parameters (rac =  1.25 GeV, pF =  2rax, Pr =  

rax) gives one o f the highest cross sections (in better agreement w ith  the more 

recent value o f the cross section at 800 GeV [41]), the uncertainty band should be 

added under each o f the cross section curves calculated w ith  our standard choice of
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parameters (like the curves shown in Fig. 3.1).

Fig. 4.4 illustrates the corresponding spread o f the final prompt fluxes. Although 

our results are for the MRST PDF’s extrapolated w ith A =  0 (the value of A which 

gives the lowest fluxes) similar spreads result from other PDF’s and A’s. We show the 

flux o f muons; the fluxes of muon-neutrinos and electron-neutrinos are essentially 

the same.

Sim ilarly to what happens w ith cross sections in Fig. 4.2, the fluxes in Fig. 4.4 

increase w ith the value of ftp and, keeping this fixed, they increase w ith mc. A t 

energies around 106 GeV the tota l uncertainty is almost one order o f magnitude 

and decreases slightly for higher energies. I f  we would decide to work only w ith 

Up =  2m r (which fits the experimental measurement at 800 GeV w ith the highest 

cross section), the uncertainty would be greatly reduced: the fluxes in this rather 

narrow band differ by less than 40%. We observe that the flux calculated w ith our 

standard choice o f parameters (mc =  1.25 GeV, ftp =  2% , ftp =  % )  is almost the 

highest, as was the case for the corresponding cross section in Fig. 4.2.

In  Fig. 4.4 we also indicate the conventional and prompt fluxes from TIG ; we 

notice tha t the T IG  prompt flux is w ith in our band of uncertainty, which is reason­

able since TIG  used a low A =  0.08 value for their predictions (see the discussions 

in Part One and Two).

4.4.2 MRST A = 0: spectral index

In  the previous chapter, we pointed out that an experimental measurement o f the 

slope o f the atmospheric lepton fluxes at energies where the prompt component 

dominates over the conventional one, m ight give information on the value o f A, the 

slope o f the gluon PDF at small x. The best flux for this measurement is that o f
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down-going muons, because the prompt neutrinos have first to convert into muons 

or electrons through a charged current interaction in order to be detectable in a 

neutrino telescope.

In this section and in the following two we consider the uncertainties in our 

method to determine A. In this section we examine those coming from the charm 

production model, in Sect. 4.5 those related to the non linearity of our model, and 

in Sect. 4.6 those coming from the unknown composition of the cosmic rays at high 

energies.

The slope of the fluxes or spectral index is a t ( E t )  =  - 3 In 4> t ( E t ) / d \ n E t ,  with 

i  =  +  or ue +  i/e. In other words, the final lepton fluxes are

M E t)  OC £ - “'<*<>. (4.23)

In Part Two we found a simple linear dependence of a t on A, namely

a t ( E t )  =  b t ( E t ,  7 , A) -  A ~  b t ( E t ) -  A, (4.24)

where b t ( E t )  is an energy dependent coefficient evaluated using our simulation with 

A =  0 and fixed 7 . As argued in Part Two (cfr. Eqs. (3.35) and (3.36)), the 

coefficient b t ( E t ,  7 , A) depends mildly on A and can be well approximated by its 

value for A =  0 (see Sect. 4.5). The coefficient b t ( E e ,  7 , A) depends almost linearly 

on 7 , the spectral index of the primary cosmic rays. We recall that the equivalent 

nucleon flux for primary cosmic rays is expressed as

M E )  cx E ~ y ~ l . (4.25)
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The linear dependence of bt(Ef, 7 , A) on 7  can be written as

bt(Et , 7 , A) =  bt (Et , 7 , A) +  7 , (4.26)

where bt(Ei, 7 , A) depends m ildly on A and 7  2, as we w ill prove in Sect. 4.5 and 

Sect. 4.6, respectively.

Given bi(Ei) from our model, an experimental measurement o f at at energy Ei 

would immediately give A corresponding to a value o f x ~  GeV/Et, as we discussed 

in Part Two. A measurement at Et ~  106 GeV =  1 PeV would give A at x  ~  10-6, 

a value o f x  unattainable by present experiments.

For the time being we keep fixed the value o f 7  (7  =  1.7 below the knee, and 

7  =  2.0 above the knee, as in the previous chapters); only in Sect. 4.6 we w ill 

consider changes in the value o f 7 .

The feasibility of a measurement o f A depends, therefore, on the uncertainties 

in bt(Et). Here we discuss those coming from the charm production model.

Fig. 4.5 shows the - 6M corresponding to the fluxes of Fig. 4.4 as functions of E^. 

In the region o f interest E^ >  105-106 GeV, the values o f w ithin each “band” 

o f fixed hf  decrease with increasing mc.

The spread of due to the choice o f h f  i Mft and mc is A 6M ~  0.1, or 

A b^/bft cz 0.03, much smaller than the uncertainty A <^/0M ~  10 of the absolute 

flux in  Fig. 4.4. I f  we would for some reason restrict ourselves to the h f  — 2 my 

band, the uncertainty on would become even smaller, A 6M ~  0.03. We w ill refer 

to this error as A b ^  in the following, as i t  is related to the choice of parameters in 

the charm production model. Therefore

2We have included in 6/ the +1 term coming from the —1 in the exponent of Eq. (4.25).
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A bpar 22 0.1 (0.03), 

where the value in parenthesis corresponds to the h f  =  2 mr band.

(4.27)

4 . 4 . 3  M R S T  A  =  A ( T )

So far we used A =  0 only. This case determines the uncertainty o f the bt (E e) 

function which enters in the determination o f A through the atmospheric muon 

fluxes.

Here we study an ‘Intermediate” value o f A. We continue to use the MRST 

PDF, but w ith  the value o f A =  A(T) given by the slope of the lowest tabulated 

value o f x  (see Part Two for more explanations). This value depends on Q2 and is 

about 0.2-0.3.

We repeat the same analysis o f subsection 4.4.1. However, for sim plicity, we 

report the results for four selected sets o f values for the parameters in Table 4.1. 

The firs t set (mc =  1.1 GeV, hf =  0.5 % , hr =  2.53 m-r) gives a lower bound 

for the fluxes. The second set (mc =  1.4 GeV, h f  =  2m r, Hr =  0.61 m r) gives 

an upper bound for the fluxes. The remaining two sets are cases in the /xp =  2m r 

“band” .

The results are plotted in Fig. 4.6. The general features o f Fig. 4.6 coincide w ith  

those o f Fig. 4.4, except for an overall increase in  a ll the fluxes due to the larger 

value o f A. The to ta l spread of the fluxes given by the two lim iting cases, as well as 

the spread w ith in  the narrower hf  =  2m r band, are comparable to those found fo r 

A =  0. As in  Fig. 4.4, our standard choice o f parameters (mc =  1.25 GeV, h f  =  

2 m r, hr — 1 0  m r) yields almost the highest flux.

We conclude tha t sim ilar features would be obtained for other values o f A: our
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“standard choice” flux would be almost the highest in  a band of uncertainty whose 

w idth is sim ilar for all values o f A. The fluxes in  the uncertainty band o f Fig. 4.6 are 

consistent w ith  older predictions and w ith the prediction by L. Pasquali et al. [21].

4.4.4 Other PDF’s

Another source of uncertainty for the final fluxes and spectral indices is the choice 

o f the PDF set. As in Part Two, we consider here four recent sets o f PDF’s: MRS 

R1-R2 [22], CTEQ 4M [24] and MRST [31], w ith  the standard choice o f parameters 

o f Eqs. (4.15),(4.16),(4.17),(4.18),(4.19).

Figs. 4.7 and 4.8 show the muon fluxes (top panels) and spectral indices (bottom 

panels) for the two lim iting cases o f A =  0 (Fig. 4.7) and A =  0.5 (Fig. 4.8). In both 

cases the \ i fluxes show at most a 30 — 50% variation depending on the PDF used. 

The uncertainty in the spectral indices for E^ >  105 — 106 GeV is A <0.02, or 

A 6m/ 6m <0.01. This error w ill be denoted as A bpoF in the following, namely

A bPDF ~  0.02. (4.28)

These uncertainties, related to the PDF’s, are smaller that those due to the 

choices o f mass scales (see Figs. 4.4, 4.5). We conclude that, provided different 

PDF’s are calibrated in a sim ilar way (i.e. same values of h f , Hr and mc, chosen 

to f it  the experimental data o f our calibration), the final fluxes and spectral indices 

are very sim ilar. The main source o f uncertainty resides therefore in the choice of 

the mass parameters, rather than the adoption o f a certain PDF set.
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4.5 Determination of A with neutrino telescopes

In Part Two we have given a detailed analysis o f the dependence o f the final fluxes 

and spectral indices on A for different PDF’s. In this section we show that the 

spread in our results due to A is larger them the one due to the choice o f h f , hr, 

mc and o f the PDF set, analyzed in the previous section. This is good news for the 

possibility o f measuring A, since the spread in a^, due to different A’s, is the signal 

we want to detect, while the spread due to other factors constitutes the theoretical 

error o f this measurement.

Figs. 4.9-4.12 show how the /x flux and its spectral index depend on A. We 

used MRST w ith  variable A =  0, 0.1, 0.2, 0.3, 0.4, 0.5 and our standard choice of 

parameters (mc =  1.25 GeV, h f  =  2m r, H r  =  1-0 m r).

Fig. 4.9 contains the differential muon fluxes. A t the highest energies the h 

fluxes are spread over almost two orders o f magnitude. To each o f the curves in 

this plot we need to assign a band o f uncertainty of about one order o f magnitude 

coming from the choice of the PDF and o f the parameters mc, h f , and Hr  (see 

Fig. 4.4). Thus the curves become entirely superposed w ith each other. This makes 

it  impossible to derive the value o f A from an experimental measurement o f the 

absolute level o f the fluxes. However, the uncertainties in the spectral index of 

these prompt muons are much smaller and a determination o f A becomes possible 

using the slope o f the muon fluxes instead o f the ir absolute level.

Fig. 4.10 shows the ^-weighted integrated fluxes as functions o f the muon en­

ergy. The slant lines indicate the number o f particles traversing a km3 detector 

over a 2 t sr solid angle. Even for the highest predicted fluxes, less than 1 parti­

cle per year w ill traverse the km3 detector for energies above 10® GeV. Moreover, 

while prompt muons can be detected directly, prompt neutrinos have firs t to convert
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into charged leptons before being detected. The smallness o f the charged current 

interaction effecting the conversion considerably lowers the detection rate o f neu­

trinos. Therefore, the slope o f the charm component o f the atmospheric leptons 

can be studied in neutrino telescopes only using atmospheric muons coming from 

above the horizon, and only in  a narrow range of energies, between a lower lim it 

o f cz 105 -  106 GeV, above which the prompt component dominates over the 

conventional one, and an upper lim it o f ~  107 -  108 GeV, above which the 

detection rates become negligible.

In practice, the spectral index o f the prompt muon flux may be estimated by 

the difference of two integrated muon fluxes above two different energies, e.g. 106 

and 107 GeV.

Figs. 4.11, 4.12 prove the va lid ity  in our model of Eq. (4.24), which is on(Et) =  

bi(E() — A. In Fig. 4.11 we p lo t the spectral indices -a t(E t)  for the different values 

o f A, both as directly calculated w ith  our simulation (solid lines) and as — bt(Et) +  A 

(dotted lines), where be(Et) is on w ith A =  0. The two almost coincide, in the 

interval of interest, Et >  10® GeV. Their difference, at{E t) — bt(Et) +  A, given in 

Fig. 4.12, is small, about ~  0.03 at E  10® GeV. This difference stems from the 

m ild dependence o f bt(Et) on A and need to be added to the the other uncertainties 

evaluated in Sect. 4.4. We w ill refer to this error, due to the non linearity in A of 

Eq. (4.24), as

A 6non_(,„ ~  0.03. (4.29)

We see in Fig. 4.11 that AA ~  A a, therefore we would need an uncertainty in 

the spectral index o f order 0.1 to  determine A with the same accuracy. We w ill show 

now that this is roughly the uncertainty related to our theoretical model.
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In fact, we can fina lly estimate the total uncertainty in the determ ination o f 

A coming from our theoretical model (that is, excluding the uncertainty due to 

the unknown composition o f cosmic rays). We sum together the three spreads o f 

bt(Et) previously calculated in Eqs. (4.27), (4.28) and (4.29), to obtain the final 

uncertainty 3 from the charm production model,

(AA)charm — (A 6 )̂c/»orm — 0.15 (0.08), (4.30)

where the number in parenthesis corresponds to fixing hf  =  2m r  in the charm 

model.

I f  the theoretical uncertainties so far presented would be the only ones affecting 

the determination o f A through a measurement o f the slope o f the down-going 

muon flux, we could expect to get to know A w ith an uncertainty o f about AA ~  

0 .1 . However, even excluding experimental uncertainties in the neutrino telescopes 

themselves, the uncertainty increases when our ignorance o f the composition o f the 

cosmic rays at high energy is taken into account, as we show in the following section.

4.6 Uncertainty from cosmic ray composition

The final uncertainty we consider in  the determination o f A comes from the poorly 

known elemental composition o f the high energy cosmic rays.

The spectral index o f the cosmic rays 7  enters almost linearly in the slope o f the 

atmospheric leptons. From Eqs. (4.24) and (4.26) we have

=  bt(Et, 7 , A) +  7  -  A. (4.31)

3We summed the errors linearly. Summing in quadrature would give (AA)Charm — 
(A6M)cfcorTO~  0.11 (0.05).
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So far we have kept 7  fixed, thus the uncertainty calculated in Eq. (4.30) is 

actually an uncertainty in  b^. We are going now to evaluate the uncertainty due to

r
The non-linearity o f Eq. (4.31) w ith respect to 7  is m ild, as we have argued 

analytically in Part Two and we show here using our numerical simulation. We 

have conducted a few tria l runs of our simulation simply changing the values of 7  

used for the prim ary flux. We recall from subsection 4.4.2 that in  our model we 

used 7  =  1.7, 2.0, respectively below and above the knee at E  =  5 106 GeV. We 

have run our simulation changing these values o f 7  by ± 0 .1 , ± 0 .2  4, both above 

and below the knee, to see the error produced when taking bt computed at fixed 

7  (our usual values) in Eq. (4.31) and thus leaving a pure linear dependence on 7 . 

We used the MRST PDF, w ith A =  0, but sim ilar results are obtained w ith other 

PDF’s and A’s.

In Fig. 4.13 we plot the spectral index —at(E t) for the different values o f 7 , 

both as directly calculated w ith our simulation (solid lines) and as —bt(Et] 7  =  

1.7, 2.0; A =  0) — 7  (dotted lines), i.e. using our standard values for 7  o f the 

primary flux and adding an increment in 7  equal to ±0.1, ±0.2. In  this way the 

“central value” o f these spectral indices corresponds to the A =  0 case o f Fig. 4.11. 

We can see that the dotted and the solid lines almost coincide, especially in the 

interval o f interest for Et >  105 — 10® GeV, proving the valid ity of Eq. (4.31). The 

uncertainty in bt due to this non-linearity, that we call A 7 non-un, evaluated in terms 

of the difference a *—6*—7 , is plotted in Fig. 4.14 and, in  the energy range o f interest, 

is

■•Notice that these values of 7  are some of the most probable values (see Fig. 4.16).
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&lnon-lin *  0.02. (4.32)

We w ill now consider the error due to the poorly known elemental composition of 

the high energy cosmic rays. Concerning charm production, the relevant cosmic ray 

flux to be considered is the equivalent flux of nucleons im pinging on the atmosphere. 

For a given cosmic ray flux, the equivalent flux o f nucleons 4>eq(E ^) depends in 

general on the composition o f the cosmic rays. Nuclei w ith  atomic number A and

energy EA, coming w ith a flux <t>A{EA), contribute an amount A<j>A(AE /y) to the

equivalent flux o f nucleons at energy En =  Ea/A . So  in  to ta l

=  ^2A4>A(AEn ). (4.33)
A

The uncertainties in the equivalent nucleon flux arise from the poorly known com­

position o f cosmic rays in the energy range above the so-called knee, Ea ~  106 

GeV.

The actual 7  that enters into our proposed determ ination o f A is the spectral 

index o f the equivalent nucleon flux j eq, the equivalent cosmic rays spectral index 

for short. The equivalent nucleon flux is written as <j>eq oc E^ptq~l , so that the 

spectral index yeq is given by

7 e, +  1 =  - - 7 ^  -T rz r ~  ~ r~ ^ 2  •4<M 7 a  +  1), (4.34)<Ptq ut/N (peq ^

where 7 4  is the spectral index o f the component o f atomic number A, i.e. <f>A(EA) =  

kAE -? *~ \

We have calculated <f>eq and j eq using the experimental data o f JACEE [42], 

CASA-M IA [43], HEGRA [44], and the data collected by Biermann et al, in Table
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1 of Ref. [45], each w ith  their respective compositions. Figs. 4.15 and 4.16 show the 

<f>eq and the 7 e,  so obtained. Only the data o f CASA-M IA [43] and HEGRA [44] 

reach energies En  ^  108 GeV, so we have not extended our analysis beyond 108 

GeV.

We have calculated the error band associated to yeq in  two different ways, because 

of the different parametrization of the composition used in  Refs. [42] to [45]. Refs. 

[42, 45] give separate power law fits to the spectrum of each cosmic ray component,

4>a{Ea) =  IcaE ? * - 1, (4.35)

where the parameters kA and 7A have errors AA:^ and A 7 4 . Standard propagation 

of errors gives, in  this case,

( ^ )  +  (ln (A E jv)A 7 , i) 2J |  (4.36)

and

(7a ~ 7 eJ2( ^ )  + [ l - ( 7 / i - 7 e,) ln (A i; iV)]2 (A 7 A) 2j |  ,

(4.37)

where (f>A is evaluated at Ea =  AEn -

Refs. [43, 44], give a power law fit to the to ta l particle flux

*(E a) =  *  V 1 (4.38)

and a composition ra tio  t a {Ea)  in terms o f which

M E A ) = r A(EA)<f>(EA). (4.39)
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These experiments distinguish only between a light and a heavy component. We 

assign atomic number 1 to the light component and 56 to the heavy one (which we 

call “iron” ). Here k , 7 , and have errors AA;, A 7 , and A r^ , respectively. The 

equivalent nucleon flux is s till given by Eq. (4.33), while standard propagation of 

errors gives in th is case

= + ^ ( i r )  + [ E ^ l n ( 4 £ „ ) A 7/t]2j  , (4.40)

We om it the much longer expression for A 7 e(J. For sim plicity, we have neglected 

the error coming from the energy dependence o f r^ , which we expect to be much 

smaller than the others. In Fig. 4.15 we show the equivalent nucleon flux <j>tq. It 

is clear from the figure that the systematic uncertainties dominate, w ith spreads 

between different experiments of up to a factor of 4.

The uncertainties in  the equivalent spectral index j eq are smaller, as can be seen 

in Fig. 4.16, where only HEGRA and CASA-MIA extend to the energy region above 

the knee which is im portant to us.

We can consider, for example, an energy En  ~  107 GeV, which is likely to deter­

mine the leptonic fluxes at around Et — 106 GeV, energy at which we would like to 

measure A through the spectral index (we recall from Part Two tha t Et $  0 .1  E n ) -  

A t this energy E n , from Fig. 4.16, we may take half the difference between 

the central values o f the CASA-MIA and HEGRA data as an indication o f the 

systematic uncertainty on 7 eq,

A t s y s t  ^  0.1. (4.41)

Using the CASA-M IA data and the related error band, instead o f the very spread
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HEGRA data, we can expect a reasonable statistical uncertainty

brfatat SJ 0.05. (4.42)

Since a* depends linearly on j eq and A, the same uncertainties apply to a deter­

m ination o f A. The total uncertainty in  the determination of A coming from the 

unknown composition of cosmic rays is now simply the sum of Eqs. (4.32), (4.41) 

and (4.42),

(AA)comp — ( A'/eq) comp — 0.17, (4.43)

if  summing the errors linearly, or

(AA)comp ~  (A 7 eq)comp ^  0.11, (4.44)

if  we sum them in quadrature.

Finally, we can now combine a ll the uncertainties together, to compute the 

overall theoretical error in the determ ination o f A w ith neutrino telescopes. From 

Eqs. (4.27), (4.28), (4.29), (4.32), (4.41), and (4.42) we obtain

AA ~  0.32 (0.25) (4.45)

i f  summing errors linearly, or

AA ~  0.16 (0.12), (4.46)

if  summing in  quadrature, where the numbers in  parenthesis correspond to  the 

Hf  =  2m r “band” in  the charm model.
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4.7 Conclusions for Part Three

We have examined in detail the possibility o f determ ining the slope A of the gluon 

PDF, at momentum fraction x  <  10-5, not reachable in laboratories, through the 

measurement in neutrino telescopes o f the slope o f down-going muon fluxes at Ep ~  

x~ l GeV.

To this end we studied the dependence o f the leptonic fluxes and their slopes 

on A. The slopes depend almost linearly on A. We studied the uncertainties of 

the method we propose (excluding the experimental errors of the telescopes them­

selves). These come mainly from two sources: the free parameters of the NLO QCD 

calculation o f charm production and the poorly known composition o f cosmic rays 

at high energies.

We have seen that, for a fixed value o f A, the uncertainties give rise to an error 

band for the leptonic fluxes of almost one order o f magnitude at the highest energies. 

This makes impossible a determination o f A based solely on the absolute values of 

the fluxes, therefore we propose using the slopes o f the fluxes. In particular we 

are proposing to use down-going muons, for energies Ep >  100 TeV, where prompt 

muons dominate over conventional ones, and not up-going neutrino-induced muons 

whose flux is orders o f magnitude smaller. W hile an im portant contribution to up- 

going muons is expected from astrophysical neutrinos, there is no background for 

down-going atmospheric muons.

The overall theoretical error, from the charm production model, on the mea­

surement o f A, is {^X)charm ;$0.10. A  comparable error, due to uncertainties in  the 

cosmic ray composition, (AA)comp <0.15, must be added, so that the overall error 

in  the determination o f A w ith neutrino telescopes is AA ~  0.2 — 0.3.

These errors may be reduced by improving the experimental knowledge o f the
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charm production cross sections and o f the cosmic ray composition around and 

above the knee. We w ill return on the uncertainties due to cosmic ray composition 

in the next chapter.
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mc (GeV) Pf  (jrvr) pR (mp) °%NR (/**>) <j?xp  (pb)

1.1 0.5 2.53 13.48 13.5 ±  2.2
1 .0 2.40 13.48 n

2 .0 2 .10 13.42 11

1.2 0.5 1.46 13.57 13.5 ±  2.2
1 .0 1.40 13.54 11

2 .0 1.23 13.51 11

1.25 0.5 1.18 13.57 13.5 ±  2.2
1 .0 1.13 13.54 11

2 .0 1 .00 13.58 11

1.3 0.5 0.96 13.55 13.5 ±  2.2
1 .0 0.92 13.50 11

2 .0 0.83 13.53 11

1.4 0.5 0 .6 8 13.51 13.5 ±  2.2
1 .0 0 .6 6 13.51 11

2 .0 0.61 13.52 11

Table 4.1: Choice o f parameters m c, pp  and pr, that can reproduce the experimental 
to ta l cross section <r^xp  for charm production in pN  collisions a t 250 GeV from the 
E769 experiment. For each set o f parameters, o&NR is the cross section calculated 
w ith the MNR program using MRST PDF.
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Figure 4.1: The ratio R  =  (<rNLO —<t l o ) / ln(s/m ^)/7r) is p lo tted as a function 
o f the beam energy E, for the different values of A used w ith the MRST PDF.
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Figure 4.2: Total cross sections for charm production <?<£, up to NLO, calculated 
w ith  MRST (A =  0) and the values o f m c, f iFi h r  o f Table 4.1, are compared w ith 
recent experimental values [11, 14, 38, 39, 40, 41]. For each “band” in  the figures 
(i.e. same value o f h f ) the cross sections increase w ith increasing m c (or decreasing 
H r) through the values o f Table 4.1.
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Figure 4.3: Total cross sections for charm production a<£, up to  NLO, calculated 
w ith  MRST (A =  0) and the values o f mc, pF, H r  of Table 4.1, are compared with 
recent experimental values [11, 14, 38, 39, 40, 41]. For each “band”  in  the figures 
(i.e. same value o f h f ) the cross sections increase w ith increasing m c (or decreasing 
H r ) through the values o f Table 4.1 (This is an enlargement o f the previous figure).
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Figure 4.4: Results for MRST A =  0. The ^-w eighted vertical prompt fluxes, at 
NLO, are calculated using the values o f mc, pp, hr of Table 4.1 and compared to 
the T IG  [15] conventional and prompt fluxes. For each “band”  in  the figures (i.e. 
same value of fip) the fluxes increase w ith increasing mc (or decreasing hr) through 
the values o f Table 4.1.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 ....... 11111111111111111 u 11111 ii 11111 n 1111111  ......... ..........

prompt M"+M+ H

- 2.5

-3 .5  -

&! j: I iVnVtVU'-llltUV̂ V.v
H s i i * * * — -

MRST \= 0
/X p = 2 . 0  m T

/zF=1.0 mT 
//F=0.5 mT

_ / 1  Ii ii 11 ii 11111111111111111111111111111111111111111111111111111111111111

4 5 6 7
log10(E /GeV)

8 9
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Figure 4.6: Results for MRST A =  A(T). The ^-w e ighted vertical prompt fluxes, 
at NLO, are calculated using selected values o f mc, h f , hr from Table 4.1 and 
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different values o f A, calculated directly by our simulation (solid lines) are compared 
to the corresponding terms —bi(Et) +  A (dotted lines).
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Figure 4.12: Results fo r MRST A =  0 — 0.5 (solid lines). The error o f Eq. (4.24) is 
evaluated in terms o f the difference <*<(£*) — &*(£*) - f A.
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Figure 4.13: Results for MRST A =  0 for different values o f 7 . The spectral indices 
-ag (E e) for the different values of 7 , calculated d irectly by our simulation (solid 
lines) are compared to the corresponding terms —be(Ee; 7  =  1.7, 2.0; A =  0) — 7 , 
w ith  increments in  7  equal to ±0.1, ±0.2 (dotted lines). The curves are labelled by 
the related value o f 7  above the knee ( 7  =  2 .0  is our “standard value” ).
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Figure 4.14: Results for MRST A =  0 for different values o f j .  Uncertainty due to 
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prim ary cosmic ray experiments [42,43,44,45]. For each of these we plot the central 
value and the related error band.
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Figure 4.16: The spectral index, +1 , for the equivalent nucleon fluxes o f Fig. 4.15, 
is shown for different primary cosmic ray experiments [42, 43, 44, 45]. For each of 
these we plot the central value and the related error band.
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Chapter 5 

Part Four: Dependence on the 

Cosmic Ray Model

5.1 Introduction to Part Four

In Part One we have found the NLO pQCD approach to be perfectly adequate 

to produce fluxes comparable to older predictions (not based on pQCD) and also 

to the recent pQCD semianalytical analysis o f Pasquali, Reno and Sarcevic [21]. 

We have also explained the reason o f the low fluxes in the TIG  model [15], the 

first to use pQCD in this context, which was related to the extrapolation o f the 

gluon partonic distribution function (PDF) at small momentum fractions (small x), 

confirming however the overall va lid ity of the ir approach to the problem.

In  Part Two we have analyzed in  detail the dependance o f the fluxes on the 

extrapolation o f the gluon PDF at low x  mentioned before, which is related to the 

choice of the parameter A. This proved to be a critica l factor o f the simulation, 

giving rise to a wide uncertainty o f the final fluxes at energies above 10s GeV.
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We recall that low x  extrapolations o f the gluon PDF usually propose

xg(x) ~  x~x, (5.1)

w ith A in the range (0 — 0.5), depending on the existing theoretical models.

Because the value o f A is not known from particle physics experiments, we have 

proposed in Part Two the possibility of its measurement through the atmospheric 

neutrino fluxes at energies above 106 GeV. This would not be possible using the 

absolute fluxes, because o f the ir large theoretical error, but would rather be done 

through the spectral index (i.e. the “slope” ) o f the leptonic fluxes, which should be 

affected by smaller uncertainties.

In  Part Three we have investigated further into this possibility, considering the 

issue o f the A measurement into the more general context o f an overall error analysis 

o f our model.

We have analyzed the uncertainty in the charm production model as a major 

source o f error for the prompt atmospheric neutrino fluxes and we have combined 

this evaluation w ith the discussion o f the A dependance o f the results.

We have seen that, for each value o f A considered, the uncertainties o f the model 

give rise to an error band for the leptonic fluxes, which can span over almost one 

order o f magnitude at the highest energies. This made impossible a determination 

o f A based solely on the absolute values o f the fluxes.

On the contrary, an experimental measure o f the spectral index o f the fluxes, in 

an energy range where the “prompt” fluxes would be the dominant ones, could give 

information on A and on the gluon distribution function at very low x. In particular 

we have estimated the overall theoretical error on the measure o f A to be AA <  0.10, 

which might be further more reduced by improved experimental knowledge o f charm
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production cross sections.

We have also noted tha t the predicted fluxes for different A, together w ith their 

bands o f uncertainty, are compatible w ith previous predictions, thus confirming the 

overall validity of the pQCD approach to the problem.

We have also introduced, in  the previous chapter, as a last source o f uncertainty 

in our simulation, the dependence on the primary cosmic ray model. In this chapter 

we w ill continue this analysis.

In the next section we w ill compare the cosmic ray model we used so far, the 

same one used by the TIG  group, w ith one of the models we have introduced in Part 

Three. We w ill then analyze the dependence on these models o f the final results 

o f our simulation: differential and integrated leptonic fluxes and related spectral 

indices. Finally we w ill discuss how this dependance affects the uncertainty o f the 

estimate of A with “neutrino telescopes” .

5.2 Primary cosmic ray models

In  our first three parts we have always used the prim ary cosmic ray flux from the 

T IG  model [15] to allow a d irect comparison of the final prompt fluxes. We recall 

tha t T IG  neglected the detailed cosmic ray composition and considered a ll primaries 

to be nucleons w ith energy spectrum

M E )
nucleons

cni2 s sr GeV /  A =  0 O£ - 7_I = (5.2)

1.7 (EfG eV ) ~ 27  fo r  E  < 5  106 GeV 

174 (E/GeV ) - 30  fo r  E  >  5 10® GeV
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(see [15] for details and references therein) and the uncertainty o f this primary flux 

was not considered in  the T IG  model or in our first three parts, except for the brief 

discussion at the end o f the last chapter.

As an example o f an alternative model for prim ary cosmic rays, we w ill consider 

in  particular here the one recently introduced by B. Wiebel-Sooth, P. L. Biermann 

and H. Meyer [45] (called W BM  in the following). This model provides a detailed 

and updated analysis o f a ll the experimental data below the knee, i.e. the energy 

at which the cosmic ray flux steepens (which was taken as 5 • 10® GeV in the TIG  

model), subdividing the fluxes into the contributions of the different elements or 

classes o f elements and including the errors of all these fluxes.

In particular, for energies below the knee, the spectra are given by WBM as

<(>z
1

.m 2 s sr TeV  .
0o* (E /TeV)~ 'rz, (5.3)

where Z  refers to the different elements (Z  =  1 ,..., 28) or groups of elements con­

sidered together. The values o f <f>oz and 7 z for the different elements can be found 

in Tables 1-3 of Ref. [45]; in  particular we have used in our present analysis the 

data o f Table 1 , where the elements and their fluxes are considered individually, 

i.e. for Z  — 1,2,..., 28. In  these tables WBM also quote the errors for the various 

0 o* and 7 z\ we w ill refer to these errors as 6< j> and S^z in  the following.

The WBM model considers three sites o f origin for the observed cosmic rays:

•  supernova explosions into the interstellar medium (ISM-SN),

•  supernova explosions into the stellar wind o f the predecessor star (wind-SN),

•  radio galaxy hot spots for the extragalactic component.

In  particular the second type o f sources, the wind-SN, is responsible for the 

bend in  the spectrum (i.e. the knee) and basically determines the spectrum beyond
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the knee. In this region we have to rely on theoretical predictions, rather than 

experimental data, therefore we w ill use those o f W BM. For the wind-SN spectrum 

they propose a knee depending on the particular element, i.e.

£ f 'VEE =  600 Z  TeV (5.4)

and a flux beyond the knee that goes as

(5.5)

The peculiar way o f quoting the error o f the spectral index indicates an asym­

metric error d istribution (see also [46]) extending from the most probable value of

3.07 to 3.21 in our case. For our purposes we w ill simply rewrite Eq. (5.5) as

thus considering a “central”  value for the spectral index beyond the knee yk  =  3.14 

w ith an error 6 y x  =  0.07.

To obtain a working model for cosmic rays we w ill combine together Eqs. (5.3), 

(5.4) and (5.6) to obtain an equivalent nucleon flux 4>n - Below the knee we use 

Eq. (5.3) w ith  the data of Table 1 in Ref. [45] and we add together the various 

contributions rew riting the total flux as an equivalent nucleon flux, i.e. number of 

nucleons per un it o f time, area, solid angle and energy E (energy per nucleon, in

1We use the same symbol, £ , for the energy per nucleon, like in Eq. (5.3), or for the energy per 
nucleus (i.e. for each actual component of the primary cosmic rays) like in Eq. (5.3). It should be 
clear from the context which type of energy is being considered.

4wmd(E) ~  £T 314±007 =  E~'1K±S'1K, (5.6)

GeV I  A )1.
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After performing also a change o f units, the equivalent nucleon flux below the 

knee2 becomes

M E ) cm2 s sr GeV/A

=  £  A ( Z f ^  io < ^ - ; ) ( J L \  ™ , (5.7)
2 —1

where A (Z ) is the mass number (we used A (l)  =  1 , A(2) =  4, A(3) =  6.5, A(4) =  9, 

A(5) =  10.5, A (Z) =  2Z  for Z  >  6 ) and again the values o f 6<f>oz and 6 7 z come 

from Table 1 o f Ref. [45].

To evaluate the flux <j>n beyond the knee(s) we have considered each component, 

for Z  — 1,2, ...28, using Eq. (5.3) up to each respective knee given by Eq. (5.4) and, 

beyond that energy, we have continued the flux simply “bending” it  to assume the 

steeper spectral index of Eq. (5.6). Therefore, beyond each respective knee, we have 

assumed that a ll the components have the same slope, given by the W BM model, 

through Eqs. (5.5) and (5.6).

We can form ally write the equivalent nucleon flux <j>n as

nucleons
cm2 s sr GeV/A

28

=  10- 7 £  A(Z) 0O2
Z — L

A(Z) E —7z

103 GeV
+

28

+ 1 0 -7 £  A (Z ') <t>o2, 
z '= i

'A (Z ') E$,nee ' ~ 7 z < ' E - 7 K

103 GeV £ K N B E ) (5.8)

where the first sum runs only on those elements Z  such that E <  E $ nee =

2There is actually one “knee” for each component according to Eq. (5.4), the following equation 
applies only for energies below all “knees”, i.e. E  <  (E £ NEB)mi„ =  600 TeV.
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6  Z  10s GeV, i.e. for E  less than the variable knee(s), while the second sum is for 

E  greater than the variable knee(s), for those elements Z ' such that E  >  Ez>neb  =  

6  Z ' 10s GeV. We have also considered the error on the equivalent nucleon flux 

coming from all the errors 5<f>oz, 5 jz and 8yK quoted in  the WBM model. Using 

standard error propagation on Eq. (5.8) we obtain the overall error 84>n as follows:

H n {E)
nucleons

cm2 s sr GeV/A
(5.9)

=  10-7

E?=i A \Z )  [S4H, +  <  In2 (M i )  * r i]

+  E
A ( Z ' )  e K N B B ' | - 27z *103 G e V ■J

B
e k n e b

—2"tK

S<t>0z, +

where the meaning o f the summations over Z  and Z ' is the same as in Eq. (5.8).

We have implemented Eqs. (5.8) and (5.9) in to our computer simulation and we 

can therefore utilize the equivalent nucleon flux <f>tf(E) ±  S<f>s(E), coming from the 

W BM  model, as the input for our simulation o f prom pt atmospheric neutrinos and 

muons. Before turning our attention to the leptonic fluxes, in Fig. 5.1 we simply 

compare the primary cosmic ray fluxes according to  the different models discussed. 

In this figure we show the £ 3-weighed equivalent nucleon fluxes, E z<j>(E), for the 

original TIG  model o f Eq. (5.3) and the W BM  model o f Eqs. (5.8) and (5.9). For 

the W BM model we show the “central”  value flux o f Eq. (5.8) as well as the error 

band obtained p lo tting <j>s ±  8<j>s •

I t  can be seen immediately that the fluxes o f W BM  are considerably lower than 

the T IG  one, especially a t the higher energies, beyond the knee(s), where the differ­

ence in  the spectral index o f the two models determines an overall discrepancy in  the
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fluxes up to one order o f magnitude at the highest energy considered (10u GeV). 

Even below the knee(s) the two models differ, although to a smaller extent, and of 

course also the position o f the knee(s) is peculiar to the two models: TIG  simplifies 

the knee as a sharp bend at 5-106 GeV while, as we have seen in Eq. (5.4), the change 

in slope is more gradual for WBM extending from 6  • 105 GeV to 1 .6 8  • 107 GeV, even 

if  the sharper bend is o f course toward the lowest energy, where the most important 

components (H, He, etc.) are bent.

For the calculation o f the prompt atmospheric fluxes the most relevant part of the 

primary spectrum is o f course the one beyond the knee(s), at the highest energies. 

Since in this region W BM  and TIG  can differ up to one order o f magnitude, we can 

already expect a sim ilar difference in the leptonic fluxes. In the next section we w ill 

detail these results.

5.3 Prompt fluxes and spectral indices

We have used the W BM  model of the primary spectrum to calculate the vertical 

prompt fluxes, both differential and integrated, for neutrinos and muons, and the 

related spectral indices, using the same simulation and procedures described in de­

tails in our first three parts. We recall that the main open option o f our simulation 

is the choice o f a set o f partonic distribution functions (PDF’s) and the low par- 

tonic momentum fraction (low x) extrapolation o f the gluon PDF, regulated by the 

parameter A, usually in  the range between 0 and 0.5.

We choose here to present our results for just one o f the most recent PDF sets, 

the MRST [31] w ith  a variable A, taking the values A =  0,0.1,0.2,0.3,0.4,0.5 and 

also the intermediate case that we denoted as A =  A(T) in  Part Two. We just 

present here the fluxes because, as usual, the ue and n cases give essentially the
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same results.

In  Fig. 5.2 we show the £ 3-weighed vertical prompt fluxes obtained using the 

W BM model of the primary cosmic rays (the central value o f this model only, 

w ithout considering the error band) and we compare them to the results (already 

reported in Part Two and Three) calculated using the TIG  model for the prim ary 

cosmic rays. We detail here also the critica l dependence on A and also p lo t for 

completeness the conventional flux taken directly from the TIG  model [15].

We see that, as expected, the results obtained w ith WBM are lower than the 

other ones and this difference is especially notable at the highest energies, where it 

can be as large as one order of magnitude at 109 GeV. Apart from the lower absolute 

values o f the fluxes, the WBM results show the same features o f our previous results, 

including the dependance on A which is quite similar in the two cases. We can only 

notice slight differences in the shape o f the fluxes, for the two cases, which are 

the product of the differences in slope, position of the knee(s), etc., that we have 

described in Fig. 5.1.

In Fig. 5.3 we reproduce the results o f Fig. 5.2, but in terms of integrated fluxes 

which are more commonly used to evaluate signals and backgrounds for “neutrino 

telescopes” . We present here the 132-weighed integrated vertical prompt fluxes for 

the different cases and we compare them (as we did in our previous parts) to the 

number o f particles simply traversing a km2 2n sr detector in one year, in order to 

give an idea o f the very low rates involved at these high energies. Again the use of 

the W BM  primary fluxes basically lowers a ll our results by one order o f magnitude 

at the energies where the prompt component dominates over the conventional one.

This o f course would be a much desired result, reducing the atmospheric back­

ground for neutrino telescopes and allowing them to effectively gather data from 

astrophysical sources, like AGN’s and others. On the contrary, in terms o f the dis-
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cussion over the possibility o f setting bounds for A w ith  the neutrino telescopes, 

these new results are a serious setback: w ith such low atmospheric fluxes it  w ill be 

probably d ifficu lt for the neutrino telescopes to give bounds on A. Nevertheless we 

have tried in Fig. 5.4 to continue the discussion of a A measurement.

In this final figure we compare the differential fluxes and the related spectral 

indices for two particular cases: the A =  0 case, which is the fundamental one in 

our approach and the “intermediate” A =  A(T) case, just to show another example of 

the results (always using the MRST PDF). In the top part o f the figure we plot again 

the £ 3-weighed prompt fluxes obtained w ith the W BM and TIG  prim ary models, 

but this time we include also the “error band” for the W BM case, i.e. the leptonic 

fluxes obtained using as an input the error band of the W BM primary flux shown 

in Fig. 5.1. This provides an estimate of the error o f our final results due to the 

uncertainty o f the WBM prim ary model: the error spread for the W BM leptonic 

fluxes amounts to a factor o f two at around 106 GeV, where the prompt fluxes 

become relevant, and to a factor of about three at the highest energy considered 

(109 GeV). As we already noticed in Fig. 5.2 the W BM fluxes are always lower 

than those calculated w ith  T IG , by almost one order o f magnitude at the highest 

energies.

The related spectral indices are shown in the bottom part o f the figures. In Part 

Two we argued tha t the spectral index a„M, for a prompt flux is o f the form

~  E ~°^  ~  E~b̂ +y, (5.10)

where bUll(E) is just an energy dependent coefficient to be determined w ith our 

simulation in the A =  0 case. We have seen in Part Three tha t doesn’t  depend 

much on the PDF choice which can amount for a variation A ~  0.02, but shows
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a larger uncertainty ( A ~  0.03 — 0.1) due to our “calibration” o f the charm 

production model.

Further more we have remarked that the linear relation

~ b Vtl-  \  (5.11)

holds w ith an uncertainty o f about 0.03, so that, compounding a ll these errors, we 

evaluated the final uncertainty on A to be (summing the errors linearly)

AA ~  0.08 -  0.15. (5.12)

We should now consider also the uncertainty due to the prim ary cosmic ray 

flux. This can be seen from the bottom part of Fig. 5.4, especially in the left 

part for the A =  0 case, where the plotted aVtl gives directly &„M. We see that the 

spectral indices calculated w ith the WBM and TIG  models can be rather different, 

as we have already noticed the different shape o f the prim ary and leptonic fluxes. 

However, i f  we disregard the TIG  model results and just consider the W BM as the 

most reliable model, we notice that the error band of W BM induces an additional 

uncertainty A bU)l ~  0 .1 , for energies in the range 10® - 108 GeV. We have therefore 

to include this error in our estimate o f AA which now we argue to be in  the range 

(adding the errors linearly)

AA ~  0.18 -  0.25. (5.13)

We can conclude that this analysis adds more difficulties to  an actual mea­

surement o f A w ith  neutrino telescopes: the overall uncertainty is now somewhat 

around
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AA ~  0.2 (5.14)

over a possible range fo r A o f 0.5; further more the fluxes calculated w ith WBM are 

now much lower than our previous estimates giving a very small atmospheric signal 

for the neutrino telescopes to observe.

5.4 Conclusions for Part Four

We have considered the dependance of our simulation fo r prompt atmospheric neu­

trinos and muons on the prim ary cosmic ray model. We have compared the cosmic 

ray flux we used so far, the same used by TIG , w ith one o f the more recent models 

appeared in the lite ra ture: the WBM model. We have computed the equivalent 

nucleon flux coming from  this model, together w ith the related uncertainty, and 

found it  to be considerably lower than the TIG  one for energies beyond the knee(s). 

As a consequence, a ll our differential and integrated prom pt atmospheric fluxes are 

lowered, by almost one order o f magnitude, in the region where the prompt flux 

dominates. Other features o f the results, like the critica l dependence on A, appear 

to remain the same.

We have also detailed the uncertainty o f the final fluxes due to the errors quoted 

in the WBM model; th is  uncertainty affects also the spectral indices of the fluxes, 

determining an increase o f our previous estimate o f the overall theoretical uncer­

ta inty for the measurement o f A, that we now argue to  be about AA ~  0.2. The 

relatively low fluxes obtained w ith this analysis, together w ith  this new estimate 

o f AA, indicate tha t “neutrino telescopes” w ill probably not be able effectively to 

set bounds for A, unless the current uncertainties in our model can be reduced by 

new experimental data, either for the primary cosmic rays o r the charm production
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mechanism at high energy.

On the contrary, the lower atmospheric fluxes obtained here, would indicate a 

lower background for “neutrino telescopes” , increasing the ir possibility of an effec­

tive detection o f signals from astrophysical sources.
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Figure 5.1: Prim ary cosmic ray models. We show the JS3-weighed equivalent nucleon 
fluxes for the models used: the TIG  model and the W BM  model (w ith related error 
band).
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Figure 5.2: Results for MRST, A =  0  — 0.5. £ 3-weighed vertical prompt fluxes, at 
NLO, for muon neutrinos, are calculated using the T IG  and W BM prim ary fluxes 
(also shown the conventional flux from the T IG  model).
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Figure 5.3: Results for MRST, A =  0 — 0.5. ^-w eighed integrated vertical prompt 
fluxes, at NLO, for muon neutrinos, are calculated using the T IG  and W BM  primary 
fluxes. Also shown the number o f particles traversing a km2 2n sr detector per year 
(dashed lines).
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Figure 5.4: Results for MRST, A =  0 , A(T), calculated using the T IG  and W BM 
primary fluxes (for the W BM model also the related error band is calculated). Top 
part: 2 ^ -weighed vertical prompt fluxes, at NLO. Bottom part: related spectral 
indices - a „ M (for the A =  0 case -a r„M =  - 6„J .
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